A peer-reviewed version of this preprint was published in PeerJ on 15 June 2018.

View the peer-reviewed version (peerj.com/articles/5067), which is the preferred citable publication unless you specifically need to cite this preprint.

Hernandez AM, Ryan JF. 2018. Horizontally transferred genes in the ctenophore *Mnemiopsis leidyi*. PeerJ 6:e5067 <u>https://doi.org/10.7717/peerj.5067</u>

Horizontally transferred genes in the ctenophore *Mnemiopsis leidyi*

Alexandra M Hernandez^{1,2}, Joseph F Ryan^{Corresp. 1,2}

¹ Whitney Laboratory for Marine Bioscience, St. Augustine, Florida, United States

² Department of Biology, University of Florida, Gainesville, FL, United States

Corresponding Author: Joseph F Ryan Email address: joseph.ryan@whitney.ufl.edu

Horizontal gene transfer has had major impacts on the biology of a wide range of organisms from antibiotic resistance in bacteria to adaptations to herbivory in arthropods. A growing body of literature shows that horizontal gene transfer (HGT) between non-animals and animals is more commonplace than previously thought. In this study, we present a thorough investigation of HGT in the ctenophore *Mnemiopsis leidyi*. We applied tests of phylogenetic incongruence to identify nine genes that were likely transferred horizontally early in ctenophore evolution from bacteria and non-metazoan eukaryotes. All but one of these HGTs (an uncharacterized protein) are homologous to characterized enzymes, supporting previous observations that genes encoding enzymes are more likely to be retained after HGT events. We found that the majority of these nine horizontally transferred genes were expressed during development, suggesting that they are active and play a role in the biology of *M. leidyi*. This is the first report of HGT in ctenophores, and contributes to an ever-growing literature on the prevalence of genetic information flowing between non-animals and animals.

1 Horizontally transferred genes in the ctenophore *Mnemiopsis leidyi*

- 2
- 3 Alexandra M. Hernandez^{1,2} and Joseph F. Ryan^{1,2}
- 4
- ⁵ ¹Whitney Laboratory for Marine Bioscience, University of Florida, St. Augustine, FL, USA
- 6 ² Department of Biology, University of Florida, Gainesville, FL, USA
- 7
- 8 Corresponding Author:
- 9 Joseph Ryan¹
- 10 joseph.ryan@whitney.ufl.edu

11 Abstract

12

13 Horizontal gene transfer has had major impacts on the biology of a wide range of organisms 14 from antibiotic resistance in bacteria to adaptations to herbivory in arthropods. A growing body 15 of literature shows that horizontal gene transfer (HGT) between non-animals and animals is more 16 commonplace than previously thought. In this study, we present a thorough investigation of HGT 17 in the ctenophore Mnemiopsis leidyi. We applied tests of phylogenetic incongruence to identify 18 nine genes that were likely transferred horizontally early in ctenophore evolution from bacteria 19 and non-metazoan eukaryotes. All but one of these HGTs (an uncharacterized protein) are 20 homologous to characterized enzymes, supporting previous observations that genes encoding 21 enzymes are more likely to be retained after HGT events. We found that the majority of these 22 nine horizontally transferred genes were expressed during development, suggesting that they are 23 active and play a role in the biology of *M. leidvi*. This is the first report of HGT in ctenophores, 24 and contributes to an ever-growing literature on the prevalence of genetic information flowing 25 between non-animals and animals.

26 Introduction

27

28 Evolution is commonly thought to occur by descent with modification from a single 29 lineage. However, evidence has shown that genomes from bacteria, archaea, and eukaryotes are 30 typically chimeric, resulting from horizontal (or lateral) gene transfers (Garcia-Vallvé et al. 31 2000; Katz 2002). As such, horizontal gene transfer (HGT) has likely impacted evolution more 32 than originally thought by creating opportunities for rapid genetic diversification and 33 contributing to speciation events. Moreover, HGT is a potential catalyst for organisms to acquire 34 novel traits (Soucy et al. 2015) and creates opportunities for HGT receivers to exploit new 35 ecological niches (Boto 2010). For example, HGTs have played an important role in herbivory in 36 arthropods (Wybouw et al. 2016), venom recruitment in parasitoid wasps (Martinson et al. 37 2016), cellulose production in urochordates (Dehal et al. 2002) and plant parasitism in 38 nematodes (Haegeman et al. 2011). 39 40 Although HGT is generally accepted as an important evolutionary mechanism in 41 prokaryotes (Boto 2014), it remains controversial whether it occurs in animals, despite many 42 convincing studies (Madhusoodanan 2015). Much of the skepticism has been fueled by high-43 profile reports of HGT (e.g., Lander et al. 2001; Boothby et al. 2015) that were later shown to be 44 largely incorrect due to contamination or taxon sampling (Stanhope et al. 2001; Koutsovoulos et 45 al. 2016). In addition, HGT in animals is hypothesized to be rare due to the origin of a sequestered germ line, which provides fewer opportunities for germ cells to be exposed to 46 47 foreign DNA (Doolittle 1999; Andersson et al. 2001; Jensen et al. 2016). However, the presence

48 and absence of germline sequestration is not well described across the animal tree of life, and

there are inconsistencies between studies regarding which animal groups have sequestered
germlines (Buss, 1983; Radzvilavicius et al. 2016; Jensen et al. 2016).

