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Unknown sequences, or gaps, are largely present in most published genomes across public

databases. Gap filling is an important finishing step in de novo genome assembly,

especially in large genomes. The gap filling problem is nontrivial and while many

computational tools exist partially solving the problem, several have shortcomings as to

the reliability and correctness of the output, i.e. the gap filled draft genome. SSPACE-

LongRead is a scaffolding software that utilizes long reads from multiple third-generation

sequencing platforms in finding links between contigs and combining them. The long reads

potentially contain sequence information to fill the gaps, but SSPACE-LongRead currently

lacks this functionality. We present an automated pipeline called gapFinisher to process

SSPACE-LongRead output to fill gaps after the actual scaffolding. gapFinisher is based on

controlled use of a gap filling tool called FGAP and works on all standard Linux/UNIX

command lines. We conclude that performing the workflows of SSPACE-LongRead and

gapFinisher enables users to fill gaps reliably. There is no need for further scrutiny of the

existing sequencing data after performing the analysis.
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Unknown sequences, or gaps, are largely present in most published genomes across public databases. Gap 

filling is an important finishing step in de novo genome assembly, especially in large genomes. The gap 

filling problem is nontrivial and while many computational tools exist partially solving the problem, 

several have shortcomings as to the reliability and correctness of the output, i.e. the gap filled draft 

genome. SSPACE-LongRead is a scaffolding software that utilizes long reads from multiple third-

generation sequencing platforms in finding links between contigs and combining them. The long reads 

potentially contain sequence information to fill the gaps, but SSPACE-LongRead currently lacks this 

functionality. We present an automated pipeline called gapFinisher to process SSPACE-LongRead output 

to fill gaps after the actual scaffolding. gapFinisher is based on controlled use of a gap filling tool called 

FGAP and works on all standard Linux/UNIX command lines. We conclude that performing the 

workflows of SSPACE-LongRead and gapFinisher enables users to fill gaps reliably. There is no need for 

further scrutiny of the existing sequencing data after performing the analysis.

INTRODUCTION

Gap filling is one of the final phases of de novo genome assembly. First, assembly algorithms produce 

contiguous sequences of overlapping sequencing reads, commonly known as contigs. A contig is a 

continuous DNA sequence entity without any ambiguities, unknown bases marked as N. Second, the 

contigs are connected into longer fragments, scaffolds, using specialized sequencing read data. Until the 

development of long read technologies, the data used to be primarily mate-pair reads, known also as 

jumping reads. The mate-pair libraries are usually made of size selected DNA fragments, where fragment 

size is usually in the order of thousands of base pairs. The ends of these fragments are sequenced and 

resulting reads are used for scaffolding. Currently long continuous reads e.g. from Pacific Biosciences 

(Menlo Park, California, United States) RS II or Sequel third-generation sequencing platforms are 

commonly used. While the scaffolding step links and orders the contigs, it usually leaves variable amounts

of unknown sequences, strings of N-characters, in between them. These unknown sequences are called 
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gaps. Finally, the gap filling stage aims to resolve these unknown sequences with additional sequencing 

data, (e.g. Boetzer et al., 2011; Boetzer & Pirovano, 2012) or without additional data (e.g. Li & Copley, 

2013).

In this paper, we present an automated gap filling pipeline called gapFinisher. We pursue a solution to the 

gap filling problem that utilizes long reads and only unaltered draft genomes to prevent any loss of data. 

We set strict alignment parameters for the gap filling stage to ensure correctness and uniqueness of the 

filled gaps. We conclude that applying gapFinisher enables efficient and reliable gap filling by controlling 

the use of the FGAP algorithm (Piro et al., 2014). Furthermore, gapFinisher time complexity proves linear

with respect to the size of the input. The system requirements are MATLAB Compilation Runtime (MCR) 

for FGAP and a Perl interpreter for SSPACE-LR. Besides these, the gapFinisher pipeline does not require 

any additional software to be installed.

Gap filling

SSPACE-Standard (Boetzer et al., 2011) and SSPACE-LongRead (SSPACE-LR) (Boetzer & Pirovano, 

2014) are scaffolding tools for paired-end (also mate-pair) reads and long continuous reads, respectively. 

While this software is available free for academic users, both are commercial products and upgrades and 

most of the support require a proprietary license. SSPACE-Standard is commonly applied in the first 

scaffolding step where contigs are oriented and ordered into longer connected sequences and it accepts 

paired-end data from any next-generation sequencing technology if read-orientation information and mean

values and standard deviations of the insert sizes for each read library are provided. SSPACE-LR utilizes 

Pacific Biosciences filtered subreads (CLR = Continuous Long Reads) in finding long links between 

contigs or existing scaffolds and combining them into “superscaffolds” with new gaps introduced between

the sequences. SSPACE-LR first maps the long reads into the contig assembly using the BLASR aligner 

specialized for long read alignment (Chaisson & Tessler, 2012). Based on these alignments, contigs are 

then linked into scaffolds and N-characters (gaps) are placed between the connected contigs. While the 

CLR reads contain information of the actual nucleotide sequence in the gaps, this feature is not exploited 
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in the current version of SSPACE-LR (version 1.1). However, the software can report the exact 

information about which reads were associated when creating the new scaffold and the new gap(s). In the 

gapFinisher pipeline, we actually utilize this information to fill the gaps in the newly created scaffolds on 

the go.

A central part of gap filling is the alignment of long sequences against the contigs. This is challenging due 

to the relatively high error-rates of contemporary long read data (Laver et al., 2015) and the sequencing 

errors, e.g. (Nakamura et al., 2011; Schirmer et al., 2015) and local misassemblies at the contig level 

(Boetzer & Pirovano, 2014). The BLAST local alignment tool (Altschul et al., 1990) is the most 

commonly used approach for the identification of areas of high similarity between multiple sequences. 

