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17

18 ABSTRACT

19 The mitochondrial genome of the moss Mielichhoferia elongata has been sequenced and 

20 assembled with the Spades genome assembler. It consists of 100,342 base pairs and has 

21 practically the same gene set and order as reported for other known bryophyte chondriomes. It is 

22 the smallest known mitogenome among bryophytes. The genome contains 66 genes including 

23 three rRNAs, 24 tRNAs, and 39 conserved mitochondrial proteins genes. Unlike the majority of 

24 previously sequenced bryophyte mitogenomes, this mitogenome lacks a functional nad7 gene. 

25 The phylogenetic reconstruction and scrutiny analysis of the primary structure of the nad7 gene 

26 carried out in this study suggest an independent pseudogenization in different bryophyte lineages. 

27 Evaluation of the microsatellite (simple sequence repeat) content of theMielichhoferia elongata 

28 mitochondrial genome indicates that it could be used as a tool in further studies as a phylogenetic 

29 marker. The strongly supported phylogenetic tree presented here, derived from 33 protein coding 

30 sequences of 40 bryophyte species is consistent with other reconstructions based on a number of 

31 different data sets.

32



33

34 INTRODUCTION

35 Bryophytes (mosses, liverworts, and hornworts) represent an ancient group of higher plant 

36 evolution that shows a dominance of the gametophyte stage in the life cycles. These nonvascular 

37 pioneers of land plants first acquired adaptations that enabled the transition from aquatic to 

38 terrestrial habitats. Mosses (Bryophyta), branched off from the stem of the Embryophyta 

39 phylogenetic tree after the Marchantiophyta and before the separation of the Anthocerotophyta 

40 (Liu et al., 2014; Qiu et al., 2006).

41 The mitogenomes (MGs) of mosses have recently become a target of sequencing efforts for 

42 phylogenetic reconstructions due to their compact size and a higher degree of synteny than is 

43 observed in vascular plants (Liu, Medina & Goffinet, 2014). The NCBI RefSeq database 

44 (http://www.ncbi.nlm.nih.gov/refseq) currently contains 39 mitochondrial genomes for members 

45 of this group of plants. This quite limited data set includes only representatives of 9 orders from 

46 the Bryopsida and 3 orders from other classes of mosses, so it clearly does not perfectly reflect 

47 bryophyte diversity. The aim of the present study is to extend bryophyte taxonomical coverage 

48 and expand the phylogenetic analysis to include MG data from the still unexplored order Bryales. 

49 For this purpose the complete MG of Mielichhoferia elongata (Hoppe & Hornsch.) Nees & 

50 Hornsch. was sequenced.

51 The Plant List (http://www.theplantlist.org, Version 1.1 September 2013) contains 142 

52 accepted species names of Mielichhoferia Nees & Hornsch. The taxonomical status of 

53 Mielichhoferia remains under debate. The genus has usually been treated as the subfamily 

54 Mielichhoferioideae within the Bryaceae, although some authors have attributed it to a separate 

55 family, the Mielichhoferiaceae (Hill et al., 2006; Shaw, 2009). The only molecular study of 

56 phylogenetic relationships of Mielichhoferia placed the Mielichhoferiaceae within the Mniaceae 

57 according to the trnL-F and rps4 sequence data (Guerra, 2011).

58 Several moss and hepatic species are restricted to substrates enriched in heavy metals. These 

59 bryophytes that show an affinity for metalliferous substrates have been referred to as "copper 



60 mosses" (Antonovics et al., 1971; Chopra & Kumra, 1988; Persson, 1948, 1956; Shaw, 1987, 

61 1989). M. elongata Homsch. (Shaw, 2000) and the closely related Mielichhoferia 

62 mielichhoferiana (Funck.) Loeske are among the species that are highly tolerant and largely 

63 restricted to substrates enriched in copper. These species are widely distributed around the globe, 

64 but are always rare. They grow in habitats rich in copper (often associated with other metals) and 

65 inorganic sulfides, which results in a very low pH. These habitats represent areas damaged by 

66 mining (mine waste tailings) or metal-rich rocks. The heavy metal tolerance mechanisms are not 

67 well understood and apparently vary across species. Metals are adsorbed by the cell walls and are 

68 accumulated in cells (Antonovics et al., 1971; Antreich, Sassmann & Lang, 2016; Brown, 1982; 

69 Meharg, 2005; Tyler, 1990).

70 Knowledge of the sequence of the mitochondrial genome of M. elongata will be useful both 

71 for finding an appropriate taxonomic treatment for the taxa and for population studies within the 

72 Mielichhoferia. The latter studies are particularly important in light of the disruptive character of 

73 the habitat area, the rarity of these species, and ongoing habitat damage.