51

52 The major challenges for HGT detection efforts have been taxon sampling and 53 contamination. Many early reports of HGT in animals were overturned due to limited 54 representation of taxa in public genomic databases (e.g., Salzberg et al. 2001). For example, a 55 gene present in bacteria and humans, but absent from nematodes and drosophilids (the most highly represented taxa at the time) may have been considered the result of HGT, until 56 57 discovering that the gene is present in many other animal genomes that were not available at the 58 time of the initial claim. In these cases, the limited representation of taxa made it difficult to 59 distinguish HGTs from differential gene loss (Andersson et al. 2006; Keeling & Palmer 2008). 60 More recently, contamination has led to both overestimation and likely underestimation of HGT 61 events. In several recent cases, contamination in newly generated datasets has been interpreted as 62 HGT but later shown to be cross-contaminants present in genome sequences (Bhattacharya et al. 63 2013; Delmont & Eren 2016; Koutsovoulos et al. 2016). On the other hand, the presence of 64 contaminants in public databases (e.g., a bacteria sequence labeled as an animal sequence) makes 65 it difficult to identify *bona fide* HGTs, as "animal" sequences will appear among the top BLAST 66 hits for a particular HGT, leading to false negatives (Kryukov & Imanishi 2016). As such, 67 contamination remains a major hurdle to contemporary studies of HGT. 68

Pairwise BLAST-based similarity scores (e.g., alien index (Gladyshev et al. 2008) and
the HGT index (Boschetti et al. 2012)) are the most common criteria used to detect HGT in
animals. However, these measures largely ignore phylogenetic information associated with

72 sequence data. While a positive BLAST-based result may be due to HGT, it may also result from 73 gene loss, selective evolutionary rates, convergent evolution, sequence contamination, and 74 species misassignment (Hall et al. 2005). Previous HGT studies have demonstrated that HGT 75 predictions need to be carefully considered and a combination of methods are required to rule out 76 false positives (Schönknecht et al. 2013). Hypothesis tests incorporating phylogenetic 77 incongruence are one such method that has been used to test HGT. While some studies in 78 animals have incorporated these techniques (e.g., Eliáš et al. 2016), they are more commonly 79 deployed in studies involving non-animals (e.g., Bapteste et al. 2003; Richards et al. 2006). 80

81 HGT has yet to be thoroughly explored in Ctenophora. Ctenophores (comb jellies) are 82 marine invertebrates that are morphologically characterized by eight rows of cilia used for 83 movement. They typically live in the water column, but the group includes benthic species as 84 well (Song & Hwang 2010; Alamaru et al. 2015; Glynn et al. 2017). Phylogenomic evidence 85 from studies including ctenophores has suggested that ctenophores are the sister group to all 86 other animals (Dunn et al. 2008; Hejnol et al. 2009; Ryan et al. 2013; Moroz et al. 2014; 87 Borowiec et al. 2015; Chang et al. 2015; Torruella et al. 2015; Whelan et al. 2015; Arcila et al. 88 2017; Shen et al. 2017; Whelan et al. 2017), but the position remains controversial with some 89 evidence supporting sponges as the sister group to the rest of animals (Philippe et al. 2009; Pick 90 et al. 2010; Pisani et al. 2015; Telford et al. 2015; Simion et al. 2017; Feuda et al. 2017). Thus, 91 investigating HGT in ctenophores is essential to understanding its implications on early animal 92 evolution.

93

NOT PEER-REVIEWED

Peer Preprints

94	Here, we apply a rigorous framework to identify and confirm HGTs in the ctenophore
95	Mnemiopsis leidyi. Our process includes identification of HGT candidates by alien index and
96	confirmation by phylogenetic hypothesis testing, providing statistical support in an evolutionary
97	framework. Furthermore, we analyze gene expression profiles during development to obtain
98	clues as to the function of these HGTs in M. leidyi.
99	
100	Material and Methods
101	
102	All command lines, parameters, and version numbers of programs are in the supplementary text.
103	
104	Identification of HGT candidates by alien_index
105	
106	As part of this project, we developed the program alien_index and complimentary
107	metazoan/non-metazoan sequence databases to automate the generation of alien index
108	(Gladyshev et al. 2008) and HGT index scores (Boschetti et al. 2012). We BLASTed the entire
109	set of <i>M. leidyi</i> gene models (ML2.2) (Ryan et al. 2013) against a database of animal and non-
110	animal sequences (alien_index_db version 0.01) and then calculated alien index values as the
111	logarithmic difference between the best BLASTP E-values for animal and non-animal hits (as
112	outlined in Gladyshev et al. (2008)) (Fig. 1A). In more simple terminology, the alien index
113	reflects the difference between the E-value of the best non-animal BLAST hit and that of the best
114	animal hit. The database used includes translated gene models from curated genomes that include
115	bacteria (5), archaea (2), non-animal eukaryotes (5), and animals (12). See Table S1 or
116	http://ryanlab.whitney.ufl.edu/downloads/alien_index/ for the entire list of taxa. HGT index