Different scaffolding and gap filling tools apply BLAST either directly (Piro et al., 2014), or the method is

refined (Chaisson & Tessler, 2012) and applied (English et al., 2012; Boetzer & Pirovano, 2014). All tools

based on BLAST contain multiple parameters, e.g. for mismatches and gaps, affecting their ability to 

detect non-perfect matches and it is not always clear how these should be defined.

Several gap filling software exist. GapFiller (Boetzer & Pirovano, 2012) is a commercial program by the 

authors of SSPACE-tools and often used together with them. GapFiller uses paired-end read information 

to fill in sequences at contig ends where overlapping reads reach into the gap created on the SSPACE-

Standard step by mate-pair reads. Where reads are unable to span the whole length of the unknown 

sequence, the gap is not completely filled and unknown bases (N-characters) will remain in the output 

version of the draft genome (Boetzer et al., 2011).

PBJelly (English et al., 2012) is a scaffolding and gap filling tool integrated into the Pacific Biosciences 

(PacBio) SMRT Analysis software suite, the main user interface for data analysis using PacBio long reads.

In comparison to other gap filling tools, the PBJelly is run in six separate stages (setup, mapping, support, 

extraction, assembly and output) and requires additional software libraries, most notably the SMRT Portal 

software suite and BLASR (Chaisson & Tessler, 2012). Despite it is possible to run PBJelly in a single-

core computer, the workflow is clearly designed for high-throughput computing in a grid, e.g. the Sun 

Grid Engine (Gentsch, 2001). A peculiar default feature of PBJelly is that it by default inflates short gaps 

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.3467v1 | CC BY 4.0 Open Access | rec: 15 Dec 2017, publ: 15 Dec 2017



(< 25 bp) to a length of exactly 25 bp with the apparent purpose of emphasizing the location of the gaps 

(English et al., 2012).

Gap2Seq (Salmela et al., 2016) provides a purely computational solution to the gap filling problem. It 

works well on prokaryote genomes but does not scale well to larger genomes, where repetitive sequences 

confuse the algorithm and the sheer size of the genome makes running times infeasibly long.

FGAP (Piro et al., 2014) is a gap filling tool that utilizes various types of read data and BLAST 

alignments to find and fill gaps in draft genomes. The BLAST utility is bundled with the release version of

FGAP, but a MATLAB Compilation Runtime is required. The gapFinisher pipeline presented in this paper 

is based on FGAP and enables more reliable and controlled gap filling.

State of the art

Although FGAP efficiently reduces the number of gaps in various draft genomes (Piro et al., 2014), the 

tool has the rather troubling feature of setting no limit to the number of times an input read is used in gap 

filling should the BLAST alignment return multiple good hits (Fig. 1). With the default setting of FGAP, 

undesired multiple alignments of query sequences may occur due to repetitive regions in the draft genome,

or overly lenient alignment parameters for the ends of the query sequences (Fig. 1). We could verify this 

behaviour on an FGAP test run with a preliminary draft genome of an unpublished marine mammal from 

the Phocidae family (Table S4). Ideally, gap filling should be a unique process in the sense that a single 

input long read would find a single good alignment in the draft genome and fill any gaps in that single 

location.

(Figure 1 here)

Repeat masking may improve the scaffolding and gap filling of highly repetitive draft genomes. For 

example, it has been estimated that more than 60% of the 3,3 Gb modern human (H. sapiens) genome 

consists of repetitive sequences, (e.g. de Konig et al., 2011). With the repetitive sequences at contig ends 

eliminated, the scaffolding / gap filling algorithms are less likely to make incorrect alignments. One 
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example of repeat masking software tools is RepeatMasker (Smit et al., 2013) which finds short and long 

interspersed elements as well as simple repeats in the input genomic sequence. RepeatMasker may mask 

coding regions of the input genome, especially those located at the terminal regions of open reading 

frames (ORFs). Furthermore, RepeatMasker may mask some shorter potential element-coding sequences 

such as ribosomal RNAs (Smit et al., 2013). Repeat masking may lower the inherent risk of incorrect 

alignments or multiple alignments in the contig ends. In this paper, however, we pursue a solution that 

utilizes only unaltered (unmasked) draft genomes to prevent any loss of data.

Solving short gaps of e.g. 1-20 base pairs in length by simple read alignment maps produced by e.g. the 

Burrows-Wheeler Aligner (Li & Durbin, 2009) or the Bowtie 2 aligner (Langmead & Salzberg, 2012) is 

not investigated in detail in this study, but may be one of the prospects of solving the gap filling problem 

for short gaps. For instance, some singular unknown bases and short N-sequences at gap edges are solved 

by the re-assembly stage of the Pilon assembly polishing tool, where an alignment map file can be 

supplied as input and a specific option set for gap filling (Walker et al., 2014).

MATERIALS & METHODS

The current release of gapFinisher works only on the output of SSPACE-LongRead (Boetzer & Pirovano, 

2014). The basic workflow of gapFinisher is illustrated in Figure 1c and in further detail in Figure 2. Thus,

before running gapFinisher, the user must successfully run SSPACE-LongRead for a dataset at least once. 

It is imperative to have the “-k” option enabled when running SSPACE-LongRead. This setting will create

the critical “inner-scaffold-sequences” subdirectory that contains for each superscaffold the references to 

the actual long read sequences (one or more) that created the scaffold. The pipeline will not run if this 

directory does not exist. When successful, gapFinisher then works as follows (cf. Figure 2):

1. Index the draft genome FASTA file and the long read FASTA file
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2. Generate a list of names of all superscaffolds SSPACE-LongRead (-k 1 option enabled) has 

created

3. For each superscaffold in the list:

a. Create a new FGAP working directory for the current superscaffold

b. Fetch all full CLR reads associated with the current superscaffold

c. For each of the CLR reads associated with the current superscaffold:

i. Execute FGAP using the current superscaffold as draft and the CLR read as input

ii. If FGAP could fill (one or more) gaps in the current superscaffold, save FGAP 

output as the new draft for the current superscaffold

4. Compile results from each working directory as filled_scaffolds.fasta

5. Compile filled_scaffolds.fasta and the unfilled/untouched scaffolds from the original draft genome

as scaffolds_gapfilled_FINAL.fasta

6. [optional] Clean the working directories (to save disk space).