74

75 MATERIALS AND METHODS

76 Sample collection and DNA isolation

77 The M. elongata samples were collected from July 12-17, 2011 in the area near Mus-Khaya 

78 Peak (62°31’–36’N, 140°56’–141°07’E) Republic of Sakha (Yakutia) and deposited in MHA, 

79 the Herbarium of the Main Botanical Garden Russian Academy of Science, Moscow (Ignatova et 

80 al., 2011). This moss was originally identified in a cited paper as Mielichhoferia 

81 mielichhoferiana. However, a subsequent analysis of the nuclear rDNA 5.8S-ITS 2 region 

82 attributed this plant to that of morphologically hardly distinguishable M. elongata (Fig. S1). 

83 Rocks in the area are especially rich in MnS, with other heavy metals (Pb, Sn, As, Zn, Ag, etc., 

84 usually as sulfides) present in high concentrations. Consequently, many brooks have very acidic 

85 water and sulfurr deposits along them. Siderite (iron carbonate) forms red outcrops (‘Red rocks’) 



86 rich in iron and is always enriched with other heavy metals. When the outcrops are dry, M. 

87 elongata is the only moss that grows on this substrate or at least it is the only particularly 

88 abundant one.

89 DNA was extracted from specimens in the herbarium collection that had been gathered with 

90 a minimal soil amount and dried using ordinary herbarium techniques (in a paper envelope, 

91 under a tent, in the shade for several days until dry), and then stored in the herbarium at room 

92 temperature. A Nucleospin Plant DNA Kit (Macherey Nagel, Germany) was used for total DNA 

93 extraction from whole shoots of plants according to the manufacturers’ protocol. A yield of 

94 about 2 µg DNA was obtained according to measurements determined with a Qubit fluorometer 

95 (Invitrogen, USA).

96 Library preparation and sequencing 

97 A 500 ng sample of genomic DNA was fragmented using a Covaris S220 sonicator (Covaris, 

98 USA) and a library was prepared using TruSeq DNA sample preparation kit (Illumina, USA). 

99 The concentration of the prepared library was measured with the Qubit fluorometer (Invitrogen, 

100 USA) and qPCR and fragment length distribution was determined with Bioanalyzer 2100 

101 (Agilent). The library was diluted to 10 pM and used for cluster generation on a cBot instrument 

102 with TruSeq PE Cluster Kit v3 reagents (Illumina, USA). Sequencing was performed on a 

103 HiSeq2000 sequencer with read length of 101 from both ends of the fragments. About 6 million 

104 read pairs were obtained. 

105 Mitogenome assembly and annotation

106 Raw sequencing reads were preprocessed with Trimmomatic software (Bolger, Lohse & 

107 Usadel, 2014) to remove adapters and low-quality data from further analysis. The whole genome 

108 assembly was then accomplished using the Spades assembler (Bankevich et al., 2012). A Blast 

109 database was generated from the assembled contigs, and a Blast search was performed against 

110 the Physcomitrella patens MG sequence (Terasawa et al., 2007) using the standalone NCBI 



111 BLAST-2.2.29+ (Altschul et al., 1990). The longest hit was the M. elongata complete MG. 

112 Iterative mapping was carried out using Geneious R10 software (https://www.geneious.com; 

113 Kearse et al., 2012) to verify the assembled genome. The resulting sequence had almost 100X 

114 coverage depth. The correctness of the genome boundaries was verified by PCR amplification 

115 followed by Sanger sequencing. Initial reads mapping to the genome sequence with Bowtie 2 

116 (Lingmead et al., 2009) was applied as an additional genome structure verification step.