117	values were computed by the difference in the highest non-animal and animal bit scores
118	generated from the alien_index database. The alien_index program is available at:
119	https://github.com/josephryan/alien_index
120	
121	Confirmation of HGTs
122	
123	We applied a phylogenetic approach to confirm putative HGTs. HGT candidates from
124	alien_index were used as queries for BLASTP against NCBI's RefSeq database (O'Leary et al.
125	2016) using the NCBI BLAST interface. We collected the top ten sequences each from bacteria,
126	eukaryotes, fungi, and animals with an E-value cutoff of 0.1. We included only the first sequence
127	if there were hits to sequences from species in the same genus (Fig. 1B). We also added the top
128	BLAST hit (E-value ≤ 0.1) from each of the following fully sequenced animals from version
129	0.01 of the alien_index database: Amphimedon queenslandica, Trichoplax adhaerens,
130	Nematostella vectensis, Capitella teleta, Drosophila melanogaster, and Homo sapiens.
131	Sequences were aligned against the corresponding putative HGT using MAFFT (Katoh et al.
132	2002; Katoh & Standley 2013) and trimmed with Gblockswrapper (Castresana 2000) (Fig. 1C).
133	There were six genes (ML012034a, ML06718a, ML03277a, ML02232a, ML18354a,
134	ML219316a) with BLASTP hits to non-animals but not to animals (E-value ≤ 0.1), preventing us
135	from performing additional phylogenetic analyses on these sequences. We considered the lack of
136	animal BLASTP hits below our cutoff as sufficient evidence that these six were clearly HGTs.
137	ML018031a and ML00882a only had two BLASTP hits to animal sequences. Since it was
138	unclear if this resulted from contamination, we were unable to test these genes using
139	phylogenetic approaches, so they were removed from contention as HGTs.

140

We performed maximum-likelihood analyses on the remaining 29 alignments using RAxML (Stamatakis 2014) (Fig. 1C). Since the RefSeq database has many instances of contamination (Pible et al. 2014), we allowed a maximum of two non-ctenophore animal sequences to fall outside of the main animal clade. To implement this, we pruned putative contaminants if the removal of two taxa resulted in a monophyletic animal clade (Fig. S1). We discarded any HGT candidates with more than two taxa disrupting animal monophyly.

147

148 We explicitly tested topologies in opposition to HGT (i.e., animal monophyly) with the 149 SOWH test using SOWHAT (Church et al. 2015) and the AU test using CONSEL (Shimodaira 150 and Hasegawa 2001) (Fig. 1C). The SOWH and AU test evaluate statistical support for 151 phylogenetic incongruence by comparing the likelihood values between trees to a distribution of 152 trees generated by parametric sampling in the SOWH test and non-parametric sampling in the 153 AU test. We required that these two different approaches to hypothesis testing agreed to ensure 154 that our criteria confirming bona fide HGTs was stringent. To address any potential problems of 155 selection bias in the AU test (causing the likelihood value to bias upwards for the maximum 156 likelihood best tree when included in the dataset), we performed multiple AU analyses using 157 bootstrap trees as suboptimal trees (similar to Eliáš et al. 2016). We generated 100 bootstrap 158 trees using RAxML rapid bootstrap analyses, and verified there were no duplicate trees in our 159 100 bootstrap set using the ape package in R (Paradis et al. 2004). RAXML was used to generate 160 per-site log likelihoods for the best maximum-likelihood tree, the tree constraining the putative 161 HGT to metazoans (i.e., metazoan-constraint tree), and suboptimal trees, to perform the AU test 162 implemented through CONSEL. To test the effectiveness of comparing to bootstrap trees, we

163 manually created a set of suboptimal trees for each HGT candidate by shuffling clades of three 164 (Fig. S2) and running the same analyses. We evaluated the tree space covered by suboptimal trees in the AU test (i.e., bootstrap and manually generated trees) by visualizing the data using 165 166 violin plots. We calculated likelihood proportions for each tree by dividing individual likelihood 167 scores by the average likelihood score of suboptimal trees. This was done to make the data 168 comparable for visualization since the likelihood scores differ between sets of gene trees. The 169 trees and scripts used to automate these phylogenetic analyses are available in the accompanying 170 GitHub site (https://github.com/josephryan/2018-Hernandez and Ryan HGT).

