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Most cropland in the U.S. is characterized by large monocultures, whose productivity is

maintained through a strong reliance on costly tillage, external fertilizers, and pesticides (

Schipanski et al., 2016 ) . Despite this, farmers have developed a regenerative model of

farm production that promotes soil health and biodiversity, while producing nutrient-dense

farm products profitably. Little work has focused on the relative costs and benefits of novel

regenerative farming operations, which necessitates studying in situ, farmer-defined best

management practices. Here, we evaluate the relative effects of regenerative and

conventional corn production systems on pest management services, soil conservation,

and farmer profitability and productivity throughout the Northern Plains of the United

States. Regenerative farming systems provided greater ecosystem services and

profitability for farmers than an input-intensive model of corn production. Pests were 10-

fold more abundant in insecticide-treated corn fields than on insecticide-free regenerative

farms, indicating that farmers who proactively design pest-resilient food systems

outperform farmers that react to pests chemically. Regenerative fields had 29% lower

grain production but 78% higher profits over traditional corn production systems. Profit

was positively correlated with the particulate organic matter of the soil, not yield. These

results provide the basis for dialogue on ecologically based farming systems that could be

used to simultaneously produce food while conserving our natural resource base: two

factors that are pitted against one another in simplified food production systems. To attain

this requires a systems-level shift on the farm; simply applying individual regenerative

practices within the current production model will not likely produce the documented

results.
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Abstract. Most croplmnd in the U.S. is chmrmcterized by lmrge monocultures, whose produc}vity is 

mmintmined through m strong relimnce on costly }llmge, externml fer}lizers, mnd pes}cides (Schipmnski et 

ml., 2016). Despite this, fmrmers hmve developed m regenerm}ve model of fmrm produc}on thmt promotes 

soil hemlth mnd biodiversity, while producing nutrient-dense fmrm products prootmbly. Litle work hms 

focused on the relm}ve costs mnd beneots of novel regenerm}ve fmrming operm}ons, which necessitmtes 

studying in situ, fmrmer-deoned best mmnmgement prmc}ces. Here, we evmlumte the relm}ve efects of 

regenerm}ve mnd conven}onml corn produc}on systems on pest mmnmgement services, soil conservm}on, 

mnd fmrmer prootmbility mnd produc}vity throughout the Northern Plmins of the United Stmtes. 

Regenerm}ve fmrming systems provided gremter ecosystem services mnd prootmbility for fmrmers thmn mn 

input-intensive model of corn produc}on. Pests were 10-fold more mbundmnt in insec}cide-tremted corn 

oelds thmn on insec}cide-free regenerm}ve fmrms, indicm}ng thmt fmrmers who promc}vely design pest-

resilient food systems outperform fmrmers thmt remct to pests chemicmlly. Regenerm}ve oelds hmd 29% 

lower grmin produc}on but 78% higher proots over trmdi}onml corn produc}on systems. Proot wms 

posi}vely correlmted with the pmr}culmte orgmnic mmter of the soil, not yield. These results provide the 

bmsis for dimlogue on ecologicmlly bmsed fmrming systems thmt could be used to simultmneously produce 

food while conserving our nmturml resource bmse: two fmctors thmt mre pited mgminst one mnother in 

simplioed food produc}on systems. To mtmin this requires m systems-level shiv on the fmrm; simply 

mpplying individuml regenerm}ve prmc}ces within the current produc}on model will not likely produce the

documented results. 

Key words: mgroecology, biodiversity, conservm}on mgriculture, corn, pest mmnmgement, proot, soil 

orgmnic mmter, yield.
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Introduc}on. Development of synthe}c fer}lizers, hybrid crops, gene}cmlly modioed crops, mnd 

policies thmt decouple fmrmer decisions from mmrket demmnds mll helped cremte m modern food 

produc}on system which reduces the diversity of foods thmt mre produced (Fmus} mnd Lundgren, 2015; 

Prety, 1995). This simpliocm}on of our food system contributes to climmte chmnge (Cmrlsson-Kmnymmm mnd

Gonzmlez, 2009), rising pollu}on (Bemmn et ml., 2011; Morrissey et ml., 2015), biodiversity loss (Butler et 

ml., 2007; Lmndis et ml., 2008), mnd dmmmging lmnd use chmnges (Johnston, 2014; Wright mnd Wimberly, 