117 Genome annotation based on sequence similarity was performed using Geneious software. 

118 The MG sequence of Bartramia pomiformis which gave a maximum score in a BLAST search 

119 against a M. elongata MG query was applied as a reference. The annotated genome sequence 

120 was submitted to GenBank (accession number: MF417767). A circular genome map was drawn 

121 using the CGView Server (Grant & Stothard, 2008; 

122 http://stothard.afns.ualberta.ca/cgview_server).

123

124 SSR analysis

125 Simple sequence repeats (SSRs) were detected and located in the MG of M. elongata using 

126 GMATo v1.2 software (Wang, Lu & Luo, 2013).

127 Phylogenomic analysis

128 Phylogenetic reconstruction was conducted by selecting only functional protein-coding 

129 sequences (CDS) present in MGs of all bryophytes under invesigation. A total of 33 of these 

130 CDS are known, including atp1, atp4, atp6, atp8, atp9, cob, cox1, cox2, cox3, nad1, nad2, nad3, 

131 nad4, nad4L, nad5, nad6, nad9, rpL2, rpL5, rpL6, rpL16, rps1, rps2, rps4, rps7, rps11, rps12, 

132 rps13, rps14, rps19, sdh3, sdh4, and tatC. . These, were extracted from the MG sequences of 39 

133 mosses and the liverwort Treubia lacunose available in GenBank (www.ncbi.nlm.nih.gov), and 

134 the M. elongata sequenced in this work. The GenBank files were imported into Geneious R10 

http://stothard.afns.ualberta.ca/cgview_server
http://www.ncbi.nlm.nih.gov/


135 and merged to export a fasta dataset file. All sequences from this dataset were aligned using the 

136 default option implemented in MAFFT (Katoh & Standley, 2013). The final alignment was 

137 adjusted manually in BioEdit 7.2.5. (Hall, 1999).

138 Phylogenetic reconstruction was performed using the Bayesian method with the program 

139 MrBayes v3.2.6 (Ronquist et al., 2012). For Bayesian analyses, we used a parallel MPI version 

140 of MrBayes (Altekar et al., 2004). Two simultaneous runs of Metropolis Coupled Markov Chain 

141 Monte Carlo (MC3), both with one cold and seven heated chains were performed for 10 million 

142 generations. Two starting trees were chosen randomly. The General Time Reversible 

143 evolutionary model (GTR+I+G) with 4 rate categories was used. Posterior probabilities (PP) for 

144 trees and parameters were saved every 1000 generations and parameters for each data partition 

145 were sampled independently from each other; the first 25% of the trees was discarded in each run. 

146 Bayesian PPs were used as branch support values.

147 RESULTS

148 Structure of the M. elongata mitogenome

149 The MG of M. elongata is 100,342 bp in length and has a typical circular structure (Figure 1). 

150 The nucleotide composition of this genome has a GC content of 39.8%. The MG of M. elongata 

151 contains 66 genes including genes for 3 rRNAs (rrn18, rrn26, and rrn5), 24 tRNAs, and 39 

152 conserved mitochondrial proteins (15 ribosomal proteins, 4 ccm proteins, 8 nicotinamide adenine 

153 dinucleotide dehydrogenase subunits, 5 ATPase subunits, 2 succinate dehydrogenase subunits, 1 

154 apocytochrome b, 3 cytochrome oxidase subunits, and 1 twin-arginine translocation complex 

155 subunit). Besides the functional genes, a single pseudogene, nad7, resides in the genome (Table 

156 1).