The rapid fetching of reads is based on the operation of the fastaindex (step 1 above) and fastafetch (step 

2b above) utilities of the exonerate toolkit (Slater & Birney, 2004) v. 2.4.0. Precompiled executables of 

these utilities are bundled with the gapFinisher release and fully integrated into the workflow of the 

gapFinisher pipeline.

(Figure 2 here)

When using Pacific Biosciences filtered subreads with SSPACE-LongRead, it is in theory possible, that 

separate reads originating from the same well of the PacBio SMRT cell are aligned into separate places by

the BLASR aligner (cf. Fig. 1a and Fig. 1b). Filtered subreads from the same well of the SMRT cell 

always originate from the same molecule and thus should align to locations close to one another. The 

legacy BLASR (Chaisson & Tessler, 2012) version that SSPACE-LongRead is using has no formal 

assertion for this. Hence, we set gapFinisher to keep track of the origins of the filtered subreads. The 

pipeline issues an appropriate warning when gap filling under conflicting read origin is about to happen 

and aborts the filling of the gap in question. Conflicting read origins further indicate potential errors in the
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scaffolding step. Consequently, the location and read information of the conflict are included in the 

warning message and logged.

(Table 1 here)

Here, we predisposed seven separate sequencing read datasets from both bacterial and eukaryote 

organisms (Table 1) to de novo assembly and scaffolding. Finally, we performed gap filling on the created 

scaffolds with gapFinisher (Table 2). First, we had two Escherichia coli (E. coli) bacterial genome drafts. 

Second, we extended the analysis to a set of further four bacterial genomes: Bibersteinia trehalosi, 

Mannheimia haemolytica, Francisella tularensis and Salmonella enterica. The bacterial read data are the 

same that were used as test data for the SSPACE-LongRead scaffolder (Boetzer & Pirovano, 2014) and are

available at: http://www.cbcb.umd.edu/software/PBcR/closure/index.html and the Sequencing Read 

Archive (SRA) links therein. For B. trehalosi, we used the reference sequence Bibersteinia trehalosi 

USDA-ARS-USMARC-188 (Harhay et al., 2014) Since the publication of SSPACE-LongRead, a 

reference genome has become available to M. haemolytica as well (Eidam et al., 2013). Finally, we 

included an unpublished marine mammal (Phocidae family) draft genome in final stage with 236,592 

contigs scaffolded into 10,143 superscaffolds with gaps to get a reference on how gapFinisher performs on

a much larger genome. The raw sequencing coverage of the draft genome was on average 25X for the 

Illumina (San Diego, California, United States) reads and 50X for the PacBio CLR reads (Table 1). When 

assembled with the miniasm (Li, 2016) using all the PacBio reads, we got an additional “PacBio-only” 

assembled version of the draft genome with 1,314 contigs which we then scaffolded and gap filled (Table 

2).

For the Illumina MiSeq reads, we further applied the Fast Length Adjustment of SHort Reads (FLASH) 

protocol that finds overlaps at the ends of the MiSeq paired-end reads and joins the reads if found (Magoč 

& Salzberg, 2011). Thus, about half of the reads in each MiSeq dataset could be combined to longer initial

fragments. This feature is likely to improve the de novo genome assemblies while longer initial read 

length may be enough to span short repeats and indels. The uncombined reads were supplied as additional 
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paired-end libraries in all assemblies. The Roche 454 Genome Sequencer data available for the draft 

genomes was not utilized here, as our benchmark did not include a suitable assembler, e.g. Newbler 

(Margulies et al., 2005) for these data. Furthermore, the performance of Newbler was evaluated rather 

extensively in the SSPACE-LongRead original publication (Boetzer & Pirovano, 2014) and in most of 

cases Newbler could not perform as well as the other short read assemblers.

We assembled the draft genomes with the SPAdes (Bankevich et al., 2012) and miniasm (Li, 2016) 

assemblers. SPAdes can employ both Illumina short reads and PacBio CLR reads. In contrast, miniasm 

only works properly with PacBio CLR reads or other long reads with a sufficient sequencing coverage. 

This is because the read trimming phase of miniasm requires a read-to-read mapping length of at least 

2,000 bp with a minimum of 100 bp non-redundant bases (Li, 2016). This condition is not met by the short

read datasets used in this study. An additional and a highly useful feature of miniasm is the minidot plot 

drawing utility and it was used to create the dotplots for comparisons to the reference genomes (Figs. 3 

and S1).

The scaffolding step included the combined use of SSPACE-LongRead (academic license, software 

version 1.1) (Boetzer & Pirovano, 2014) and the gapFinisher pipeline. We first executed SSPACE-

LongRead for all samples to create the superscaffold assemblies for the six bacterial genomes and the 

unpublished mammal draft genome (Phocidae family). The same long read data was applied for the 

scaffolding of both SPAdes and miniasm contig assemblies. For each scaffold assembly, we then executed 

gapFinisher to fill the gaps introduced by the scaffolding step. Due to the large size (~2,5 gigabases) of the

unpublished mammal genome, the SSPACE-LongRead and gap filling stage for the miniasm assembly had

to be executed in two consecutive runs with 25X (50 % of the total coverage) PacBio reads applied to each

part. On the other hand, the scaffolding of the mammal SPAdes assembly was executed in five separate 

stages as part of the actual genome project of the mammal. About 10X coverage of PacBio reads of insert 

were applied at each stage and gapFinisher executed between the stages. Thus, the results for this 
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assembly (Table 2) show statistics for the final stage and average CLR reads per scaffold is the average of 

all five stages.

We visualized the different stages of the draft assemblies for all genomes using the subplot utility of the 

MATLAB toolkit (Figs. 3 and S1). Furthermore, we visualized the final stages of the assembly and 

scaffolding by aligning the reference genomes and the two drafts from the SPAdes and miniasm assembly 

pipelines with the progressiveMauve algorithm of the Mauve (Darling et al., 2004) alignment and 

visualization tool (Figs. 4 and S2). Mauve reveals the number and similarity of Locally Collinear Blocks 

(LCBs) between the input sequences.