2013) thmt mfect the sustminmbility, prootmbility mnd resilience of fmrms (Schipmnski et ml., 2016). Fmrmers 

experience the highest suicide rmte of mny profession in the United Stmtes, m rmte nemrly ove-fold higher 

thmn the generml public (McIntosh et ml., 2016); the driving depression rmtes mre relmted to conven}onml 

produc}on prmc}ces (Bemrd et ml., 2014). Yet the scmle of our food produc}on system provides 

opportuni}es for solving some of these plmnetmry scmle problems (Lml, 2004; Temgue et ml., 2016), but 

requires m systems-level shiv in the vmlues mnd gomls of our food produc}on system thmt de-priori}zes 

solely generm}ng high yields towmrd one thmt produces higher qumlity food while conserving our nmturml 

resource bmse. 

The goml of regenerm}ve fmrming systems (Rodmle, 1983) is to incremse soil qumlity mnd biodiversity in 

fmrmlmnd while producing nourishing fmrm products prootmbly. Unifying principles consistent mcross 

regenerm}ve fmrming systems include 1) mbmndoning }llmge (or mc}vely rebuilding soil communi}es 

following m }llmge event), 2) eliminm}ng spm}o-temporml events of bmre soil, 3) fostering plmnt diversity on

the fmrm, mnd 4) integrm}ng livestock mnd cropping operm}ons on the lmnd. Further chmrmcterizm}on of m 

regenerm}ve system is problemm}c becmuse of the myrimd combinm}ons of fmrming prmc}ces thmt 

comprise m system tmrge}ng the regenerm}ve goml. Other compmrisons of conven}onml mgriculture with 

mlternm}ve mgriculture schemes do not compmre in situ best mmnmgement prmc}ces developed by 

fmrmers, mnd frequently ignore m key driver to decision mmking on fmrming operm}ons: the exmmined 

systems9 relm}ve net proot to the fmrmer (De Pon} et ml., 2012).  

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.3464v1 | CC BY 4.0 Open Access | rec: 14 Dec 2017, publ: 14 Dec 2017



Materials and Methods. Corn (Zea mays L.) wms selected for our study due to its pre-eminence ms m 

food crop in North Americm mnd globmlly. Corn is plmnted on 39.9% of mll crop mcres (NASS, 2017), or 4.8% 

(37.1 million hm) of the terrestriml lmnd surfmce of the con}guous 48 stmtes. In 2012, it genermted 30.3% 

($64,319 billion) of mll gross crop vmlue in the U.S. (NASS, 2017). Nemrly 100% of cornoelds mre tremted 

mnnumlly with insec}cides (NASS, 2017). We used m mmtrix of specioc produc}on prmc}ces (Tmble S1) to 

deone emch fmrm into one of two systems (regenerm}ve or conven}onml). The most regenerm}ve systems 

used mixed mul}species cover crops (rmnging from 2-40 plmnt species), were never-}ll, used no 

insec}cides, mnd grmzed livestock on their croplmnd. The most conven}onml fmrms prmc}ced }llmge mt lemst

mnnumlly, mpplied insec}cides (ms GM insect-resistmnt vmrie}es mnd neonico}noid seed tremtments), mnd 

lev their soil bmre mside from the cmsh crop.  

Soil orgmnic mmter, insect pest populm}ons, mnd corn yield mnd proot were mssessed for emch oeld. 

Soil cores (8.5 cm deep, 5 cm in dimmeter; 30 g of soil emch; n = 4 smmples per oeld thmt were mmde m 

composite smmple; only one oeld wms smmpled per fmrm mnd two fmrms were omited) were collected mt 

lemst 10 m from one mnother during mnthesis. Smmples were clemned of plmnt residue, ground, mnd dried 

to constmnt weight mt 105° C. Pmr}culmte soil orgmnic mmter (POM) wms determined by screening emch 

smmple (somked in 5 g L21 mqueous hexmmetmphosphmte) through 500 um (course POM) mnd 53 um (one 

POM) sieves mnd then mpplying the loss on igni}on (LOI) technique (Dmvies, 1974). Insect pests were 

enumermted through dissec}ons of mll mboveground plmnt }ssues (25 plmnts per oeld). Mmjor pests of 

corn (rootworm mdults, cmterpillmr pests, mnd mphids) mre mll present in cornoelds mt this crop 

developmentml stmge (Lundgren et ml., 2015). Yields were gmthered from three 3.5 m sec}ons of row from 

emch oeld. Gross revenue for emch oeld were considered ms yield mnd return on grmin, mnd mddi}onml 

revenue stremms (e.g., livestock grmzing). Totml direct costs for emch oeld were cmlculmted bmsed on the 

costs of corn seed, cover crop seed, drying/clemning grmin, crop insurmnce, }llmge, plmn}ng, fer}lizers, 

pes}cides, mnd irrigm}on.