157 Structure of nad7 gene in bryophytes

158 The lack of a functional gene copy of the nad7 gene has been reported previously in the MG 

159 of hornworts and the majority of liverworts (Groth-Malonek et al., 2007; Li et al. 2009; Xue et 



160 al., 2010). Evolution and losses of the functionality of the gene copies within mosses also 

161 deserve special attention and scrutiny. Pseudogenization of the nad7 gene is currently described 

162 for Tetraphis pellucida and Buxbaumia aphylla (Bell et al., 2014; Liu, Medina & Goffinet, 2014), 

163 whereas all other sequenced bryophyte MGs have a functional gene, that consists of three exons 

164 separated by two introns. The only known exception is the nad7 locus structure in MG of 

165 Hypnum imponens (NC 024516), its functional gene consists of only two exons and one intron 

166 sequences. The intron 2 of the gene was lost and exon 2 and exon 3 were merged together in one 

167 exon sequence. The low conservation of the pseudogene sequences has created difficulties in 

168 constructing a reliable nucleotide alignment and unambiguously judging whether exons 2 and 3 

169 are completely deleted in either these chondriomes or whether some exon remnants are still 

170 preserved. We performed a Tblastn search of these exons amino acid sequence of the nad7 gene 

171 in T. pellucida and B. aphylla and confirmed the absence of exon 2 in B. aphylla and exon 3 in 

172 both species. The same finding is evident from Figure S2 with the alignment of nad7 from B. 

173 aphylla, T. pellucida, M. elongata, and six other moss species. It agrees with the earlier data 

174 provided by Bell et al. (2014) on the structure of the T. pellucida MG. In addition, B. aphylla and 

175 T. pellucida pseudogenes have deletions in the sequences of the first gene exon, although at 

176 different locations. The main difference in the nad7 pseudogene primary structure in these 

177 bryophytes is two deletions in the sequence of exon 2 in B. aphylla whereas T. pellucida has an 

178 intact exon 2 sequence. By contrast, the nad7 pseudogene of M. elongata completely lacks the 

179 second exon and has intact exon 1 sequence and exon 3 with frame shift mutation as a result of 2 

180 bp insertion located at 190 bp from 5’ end of the exon (Figure 2).

181 SSR analysis of the M. elongata mitochondrial genome

182 Following more stringent criteria (Zhao et al., 2016) of perfect SSR locus identification 

183 (minimal number of repeating units ≥10 for mononucleotides, ≥5 for dinucleotides, ≥4 for 

184 trinucleotides, and ≥3 for tetra-, penta- and hexanucleotides) 73 SSR loci were identified in the 

185 MG of M. elongata (Table 2 and Figure 3). Most microsatellites refer to mono- and dinucleotides 



186 classes (35 and 28 loci, respectively). Trinucleotides are the least frequent SSRs group in the 

187 genome (one locus). No hexanucleotide microsatellite repeats occur in the genome. Among all 

188 the SSRs, 87.67% are composed only of A/T bases. The total length of the SSR loci is 852 bp, 

189 which comprises approximately 0.85% of the genome length.

190 Phylogenetic analysis

191 The alignment of 33 mitochondrial protein CDS of 40 moss taxa and hepatic Treubia 

192 lacunosa (Haplomitriopsida, Treubiidae, Treubiales, Treubiaceae) consists of 24,827 positions. 

193 The Bayesian phylogenetic tree inferred from this data with the hepatic T. lacunosa as an 

194 outgroup is shown in Figure 4. Most nodes of the tree have very high PP supports. Two 

195 exceptions are two nodes among the Orthotrichaceae.

196

197 DISCUSSION

198 We performed sequencing and analysis of the MG of M. elongata, a rare "copper moss" with 

199 an ambiguous taxonomic status. The MG size significantly varies even among closely related 

200 flowering plants (Allen et al., 2007; Alverson et al., 2010; Cho et al., 2004; Sloan et al., 2010; 

201 2012), but it is extremely stable in bryophytes (Liu, Medina & Goffinet, 2014). The MG of M. 

202 elongata is 383 bp smaller than the genome of B. aphylla (Liu, Medina & Goffinet, 2014), which 

203 to date is the smallest MG among bryophytes. However, the MG of M. elongata contains the 

204 same set of genes and a similar genome structure to that of other mosses. The only difference is a 

205 pseudogenization of the nad7 gene. 

206 This locus encodes subunit 7 of NADH dehydrogenase (NDH-1 or complex I of the 

207 mitochondrial electron transfer chain) is located on the inner mitochondrial membrane and plays 

208 an important role in oxidative phosphorylation process (Bonen et al., 1994). NDH-1 is a quite 

209 complicated protein complex, consisting of approximately 30-40 subunits (Kerscher et al., 2008). 