In order to assess the performance of the software, all of the SPAdes, miniasm, SSPACE-LongRead and 

gapFinisher runs were executed in two separate 64-bit Linux computer environments. First, the bacterial 

genomes were assembled, scaffolded and gap filled in a single-processor computer running Ubuntu Linux 

14.04 with 20 GB of RAM, the equivalent to a modern office workstation with a small RAM extension. 

The processor was Intel (Santa Clara, California, United States) Core (TM) with a frequency of 3,2 GHz. 

Second, we built the mammal genome in a multi-core supercomputer running Ubuntu Linux 14.04 with 1 

TB of RAM and using 16 Advanced Micro Devices (Sunnyvale, California, United States) Opteron(TM) 

processors with a frequency of 2,5 GHz each. The latter setup is equivalent to a small-scale computer 

cluster.

RESULTS

The results are presented both from the viewpoint of how finished the draft genomes are before and after 

gapFinisher and how gapFinisher performs in general and with respect to FGAP. Key statistics of the 
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assembly benchmark results were compiled (Fig. 5) and the genome alignments to the bacterial reference 

genomes were visualized (Figure .3 and Figure. 4 and supplementary figures S1 and S2).

Genomes

Regarding de novo assembly of the genomes, we noticed similar behaviour of the SPAdes assembler as 

reported by the authors of the SSPACE-LongRead (Boetzer & Pirovano, 2014). Namely, that the SPAdes 

assembly pipeline introduced repeats at the ends of the contigs that evidently prohibit many CLR reads 

from aligning into the contig ends and thus the scaffold assembly is left with a higher number of 

uncombined sequences than expected (Table 2 and Fig. 4a). Nevertheless, scaffolding with SSPACE-

LongRead reduced the number of total sequences in all the assemblies. This was especially evident in the 

Mannheimia haemolytica draft genome, where SSPACE-LongRead reduced the number of sequences in 

the draft assembly from 112 to 17 (84,8 % reduction). A notable increase in basic assembly statistics, such 

as the N50 contig length and number of sequences, was observed throughout (Table 2). The miniasm 

assembler (Li, 2016) outperformed the assemblers used in the SSPACE-LongRead test assemblies 

(Boetzer & Pirovano, 2014) and the SPAdes assembler (Bankevich et al., 2012) in our benchmark in terms

of number of output contigs, N50 and gap length (Table 2). On the other hand, the median similarity of the

alignments to the bacterial reference genomes is lower across all bacterial draft genomes from the 

miniasm pipeline (Figs. 4 and S2).

It is evident from the assembly results that both the SPAdes and miniasm assemblers are optimized for the 

E. coli K12 genome: The number of SPAdes assembly contigs was the lowest of the bacterial assemblies 

in this study, namely 35 (Table 2). The miniasm assembly of the E. coli K12 genome was a single 

sequence (Fig. S1 and Table 2) and thus was the only draft genome not to require scaffolding or gap 

filling. Furthermore, miniasm was able to construct the full E. coli K12 genome from PacBio reads in 3 
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minutes (Fig. 5 and Table S3). The final assembly consists of a single long bacterial genome (Table 2) in 4

Locally Collinear Blocks (LCB’s) according to progressiveMauve (Darling et al., 2004) alignment (Table 

2 and Fig. S2a). The contig assembly results for the other bacterial genomes were more variable with both 

SPAdes and miniasm (Table 2 and Figs. 1 and 2).

Regarding the overall output of the assemblers, miniasm consistently reports zero N’s at the contig 

assembly stage (Table 2). Furthermore, the miniasm contig assemblies are more contiguous in the sense 

that they consist of less sequences when compared to the SPAdes assemblies in all cases (Table 2). 

However, the SPAdes assemblies report some gapped sequences already at the contig assembly of E. coli 

O157 (3 bp), B. trehalosi (2 bp), M. haemolytica (35 bp) and S. enterica (655 bp) (Table 2).

Evidently, gapFinisher can fill about 50 % of the gapped sequence (Table 2) in the scaffolded draft 

genomes and retains the structure of the genomes in all cases (Figs. 3 and 4 and Supplementary figures S1 

and S2). The lowest percentage of gaps filled was with the second stage of the mammal genome miniasm 

scaffolding (4,1 %) and the highest percentage of gaps filled was with the scaffolding of the B. trehalosi 

SPAdes assembly (85,7 %). At the nucleotide level, several kilobases of gapped sequence is being filled in

all cases (Table 2). No large insertions, deletions or inversions are introduced by the gap filling stage with 

gapFinisher (Table 2 and Figs. 3 and S1). The bacterial initial assemblies were refined to scaffolds using 

PacBio filtered subreads. There were no cases of gapFinisher warning about separate reads from same 

SMRT cell well attempting to fill disparate gaps in any of the bacterial genomes.

(Figures 3 and 4 here) (Table 2 here)

Performance

(Figure 5 here)
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Besides MATLAB Compilation Runtime and a Perl (Christiansen et al., 2012) interpreter, gapFinisher 

does not require any other software to be installed. Furthermore, the gapFinisher pipeline is contained in a 

single phase, namely the actual execution of the gap filling, where e.g. the PBJelly (English et al., 2012) 

pipeline has six separate phases.

Due to the serial design of the pipeline, gapFinisher running time holds quite neatly at about 3-5 wall-

clock seconds per CLR read per scaffold (Table S3). Thus, gapFinisher time complexity can be regarded 

as linear with relation to the number of input scaffolds and the total coverage of the scaffolding reads. 

Where average number of CLR reads per created scaffold was high, as was the case with the bacterial 

genomes of F. tularensis, M. haemolytica and S. enterica, gapFinisher running time in single-core mode 

was notably higher (Fig. 5 and Table S3).