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.3464v1 | CC BY 4.0 Open Access | rec: 14 Dec 2017, publ: 14 Dec 2017



Results and Discussion. Insect pest populm}ons were more thmn 10 fold higher on the insec}cide-

tremted fmrms thmn on the insec}cide-free regenerm}ve fmrms (ANOVA; F1, 77 = 13.52, P < 0.001; Figure 1). 

Pest problems in mgriculture mre oven the product of low biodiversity mnd simple community structure on

numerous spm}ml scmles (Tschmrntke et ml., 2012). Hundreds of invertebrmte species hmve been inventoried

from cornoelds of the Northern Plmins of the U.S. (Lundgren et ml., 2015; Welch mnd Lundgren, 2016), but 

these communi}es represent only 25% of the insect species thmt lived in mncestrml hmbitmts (e.g., prmirie) 

thmt cornoelds replmced in this region (Schmid et ml., 2015). Pest mbundmnce is lower in cornoelds thmt 

hmve gremter insect diversity, enhmnced biologicml network strength mnd gremter community evenness

(Lundgren mnd Fmus}, 2015). Suggested mechmnisms to explmin how invertebrmte diversity mnd network 

intermc}ons reduce pests include predm}on (Letournemu et ml., 2009), compe}}on (Bmrbosm et ml., 2009), 

mnd other processes thmt mmy not be emsily predicted. Whmt prmc}ces foster diversity in mgroecosystems? 

In our studies, fmrmers thmt replmced insec}cide use with mgronomic forms of plmnt diversity invmrimbly 

hmd fewer pest problems thmn those with strict monocultures. Reducing insect diversity mnd relying solely

on insec}cide use estmblishes m scenmrio whereby pests persist mnd resurge through mdmptm}on, ms wms 

observed by our forebemrs (Perkins, 1982; Stern et ml., 1959). Applying winter cover crops (Lundgren mnd 

Fergen, 2011), lengthening crop rotm}ons (Bullock, 1992), diversifying oeld mmrgins using conservm}on 

mixes (Hmmlmnd et ml., 2011), mnd mllowing or promo}ng non-crop plmnts between crop rows (Khmn et ml., 

2006) mre other mgronomicmlly sound prmc}ces thmt regenerm}ve fmrmers successfully mpply to improve 

the resilience of their system to pest proliferm}on. 

Despite hmving lower grmin yields, the regenerm}ve system wms nemrly twice ms prootmble ms the 

conven}onml corn fmrms (ANOVA; F1, 70 = 14.35, P < 0.001; Figure 2). Regenerm}ve fmrms produced 29% 

less corn grmin thmn conven}onml operm}ons (8481 ± 684 kg/hm vs. 11,884 ± 648 kg/hm; ANOVA; 

F1, 70 = 8.39, P = 0.01). Yield reduc}ons mre commonly reported in more ecologicmlly bmsed food 

produc}on systems relm}ve to conven}onml systems (De Pon} et ml., 2012). However, only 4% of cmlories 

produced ms corn grmin is emten directly by hummns, mnd mlmost none is consumed ms grmin. 36% of grmin 
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is fed to livestock (NASS, 2017), mnd corn-fed beef contmins only 13% of the totml cmlories produced by 

corn grmin. Two wmys thmt regenerm}ve systems could incremse the hummn food produced per hm in 

cornoelds would be to incremse the diversity of livestock on the oeld, or incremsing the durm}on of grmzing

current stock. The relm}ve prootmbility in the two systems wms driven by the high seed mnd fer}lizer costs 

thmt conven}onml fmrms incurred (32% of the gross income went into these inputs on conven}onml oelds, 

versus only 12% in regenerm}ve oelds), mnd the higher revenue genermted from grmin mnd other products 

produced on the regenerm}ve corn oelds (Figure 2). The high seed costs on conven}onml fmrms mre lmrgely

mtributmble to premiums pmid by fmrmers for prophylmc}c insec}cide trmits, whose vmlue is ques}onmble 

due to pest resistmnce mnd persistent low mbundmnce for some tmrgeted pests in the Northern Plmins

(Hutchison et ml., 2007; Krupke et ml., 2017). Regenerm}ve fmrmers reduced their fer}lizer costs by 

including legume-bmsed cover crops on their oelds during the fmllow period (Ebelhmr et ml., 1984), 

mdop}ng no-}ll prmc}ces (Lml et ml., 2007), mnd grmzing the crop oeld with livestock (Russelle et ml., 2010). 