210 The majority of the subunits are encoded in nuclear genome, but several proteins of the complex 



211 are specified by mitochondrial genes (Bonen et al., 1994). 

212 Although the MGs of the Bryophyta are highly stable in terms of their gene content, there 

213 are two other mosses, B. aphylla and T. pellucida that lack the intact open reading frame (ORF) 

214 of the nad7 gene in their MGs (Bell et al., 2014; Liu, Medina & Goffinet, 2014). In our study, we 

215 found that the exon structure of nad7 pseudogene of M. elongata differs substantially when 

216 compared with that of the MGs of B. aphylla and T. pellucida. Taking into account the close 

217 location of the later on the constructed a phylogenetic tree (Fig. 4) and the extremely distant 

218 position of M. elongata relative to them, the loss of the functionality of the nad7 gene can be 

219 concluded to have occurred at least twice during the evolutionary history of the mosses. 

220 Intact nad7 genes were found in the MGs of different angiosperms clades (Adams & Palmer, 

221 2003) and in representatives of hornworts, lycophytes, ferns and gymnosperms (Guo et al., 2017; 

222 Li et al., 2009; Xue et al., 2010). However several exceptions were noted in different 

223 evolutionary lineages. Therefore, the absence of a functional nad7 gene was noted in the MG of 

224 Nicotiana sylvestris cytoplasmic male sterile (CMS) mutants (Pla et al., 1995) and in the 

225 lycophyte Huperzia squarrosa (Liu et al., 2012). In the liverwort Marchantia polymorpha, a 

226 functional nad7 gene was transferred from the MG to nucleus, but the pseudogene was preserved 

227 in the MG (Kobayashi et al., 1997). Pseudogenization of nad7 was observed in 11 other 

228 liverwort groups, whereas the intact gene was found in Haplomitrium mnioides MG (Groth-

229 Malonek et al., 2007). This discovery suggested a basal placement of the taxon among liverworts. 

230 Overall, pseudogenization of nad7 may have occurred independently in different unrelated 

231 lineages of embryophytes. 

232 A total of 73 simple sequence repeats (SSRs, microsatellites) loci were identified in the MG 

233 of M. elongata. SSRs are common in plant and animal genomes and could play an important role 

234 in gene functioning (Li et al., 2004). Besides the occurrence of the SSR loci in nuclear genomes, 

235 microsatellite repeats are present in plastids and MGs as well (Kumar, Kapil, & Shanker, 2014; 

236 Sablok, 2015). However, to date, it is much less known about distribution and functions of 



237 microsatellites in bryophyte genomes. SSR loci are usually characterized by high mutation rate, 

238 and therefore actively used as molecular markers in population genetics surveys (Zalapa et al., 

239 2012). Molecular markers based on organellar microsatellites have been used successfully for 

240 phylogeny reconstruction at the genus taxonomic level and for intraspecific variation analysis 

241 (Ishii, Mori & Ogihara, 2001; Nishikawa, Vaughan & Kadowaki, 2005). The SSR loci revealed 

242 in the MG of M. elongata could therefore be further investigated to obtain informative markers 

243 for using in monitoring programs for Mielichhoferia species. That is especially important due to 

244 the disruptive character of the habitat area, the rarity of the species, and ongoing habitat damage.

245 M. elongata represents a separate branch on a phylogenetic tree within the Bryidae and is 

246 closest to the Hypnales/Ptychomniales/Orthotrichales group. However, the absence of a MG 

247 sequence for the Mniaceae and Bryaceae representatives preclude clarification of the taxonomic 

248 position of Mielichhoferia. The phylogenetic tree depicted in Figure 4 inferred from 33 

249 mitochondrial CDSes of 40 mosses species with liverwort as an outgroup, is consistent with 

250 other reconstructions based on 14–17 plastid genes from 43 moss species representing the major 

251 lineages summarized by Chang, Sean & Graham (2013), and based on 41 concatenated 

252 mitochondrial protein-coding genes from19 Bryophyta species (Liu et al., 2014). Although plant 

253 mitochondrial sequences evolve slowly (Palmer & Herbon, 1988), phylogenomic analyses can be 

254 effective for bryophytes taxa of both lower and higher ranks. Of course, the remarks of Liu et al. 