We studied random access memory (RAM) use of gapFinisher (Fig. 5 and Table S3). We used a built-in 

Linux utility (/usr/bin/time) to measure the peak RAM use during each of the assembly stages. Again, the 

serial design of gapFinisher keeps the RAM use of the gap filling stage at all but nominal level (Fig. 5a), 

also in the case of a much larger genome (Fig. 5c). In general, the peak RAM use of less than 1 GB we 

detected in all cases means that gapFinisher could be executed in almost any Linux computer, even most 

tablets. Nevertheless, the preceding assembly steps tend to use significantly more RAM (Fig. 3a and Fig. 

3c). In particular, the larger mammal genome used more than 500 GB of RAM in the contig assembly 

stage and more than 80 GB of RAM in the SSPACE-LongRead stage (Table 2).

DISCUSSION

Gap filling is a non-trivial problem with many existing solutions today in the form of software tools. The 

correctness of the outputs of different tools is variable. For a large genome under assembly, the default 

parameter settings of FGAP clearly are too lenient and may lead to incorrect gap filling in large draft 
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genomes (Table S4). Repeat masking before gap filling with FGAP alone may be recommended, 

especially because FGAP utilizes BLAST (Altschul et al., 1990) directly for the long read alignment.

Typically, contig assemblies do not contain any unknown sequence (N-characters) and the output of 

miniasm correctly follows this principle (Table 2). However, it is evident from the SPAdes assembler 

results that a small number of N’s may be introduced already at the contig assembly stage (Table 2). This 

may be due to the N’s present in the actual read data that is not uncommon for Illumina sequencing reads 

but is more unusual for PacBio reads.

gapFinisher is not able to fill all gapped sequences in the draft assembly (Table 2). This is because the 

CLR reads of the Pacific Biosciences platform do contain base-call errors, (e.g. Laver et al., 2015) and 

gapFinisher employs a strict alignment scheme of the long reads and only fills a gap when a reasonably 

correct alignment of known sequences at the gap edges is found (Figs. 1c and 2). Consequently, it is 

possible that some gaps are prevented from filling despite the evidence being there. A solution is to run 

gapFinisher on less strict parameters and then confirm the correctness of the result using other alignment 

tools. Nevertheless, gapFinisher with the default settings can reduce the amount of gapped sequence in the

example draft genomes by about 50 % in general (Table 2).

Regarding the use of filtered subreads in the bacterial genome assemblies of this study, gapFinisher did 

not detect any cases where separate reads from the same SMRT cell well would have filled disparate gaps 

in the genomes. In applications where conflicting read origins could be a problem, it can be circumvented 

by producing reads of insert from the filtered subreads, albeit with the expense of genome level coverage. 

On the other hand, the reads of insert pipeline improves the overall quality of the reads which leads to 

more reliable alignments. Checking the read origin of the filtered subreads is a valuable additional 
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correctness feature of the gapFinisher pipeline not present in the other gap filling tools presented in this 

study.

We found that the time complexity of gapFinisher is approximately linear with respect to the number of 

input scaffolds and long read evidence related to each of the scaffolds (Fig. 5 and Supplementary table 

S3). While the peak RAM use of gapFinisher stays at a nominal level in all the cases of small and large 

genomes (Fig 5a and Fig. 5c), the runtime varies significantly, even in small genome assemblies (Fig 5b). 

This feature may be optimized in future development versions. If the user can run gapFinisher in a 

supercomputer cluster, it is possible to specify the number of threads (option -t) and the utility will divide 

the input scaffolds into even parts, splitting the total running time by the number of processors assigned. 

In the case of our datasets, the parallelization would have significantly reduced the runtime of gapFinisher 

in the gap filling of bacterial genomes M. haemolytica and S. enterica (Fig. 5b and Supplementary table 

S3) and the effects could be clearly seen in the case of the mammal genome gap filling with 16 processors 

in use and parallelizing the workflow (Fig. 5c). gapFinisher is designed to work on all standard 

Linux/UNIX distributions on command line with as little dependencies as possible. Aside for having to 

first perform the actual scaffolding using SSPACE-LongRead, all the user needs to do is download 

gapFinisher and run it.

No matter which next-generation sequencing platform is in use, there exists a distinct base-call error 

profile affecting the output and the quality of the sequenced reads. Previously, sequence-specific 

systematic miscalls have been reported in the output of Illumina Genome Analyzer II platform (Dohm et 

al., 2008; Nakamura et al., 2011). Evidently, the more recent Illumina MiSeq platform is affected by the 

same miscall profile to some extent (Kammonen et al., 2015; Schirmer et al., 2015). The presence of a 

relatively high error-rate can also not be disputed in current high-throughput sequencing of long reads 

(Laver et al., 2015). High error-rate is also a likely explanation to the observed lower overall similarity of 

locally collinear blocks (LCBs) in the miniasm part of our study (Figs. 4 and S2). Nevertheless, with ever-
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improving sequencing chemistries and throughput the issue of high error-rates is likely to grow smaller in 

the future. Error profile aware quality control methods could also help to counter the various miscalls 

made by NGS platforms.

The actual sequencing coverage of PacBio reads has an apparently significant effect in the finalization of 

the genomes: In the SSPACE-LongRead bacterial genome study (Boetzer & Pirovano, 2014), it was found

that long-read coverage from around 60X upwards did not further improve genome closure on the contig 

level. Regarding read error-rates, it is already possible to self-correct PacBio CLR reads by using the reads

of insert pipeline of the SMRT Analysis toolkit. For each sequenced molecule, an improved consensus 

sequence is obtained by aligning all the produced subreads together which cancels out the random errors 

in individual reads. The final quality of the sequence depends on the number of subreads obtained for each

single molecule. Thanks to the nearly random error profile of the PacBio RS II instrument, single 

nucleotide miscalls in the reads will not be propagated to the reads of insert output, that is, the circular 

consensus (CCS) reads. Furthermore, the new Sequel instrument of Pacific Biosciences has promised 7-

fold throughput as compared to the earlier RS II platform, which has major ramifications also for the 

throughput of corrected reads from the platform.