They mlso received higher vmlue for their crop by receiving mn orgmnic premium, by selling their grmin 

directly to consumers ms seed or feed, mnd by extrmc}ng more thmn just corn revenue from their oeld 

(e.g., by grmzing cover mixes with livestock). 

The prootmbility of m corn oeld wms not relmted to grmin yields (F1, 70 < 0.001; P = 0.98; r2 < 0.01; 

proot = -0.0006[yield] + 1274), but wms posi}vely correlmted with the level of POM in the soil, mnd 

inversely relmted to the bulk density of the soil (Figure 3). Orgmnic mmter is considered by some ms the 

bmsis for produc}vity in the soil (Kmrlen et ml., 1997; Tiessen et ml., 1994), mnd soils with high SOM 

typicmlly hmve lower bulk density. SOM incremses wmter inoltrm}on rmtes, mnd supports gremter microbiml 

mnd mnimml mbundmnce mnd diversity (Lehmmn et ml., 2015). The components of POM mre the lmbile 

por}on of this SOM, mnd mre frequently used to study the efects of mmnmgement-bmsed diferences in 

SOM (Cmmbmrdellm mnd Elliot, 1992). The only wmy to genermte SOM in croplmnd is through fostering 

biology, which inherently is driven by plmnt communi}es through sequestrm}on of CO2 from the 

mtmosphere. Eliminm}ng }llmge (Pikul et ml., 2007; Six et ml., 1999), implemen}ng cover crops (Ding et ml., 
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2006; Kuo et ml., 1997), mnd cycling plmnt residue through livestock (Trmcy mnd Zhmng, 2008) mll enhmnce 

this process, mnd mll mre importmnt prmc}ces used in regenerm}ve food systems thmt rmise POM in the soil. 

Conclusions. The fmrmers themselves hmve devised mn ecologicmlly bmsed produc}on system 

comprised of mul}ple prmc}ces thmt mre woven into m prootmble fmrm thmt promotes ecosystem services. 

Regenerm}ve fmrms fundmmentmlly chmllenge the current food produc}on pmrmdigm thmt mmximizes gross 

proots mt the expense of net gmins for the fmrmer. Key elements of this successful mppromch to fmrming 

include

1) By promo}ng soil biology mnd orgmnic mmter mnd biodiversity on their fmrms, regenerm}ve 

fmrmers required fewer costly inputs like insec}cides mnd fer}lizers, mnd mmnmged their pest 

populm}ons more efec}vely.

2) Soil orgmnic mmter wms m more importmnt driver of proximmte fmrm prootmbility thmn yields were, 

in pmrt becmuse the regenerm}ve fmrms mmrketed their products diferently or hmd m diversioed 

income stremm from m single oeld.
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Figure 1. Insec}cide-treated cornoelds had higher pest abundance than untreated, regenera}ve 

cornoelds. Vmlues presented mre memn ± SEM totml pests (corn rootworm mdults, Europemn corn borers, 

Western bemn cutworm, other cmterpillmrs, mnd mphids) per m2, mnd were mssessed during corn mnthesis. 

The systems were regmrded ms best-mmnmgement prmc}ces for the smmpled region by the fmrmers 

themselves. All conven}onml fmrms plmnted neonico}noid-tremted, Bt corn seed to prophylmc}cmlly 

reduce pests, mnd some cornoelds were mlso sprmyed with insec}cides. Regenerm}ve fmrms included >3 of

the following prmc}ces: use of m mul}species cover crop, mbmndonment of insec}cide, mbmndonment of 

}llmge, mnd the croplmnd wms grmzed, etc. Pest mbundmnce wms signiocmntly diferent in the two systems 

(³ = 0.05; n = 39 regenerm}ve cornoelds mnd 40 conven}onml cornoelds).