255 (2014) and other earlier authors should be kept in minds; namely, that even high support does not 

256 guarantee that an inferred phylogeny is approaching the true evolutionary history.

257 CONCLUSION

258 This study provides the complete MG sequence of the “copper moss” Mielichhoferia 

259 elongata consisting of 100,342 base pairs. It is the smallest known mitochondrial genome among 

260 bryophytes and non-parasitic tracheophytes. M. elongata is a moss with very specific 

261 requirements regarding environmental conditions; in particular, it is mostly confined to heavy 

262 metals enriched substrates. Although the MG has the same gene set as that found within 

263 previously studied mosses and does not demonstrate any special features associated with high 



264 heavy metal tolerance, it lacks a functional nad7 gene. Based on the phylogeny reconstruction 

265 data and exon structure analysis of the gene, it has been deduced, that nad7 pseudogenization 

266 took place independently not once in moss evolution. The phylogenetic tree presented in this 

267 study, inferred from the 33 mitochondrial CDS of 41 bryophyte species is consistent with the 

268 reconstructions made in earlier studies.
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453 Figure 3. Simple sequence repeat unit length distribution in M. elongata mitogenome. n - the 

454 numbers of base pairs (n=1, 2, 3, 4, and 5) in different microsatellite classes. N - the number of 

455 loci in each SSR category.

456 Figure 4. Bayesian phylogenetic tree of 40 Bryophyta species constructed for 33 mitochondrial 

457 protein coding sequences. The hepatic Treubia lacunosa was used as an outgroup. All nodes, 

458 except those indicated on the tree, have maximal posterior probability values equal to 1,0. 

459 Asterisks indicate taxa with pseudogenization of nad7.

460 Figure S1. The Mielichhoferia mielichhoferiana/M. elongata evolutionary tree.

461 The phylogenetic tree based on nuclear rDNA region (5.8S rDNA-ITS 2-5‘-end of 26S rDNA). 

462 The alignment consists of 440 positions. The tree reconstruction was conducted in TREECON 

463 software (Van de Peer & De Wachter, 1994) using the Neighbor-Joining method (Saitou & Nei 

464 1987) with 500 bootstrap replications. Bootstrap support values >50% are shown next to the 

465 branches. The evolutionary distances were computed using the Kimura method (1980) with gaps 

466 taken into account as it implemented in the TREECON package.

467 Figure S2. The alignment of nad7 genes from nine moss species.

468 The alignment was the map was created by the MAFFT program with the subsequent manual 

469 checking. Only generic names of species are indicated for brevity. The full species names are 

470 shown in the Figure 4. Yellow columns mark exon/intron boundaries.

471



Figure 1

Mitogenome map of Mielichhoferia elongata  (MF417767) consisting of 100,342 base

pairs.



Figure 2(on next page)

The diversity of the mitochondrial nad7 gene exon structure in mosses.

The majority of the sequenced moss mitogenomes have the same type of locus structure

found in Atrichum angustifolium. The black filled sections indicate absent exons (or parts of

them).
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Figure 3(on next page)

Simple sequence repeat unit length distribution in M. elongata  mitogenome.

n - the numbers of base pairs (n=1, 2, 3, 4, and 5) in different microsatellite classes. N - the

number of loci in each SSR category.
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Figure 4(on next page)

Bayesian phylogenetic tree of 40 Bryophyta species constructed for 33 mitochondrial

protein coding sequences.

The hepatic Treubia lacunosa was used as an outgroup. All nodes, except indicated on the

tree, have maximal posterior probability values equal to 1,0. Asterisks indicate taxa with

pseudogenization of nad7.
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Gene contents in Mielichhoferia elongata mitogenome (66 genes, one pseudogene).