There may be additional approaches to the gap filling problem. In theory, a simple gap-tolerant alignment 

of sequencing reads of variable lengths using existing mapping tools would be able to reliably span at 

least short gaps, say 1-20 bp in length. This is one of the intriguing prospects of solving the gap filling 

problem, especially as the average read lengths of next-generation sequencing platforms are likely to only 

increase in the future.

CONCLUSIONS
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Here, we presented an automated pipeline to solve the gap filling problem using a combination of 

SSPACE-LongRead (Boetzer & Pirovano, 2014) and FGAP (Piro et al., 2014) in a controlled manner and 

wrapping these methods together in a pipeline called gapFinisher. gapFinisher ensures the uniqueness of 

the BLAST alignments returned by the FGAP algorithm by iterating through the read data one read and 

one superscaffold at a time. As evident from the result statistics (Table 2) and the visualizations of the 

draft genomes (Supplementary figures S1 and S2), the control provided by gapFinisher leads into efficient

but reliable gap filling. The effects appear to scale up in a large genome de novo assembly (Table 2 and 

Fig. 5).

The applicability of gapFinisher is currently limited to SSPACE-LongRead academic license version 

output only and requires the user to be able to run SSPACE-LongRead at least once. Nevertheless, 

SSPACE-LongRead currently is the only publicly available scaffolding software that is able to produce 

information about the sequences spanning the gaps in the final scaffolds, i.e. the ”inner-scaffold 

sequences” subdirectory. Should other utilities with this key feature become available, we will further 

develop gapFinisher for full compatibility. Our pipeline contributes to filling long gaps and solving the 

non-trivial task of gap filling after scaffolding draft genomes of multiple organisms. Applying gapFinisher

will accelerate the finishing of draft genomes of both prokaryote and eukaryote organisms, even in 

published genome assemblies.

The script to run the gapFinisher pipeline is published under GNU’s general public license and can be 

downloaded at: http://www.helsinki.fi/~jkammone/gapFinisher.zip
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FIGURE CAPTIONS

Figure 1. Visualization of the FGAP (Piro et al., 2014) and gapFinisher workflows. a) FGAP is expected 

to find identity between a long read (blue bar) and two contigs (gray blocks) separated by a gap (N's) and 

then fill the gaps with the sequence. b) In practice, FGAP is allowed to find multiple places for one long 

read and nonhomologous gaps with the same sequence. c) gapFinisher uses the association of the long 

read and the scaffold reported by BLASR (Chaisson & Tessler, 2012) of SSPACE-LongRead (Boetzer & 

Pirovano, 2014) and ensures that each long read is only used once in gap filling.

Figure 2. A more detailed visualization of the gapFinisher pipeline workflow. a) SSPACE-LR (Boetzer & 

Pirovano, 2014) reports new scaffolds and these are iterated through one scaffold at a time. b) SSPACE-

LR output shows the PacBio reads associated with the gaps in the scaffolds. c) These reads are then 

circulated through the FGAP (Piro et al., 2014) pipeline with only the single scaffold as input data. This 

logical step prevents same PacBio reads from being used in parts of the draft genome other than the 

current scaffold. Measures are then taken to either d1) replace the unknown sequence with that of the long

read (=fill gap) or d2) reject the alignment and leave the gap to the genome as is.

Figure 3. minidot (Li, 2016) plots of the Mannheimia haemolytica draft genome at different stages of the 

assembly. Top top left: Image key and reading direction. Top left: SPAdes contig assembly, top center: 

scaffold stage of SPAdes contigs, top right: gap filling stage, of the M. haemolytica draft genome. 

Bottom left: miniasm (Li, 2016) contig assembly, bottom center: scaffold stage of miniasm contigs, 

bottom right: gap filling stage, of the M. haemolytica draft genome. The red diagonal lines indicate 

continuous regions of alignment between the draft assembly and the M. haemolytica reference sequence. 

The blue diagonal lines indicate regions with inverted alignment. The red and blue dots indicate repeats 

and inverted repeats, respectively. Draft assembly contig/scaffold boundaries are shown as grey vertical 

lines. The alignment plots are provided for each of the bacterial genomes as supplementary figure S1.
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Figure 4. Mauve (Darling et al., 2004) alignments of the Mannheimia haemolytica genome. The 

visualizations are from a) before and b) after the scaffolding/gap filling stage. The corresponding Locally 

Collinear Blocks (LCB) in the three genome versions are indicated by different colors of horizontal bars. 

The darker lines within the blocks indicate local median similarity while the light lines show the range of 

local similarity values. White areas indicate low or no similarity. Blocks below the center line indicate 

regions that align in the reverse complement (inverse) orientation. a): M. haemolytica reference sequence 

(red bar), SPAdes (Bankevich et al., 2012) assembly contig sequences (green bar), and miniasm (Li, 

2016) assembly contig sequences (blue bar). b): M. haemolytica reference sequence (red bar), and gap 

filled scaffolds using the SPAdes assembly contig sequences (green bar), and the miniasm assembly 

contig sequences (blue bar).

Figure 5. Results from the performance benchmark of the assembly, scaffolding and gap filling tools used.

The exact values are reported in supplementary table S3. a) Peak random access memory (RAM) use in 

gigabytes (GB) in the six bacterial assemblies. b) Runtimes (in minutes) of the bacterial assemblies. The 

F. tularensis and S. enterica assembly runtimes are omitted due to the large number of CLR reads per 

scaffold reported in the gap filling stage (953 and 317, respectively) and the consequent long runtimes. c) 

Peak RAM use (GB) and runtimes (in hours) of the assembly, scaffolding and gap filling algorithms in the

marine mammal (Phocidae family) genome assembly.