Figure 2. Regenera}ve corn oelds generate nearly twice the proot of conven}onally managed corn 

oelds. Proot wms cmlculmted using direct costs mnd revenues for emch oeld mnd excludes mny overhemd mnd 

indirect expenses. Regenerm}ve cornoelds implemented three or more prmc}ces such ms plmn}ng m 

mul}species cover mix, eliminm}ng pes}cide use, mbmndoning }llmge, mnd integrm}ng livestock onto the 

crop ground. Conven}onml cornoelds used fewer thmn two of these prmc}ces. The regenerm}ve systems 

hmd 70% higher proot thmn conven}onml cornoelds (³ = 0.05; n = 36 oelds in emch system).

Figure 3. Corn oelds with high par}culate organic mater and low bulk density in the soil have greater 

proots. Corn oelds were mmnmged under either conven}onml or regenerm}ve systems, mnd proot wms 

cmlculmted using direct costs mnd revenues for emch oeld mnd excludes mny overhemd mnd indirect 

expenses. (generml linemr regression model; F1, 16 = 7.84; P = 0.01; r2 = 0.34; proot = 29.68[POM] 3 66.94; 

bulk density; F1, 19 = 5.23; P = 0.03; r2 = 0.24; proot = -975 [POM] + 1593)
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Table S2. Soil organic mater on regenera}ve and conven}onal corn farms. 

Reference

town

Fmrm locm}ons

(lm}tude, longitude

SOM (g/kg)

Blmden,

NE
40.31971, -98.57358

6.23

Blmden,

NE
40.33703, -98.56301

4.52

York, NE 40.63054, -97.66534 6.21

York, NE 40.97390, -97.49031 5.55

Bismmrck,

ND
46.85280, -100.60131

4.19

Bismmrck,

ND
46.85280, -100.35145

N/A

Bismmrck,

ND
46.81734, -100.51257

5.82

Bismmrck,

ND
47.14250, -100.19720

3.85

White, SD 44.42572, -96.58806 N/A

White, SD 44.41155, -96.60008 5.52

Pipestone,

MN
44.11446, -96.32468

N/A

Pipestone,

MN
44.12416, -96.36422

4.75

Toronto,

SD
44.59248, -96.57923

7.60

Toronto,

SD
44.57960, -96.58367

6.38

Gmry, SD 44.80565, -96.34708 7.53

Gmry, SD 44.80689, -96.35465 7.36

Arlington,

SD
44.41566, -97.18795

8.17

Arlington,

SD
44.42644, -97.25077

8.18

Lmke

Norden,

SD

44.58976, -97.08649

4.56

Lmke

Norden,

SD

44.55.6839, -97.243820

6.26
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Figure 1

Figure 1. Insecticide-treated cornfields had higher pest abundance than untreated,

regenerative cornfields.

Values presented are mean±SEM total pests (corn rootworm adults, European corn borers,

Western bean cutworm, other caterpillars, and aphids) per m2, and were assessed during

corn anthesis. The systems were regarded as best-management practices for the sampled

region by the farmers themselves. All conventional farms planted neonicotinoid-treated, Bt

corn seed to prophylactically reduce pests, and some cornfields were also sprayed with

insecticides. Regenerative farms included >3 of the following practices: use of a multispecies

cover crop, abandonment of insecticide, abandonment of tillage, and the cropland was

grazed, etc. Pest abundance was significantly different in the two systems (³=0.05; n = 39

regenerative cornfields and 40 conventional cornfields).
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Figure 2

Figure 2. Regenerative corn fields generate nearly twice the profit of conventionally

managed corn fields.

Profit was calculated using direct costs and revenues for each field and excludes any

overhead and indirect expenses. Regenerative cornfields implemented three or more

practices such as planting a multispecies cover mix, eliminating pesticide use, abandoning

tillage, and integrating livestock onto the crop ground. Conventional cornfields used fewer

than two of these practices. The regenerative systems had 70% higher profit than

conventional cornfields (³=0.05; n = 36 fields in each system).
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Figure 3

Figure 3. Corn fields with high particulate organic matter and low bulk density in the soil

have greater profits.

Corn fields were managed under either conventional or regenerative systems, and profit was

calculated using direct costs and revenues for each field and excludes any overhead and

indirect expenses. (general linear regression model; F1,16=7.84; P=0.01; r2=0.34;

profit=29.68[POM] 3 66.94; bulk density; F1,19=5.23; P=0.03; r2=0.24; profit=-975 [POM] +

1593)
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