1 Table 1. Gene contents in Mielichhoferia elongata mitogenome (66 genes, one pseudogene).
2

Category Group of genes Genes
Number 

of genes

 rRNAs rrn18, rrn26, rrn5 3

RNA genes
tRNAs

trnA (UGC), trnC (GCA), trnD (GUC), trnE (UUC), trnF (GAA), trnG 

(GCC), trnG (UCC), trnH (GUG), trnI (CAU), trnK (UUU), trnL 

(CAA), trnL (UAA), trnL (UAG), trnM (CAU),  trnMf (CAU), trnP 

(UGG), trnQ (UUG), trnR (ACG), trnR (UCU), trnS (UGA), trnT 

(GGU), trnV (UAC), trnW (CCA), trnY (GUA)

24

large ribosomal subunits rpl10, rpL16, rpL2, rpL5, rpL6 5

small ribosomal subunits rps1, rps11, rps12, rps13, rps14, rps19, rps2, rps3, rps4, rps7 10

cytochrome c maturation proteins ccmB , ccmC, ccmFC, ccmFN 4

nicotinamide adenine dinucleotide 

dehydrogenase subunits nad1, nad2, nad3, nad4, nad4L, nad5, nad6, nad9
8

ATPase subunits atp1, atp4, atp6, atp8, atp9 5

succinate dehydrogenase subunits sdh3, sdh4 2

apocytochrome b cob 1

cytochrome oxidase subunits cox1, cox2, cox3 3

conserved 

mitochondrial 

proteins

twin arginine translocation complex 

subunit tatC
1

pseudogenes nad7pseudo 1

3
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SSR-loci of Mielichhoferia elongata mitogenome.



1

2 Table 2. SSR-loci of Mielichhoferia elongata mitogenome.

3

Type of 

repeat

 unit

Motif Repetitions StartPos EndPos

mono- A 10 269 278

mono- A 10 13526 13535

mono- A 10 22179 22188

mono- A 10 25861 25870

mono- A 10 40307 40316

mono- A 10 46592 46601

mono- A 10 49092 49101

mono- A 10 52217 52226

mono- A 10 54565 54574

mono- A 10 62618 62627

mono- A 10 88341 88350

mono- A 10 91128 91137

mono- A 10 93879 93888

mono- A 11 39390 39400

mono- A 12 16182 16193

mono- G 10 98368 98377

mono- G 12 52784 52795

mono- G 12 57418 57429

mono- T 10 29873 29882

mono- T 10 46703 46712

mono- T 10 47865 47874

mono- T 10 56400 56409

mono- T 10 57552 57561

mono- T 10 86976 86985

mono- T 10 94469 94478

mono- T 10 99146 99155

mono- T 11 16200 16210

mono- T 11 25885 25895

mono- T 11 40958 40968

mono- T 11 50459 50469

mono- T 11 58416 58426

mono- T 11 95793 95803

mono- T 12 17608 17619



mono- T 12 100200 100211

mono- T 15 11233 11247

di- AT 5 32938 32947

di- AT 5 54921 54930

di- AT 6 14278 14289

di- AT 6 14298 14309

di- AT 6 59230 59241

di- AT 7 70407 70420

di- TA 5 195 204

di- TA 5 279 288

di- TA 5 466 475

di- TA 5 27730 27739

di- TA 5 41770 41779

di- TA 5 44628 44637

di- TA 5 62826 62835

di- TA 5 68954 68963

di- TA 5 69190 69199

di- TA 6 12557 12568

di- TA 6 86244 86255

di- TA 6 94457 94468

di- TA 7 10767 10780

di- TA 7 19813 19826

di- TA 7 25871 25884

di- TA 7 28304 28317

di- TA 7 29340 29353

di- TA 7 41786 41799

di- TA 8 57533 57548

di- TA 8 69397 69412

di- TA 10 100045 100064

di- TA 11 72289 72310

tri- TTA 4 70696 70707

tetra- AATA 3 54140 54151

tetra- ATAA 3 25162 25173

tetra- ATAG 3 10865 10876

tetra- ATTT 3 69685 69696

tetra- CATA 3 25129 25140

tetra- TACC 3 76426 76437

tetra- TAGA 3 85926 85937

penta- AACAA 3 54704 54718



penta- AAGAA 3 75527 75541

4