Figure S1. minidot (Li, 2016) plots of the six bacterial genomes at different stages of the assembly. a) E. 

coli K12, b) E. coli O157:H7, c) B. trehalosi, d) M. haemolytica, e) F. tularensis, f) S. enterica. Top top 

left: Image key and reading direction. Top row (in all subfigures): SPAdes (Bankevich et al., 2012) contig

assembly, scaffolding and gap filling (gapFinisher) stages of the assembly. Bottom row (in all subfigures):
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miniasm (Li, 2016) contig assembly, scaffolding and gap filling (gapFinisher) stages of the assembly. The 

scaffolding and gap filling stages are missing for the E. coli K12 assembly (a)) since the genome was in a 

single sequence (i.e. closed) after miniasm.

Figure S2. Mauve (Darling et al., 2004) alignments of the six bacterial genomes at different stages of the 

assembly. a) E. coli K12, b) E. coli O157:H7, c) B. trehalosi, d) M. haemolytica, e) F. tularensis, f) S. 

enterica. Top part (in all subfigures): progressiveMauve alignment of the respective bacterial reference 

genome (red bar), the SPAdes (Bankevich et al., 2012) contig draft genome (green bar) and the miniasm 

(Li, 2016) contig draft genome (blue bar). Bottom part (in all subfigures): progressiveMauve alignment 

of the respective bacterial reference genome (red bar), the SPAdes assembly pipeline gap filled 

(gapFinisher) scaffolds (green bar) and the miniasm assembly pipeline gap filled (gapFinisher) scaffolds 

(blue bar). Only the contig assembly stage (top part) is shown for the E. coli K12 assembly (subfigure a))

since the genome was in a single sequence (i.e. closed) after miniasm.
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TABLE CAPTIONS

Table 1. Next-generation sequencing read statistics and sequencing coverage for the sample datasets. The

bacterial data are from 2013 and originate from the Sequencing Read Archive (SRA). The sequencing 

chemistries were not accurately described in the original datasets but the bacterial MiSeq read data 

represent either Illumina (San Diego, California, United States) sequencing-by-synthesis chemistry v1 or 

v2. The mammal MiSeq read data are a mixture of Illumina sequencing-by-synthesis chemistry v2 and v3.

The bacterial Pacific Biosciences (Menlo Park, California, United States) RS reads represent PacBio 

SMRT sequencing chemistries that are earlier than P4-C2 and the mammal PacBio RS reads are a mixture 

of PacBio SMRT sequencing chemistries P5-C3 and P6-C4. 

Table 2. De novo assembly, scaffolding and gap filling statistics for the model genomes. For clarity, only 

the most significant statistics are shown here and the full statistics provided as supplementary table S3.

Table S3. All de novo assembly, scaffolding and gap filling statistics for the model genomes. In addition, 

the performance benchmark statistics are included in the last three columns.
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Table S4. Gap filling data used and FGAP (Piro et al., 2014) default test results reported for an 

unpublished draft genome of a marine mammal from the Phocidae family. An admittedly small number of 

Pacific Biosciences RS II platform circular consensus reads (reads of insert) with summed length of about 

280 kbp filled 45.5 million unknown bases in the draft genome, a result reported by FGAP with the default

alignment settings. By further changing the FGAP command line options, one can adjust the number of 

BLAST (Altschul et al., 1990) hits returned to perform the alignment. By default, this is 200 hits. We 

further ran another test, where we reduced this amount to two so that only the best two BLAST hits would 

be considered in the gap filling. Still, more than 4.5 million N’s were reportedly filled with our test set, a 

far greater number of bases than contained by the original read data used. The default BLAST alignment 

parameters of FGAP for opening and extending a gap are both set to the value 1. The default values in 

command line applications of BLAST for opening and extending a gap are set as 5 and 2, respectively, as 

written in the BLAST user guide by Camacho et al. Thus, depending on the total score of the alignment, 

gap opening in the alignment is up to 80% and gap extension up to 50% more likely than the BLAST 

defaults. The minimum raw score of a BLAST hit in FGAP is set to value 25, a typical raw score value of 

highly dissimilar sequences irrespective of the gap penalty parameters. Moreover, a maximum of 200 

BLAST results may be returned for a 70 percent identity in alignment length of 300 bp by default. In 

general, the default parameters of FGAP appear too lenient and may fill gaps based on alignments that are 

incorrect and may appear multiple times where unique alignments are desired.
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Figure 1

Visualization of the FGAP (Piro et al., 2014) and gapFinisher workflows.

a) FGAP is expected to find identity between a long read (blue bar) and two contigs (gray

blocks) separated by a gap (N's) and then fill the gaps with the sequence. b) In practice,

FGAP is allowed to find multiple places for one long 5 read and nonhomologous gaps with the

same sequence. c) gapFinisher uses the association of the long read and the scaffold

reported by BLASR (Chaisson & Tessler, 2012) of SSPACE-LongRead (Boetzer & Pirovano,

2014) and ensures that each long read is only used once in gap filling.
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Figure 2

A more detailed visualization of the gapFinisher pipeline workflow.

a) SSPACE-LR (Boetzer & Pirovano, 2014) reports new scaffolds and these are iterated

through one scaffold at a time. b) SSPACE-LR output shows the long reads associated with

the gaps in the scaffolds. c) These reads are then circulated through the FGAP (Piro et al.,

2014) pipeline with only the single scaffold as input data. This logical step prevents same

reads from being used in parts of the draft genome other than the current scaffold. Measures

are then taken to either d1) replace the unknown sequence with that of the long read (=fill

gap) or d2) reject the alignment and leave the gap to the genome as is.
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Figure 3

minidot (Li, 2016) plots of the Mannheimia haemolytica draft genome at different stages

of the assembly.
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Figure 4

Mauve (Darling et al., 2004) alignments of the Mannheimia haemolytica genome.

The visualizations are from a) before and b) after the scaffolding/gap filling stage. The

corresponding Locally Collinear Blocks (LCB) in the three genome versions are indicated by

different colors of horizontal bars. The darker lines within the blocks indicate local median

similarity while the light lines show the range of local similarity values. White areas indicate

low or no similarity. Blocks below the center line indicate regions that align in the reverse

complement (inverse) orientation. a) M. haemolytica reference sequence (red bar), SPAdes

(Bankevich et al., 2012) assembly contig sequences (green bar), and miniasm (Li, 2016)

assembly contig sequences (blue bar). b) M. haemolytica reference sequence (red bar), and

gap filled scaffolds using the SPAdes assembly contig sequences (green bar), and the

miniasm assembly contig sequences (blue bar).
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Figure 5

Results from the performance benchmark of the assembly, scaffolding and gap filling

tools used.

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.3467v1 | CC BY 4.0 Open Access | rec: 15 Dec 2017, publ: 15 Dec 2017



PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.3467v1 | CC BY 4.0 Open Access | rec: 15 Dec 2017, publ: 15 Dec 2017



Table 1(on next page)

Next-generation sequencing read statistics and sequencing coverage for the sample

datasets.
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Illumina MiSeq paired end reads

(100X)
PacBio RS reads (200X)

Organism Total reads Total bases

Avg. 

read 

lengt

h

Total 

reads
Total bases

Avg. 

read 

length

E. coli K12 

MG1655
3,046,358 460,000,058 151 383,482 929,129,994 2,422

E. coli 

O157:H7
3,794,862 548,505,079 144 403,919 1,100,295,861 2,724

B. trehalosi 1,718,212 249,216,010 145 205,096 499,939,066 2,437

M. 

haemolytic

a

1,724,414 249,368,724 144 175,953 531,234,319 3,019

F. 

tularensis
926,716 199,169,591 214 176,376 399,767,452 2,266

S. enterica 1,943,848 279,774,061 143 394,699 1,000,244,555 2,534

Organism Illumina MiSeq reads (25X) PacBio RS reads (50X)

Mammal 329,484,322
62,120,890,46

7
188 17,695,174

146,961,409,90

2
8,305
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Table 2(on next page)

De novo assembly, scaffolding and gap filling statistics for the model genomes.
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  Sequences        

Organism Tool Expected Final Sum (bp) N50 length Gaps (bp) Gap % LCBs* Indels Inversions

E. coli K12 SPAdes 1 35 4,661,027 4,640,853 0 0.00% 4 0 2

MG1655
SSPACE-

LR
1 34 4,661,028 4,641,005 1 0.00% 4 0 2

gapFinisher   4,661,028 4,641,005 1 0.00%    

miniasm 1 1 4,793,967 4,793,967 0 0.00% 4 0 2

SSPACE-

LR
- - - - - - - -

 gapFinisher   - - -     

E. coli SPAdes 10 87 5,547,646 3,323,349 3 0.00% 27 5 5

O157:H7
SSPACE-

LR
10 50 5,568,199 3,323,349 18486 0.33% 23 4 3

gapFinisher   5,568,974 3,323,349 5750 0.10%    

miniasm 10 25 5,898,494 537,223 0 0.00% 27 7 7

SSPACE-

LR
10 16 5,908,008 61,209 9514 0.16% 23 6 5

 gapFinisher   5,907,537 61,209 2495 0.04%    

B. trehalosi SPAdes 1 51 2,376,258 274,711 2 0.00% 30 7 8

SSPACE-

LR
1 12 2,401,287 438,635 2804 0.12% 21 6 3

gapFinisher   2,401,265 438,599 401 0.02%    

miniasm 1 17 2,510,680 221,473 0 0.00% 30 3 7

SSPACE-

LR
1 10 2,520,563 377,524 9883 0.39% 21 4 5

 gapFinisher   2,521,341 37,752 4920 0.20%    

M. 

haemolytic

a

SPAdes 1 112 2,664,209 101,958 35 0.00% 40 5 7

SSPACE-

LR
1 17 2,718,326 1,073,880 13504 0.50% 13 4 2

gapFinisher   2,717,906 1,073,740 4498 0.17%    

miniasm 1 10 2,926,783 378,549 0 0.00% 40 4 1

SSPACE-

LR
1 8 2,928,560 378,549 1777 0.06% 13 4 1

 gapFinisher   2,928,834 378,549 1155 0.04%    

F. 

tularensis
SPAdes 3 135 1,807,729 25,688 0 0.00% 80 12 18

SSPACE-

LR
3 58 1,855,045 56,838 23176 1.25% 42 9 9

gapFinisher   1,851,864 56,791 11254 0.61%    

miniasm 3 20 2,000,228 15,305 0 0.00% 80 5 4

SSPACE-

LR
3 9 2,021,978 426,098 21750 1.08% 42 4 4

 gapFinisher   2,021,618 425,969 16843 0.83%    

S. enterica SPAdes 4 217 4,982,997 153,597 655 0.01% 49 4 10

SSPACE-

LR
4 94 5,026,381 1,020,795 10050 0.20% 27 3 6

gapFinisher   5,028,882 1,020,937 2917 0.06%    

miniasm 4 16 5,373,212 735,723 0 0.00% 49 5 2

SSPACE-

LR
4 10 5,384,667 874,322 11455 0.21% 27 5 2

 gapFinisher   5,384,057 874,322 4641 0.09%    

Mammal SPAdes Unkn. 236592 2,253,617,865 19,739 0 0.00% - - -

SSPACE-

LR
Unkn. 10143 2,462,623,627 599,108 10136364 0.41% - - -

gapFinisher 2,466,785,189 601,444 6945295 0.28%

miniasm Unkn. 1314 2,460,097,408 8,668,858 0 0.00% - - -

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.3467v1 | CC BY 4.0 Open Access | rec: 15 Dec 2017, publ: 15 Dec 2017



S-LR / 1st Unkn. 1115 2,460,626,045 9,381,548 528637 0.02% - - -

gapF / 1st 2,460,674,964 9,381,548 351878 0.01%

S-LR / 2nd Unkn. 1008 2,460,965,525 9,562,827 642439 0.03% - - -

 gapF /2nd   2,460,993,827 9,562,827 616617 0.03%    

*LCB = Locally Collinear Block of progressiveMauve (27) alignment.
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