171

172 We verified that HGT candidates were not the result of bacterial contaminants by using 173 the *M. leidyi* genome browser (Moreland et al. 2014) to examine the intron/exon structure of 174 each HGT candidate, as well as the origin of their neighboring genes. We examined each intron to determine whether they are actively handled by spliceosomes (which are only found in 175 176 eukaryotes), since bacteria, archaea, and viruses contain Group I and II introns. U2 spliceosomal 177 introns were identified by conserved GT dinucleotides at the 5' end and conserved AG 178 dinucleotides at the 3' end of introns. We also conducted reciprocal best BLASTP searches for 179 each HGT candidate (identified from the genome and gene models from an M. leidyi individual 180 collected in Woods Hole, MA) against the transcriptome of an *M. leidyi* individual collected 181 from St. Augustine, Florida, as well as seven other ctenophore transcriptomes reported in Moroz 182 et al. (2014): Bolinopsis infundibulum, Beroe abyssicola, Dryodora glandiformis, Pleurobrachia bachei, Vallicula multiformis, Coeloplana astericola, Euplokamis dunlapae. For these searches 183 184 we used default parameters and an E-value cutoff of 0.1.

185

186 HGT developmental expression profiles

187

188	An extensive transcriptomic developmental timecourse of <i>M. leidyi</i> was recently
189	generated from single-embryos over the first 20 hours of embryogenesis (Levin et al. 2016). To
190	examine whether HGTs might play a role in development we used these data (GSE70185), as
191	well as additional time points for <i>M. leidyi</i> generated after this publication (GSE111748).
192	
193	The Levin et al. (2016) data was produced by using three replicate timecourses that each
194	consisted of 20 isolated embryos from fertilization to 20 hours. Embryos were flash frozen and
195	RNA was extracted with TRIzol and sequenced using Illumina sequencing according to the
196	CEL-Seq protocol (Hashimshony et al. 2012). For each replicate, reads were mapped to M. leidyi
197	gene models (ML2.2) using bowtie2 version 2.2.3 (Langmead & Salzberg 2012) with default
198	settings and reads per transcript were counted using htseq-count (Anders et al. 2015).
199	Normalization of read counts was performed by dividing by the total number of counted reads
200	and multiplying by 10 ⁶ . Since the CEL-Seq protocol involves sequencing only from the 3' end of
201	transcripts, results are not normalized by length of transcript.
202	
203	Since the publication of Levin et al. (2016), six additional time points (four replicates
204	each) for hours 14-19 (not included in the original study) have been sequenced and submitted to
205	the Gene Expression Omnibus (GSE111748). These additional data were produced by the same
206	researchers (i.e., Itai Yanai and Mark Martindale) from the original study using the same
207	methods and facilities. To create a baseline for what is considered adequate expression during
208	development, we summed median transcripts per million (tpm) values for all replicates along the

209	25 time points for each of our 9 confirmed HGTs. HGTs that had summed median read counts of
210	100 or greater were classified as being expressed sufficiently to have roles in development. We
211	chose a value that was 10 times stricter than the minimum criteria in Levin et al. (2016) (i.e., 10
212	transcripts) to err on the side of caution.
213	
214	HGT origins and functions
215	
216	To uncover the functional roles of HGTs, we used the BLAST interface provided by
217	UniProt and the UniProtKB database (Pundir et al. 2017) to identify homologous sequences used
218	to characterize genes. Annotations of the top hits (E-value ≤ 0.1) were assigned to HGT
219	candidates. We also associated HGTs with Pfam-A domains using the MGP Portal under the
220	Mnemiopsis Gene Wiki (Moreland et al. 2014). In all cases, the annotations based on BLAST
221	and Pfam-A analyses were consistent with the results from our phylogenetic analyses. To
222	identify the origin of the HGTs lacking animal hits (ML012034a, ML18354a, ML219316a), we
223	performed phylogenetic analyses on the sequences collected at the start of the study from RefSeq
224	using RAxML.
225	
226	Results
227	
228	Mnemiopsis leidyi HGTs
229	
230	Figure 1 shows our pipeline and results for each method during this analysis. We
231	calculated an alien index for every <i>M. leidyi</i> gene model using a database of 12 animals and 12

232non-animals (Table S1). We identified 37 genes with alien indices greater than 45 and designated233these as HGT candidates (Fig. 1A; Table S2). In addition to the alien_index database, we234BLASTed the RefSeq database at NCBI restricting hits to bacteria, then to animals, and then to235non-animal eukaryotes (Fig. 1B). All but six HGT candidates had BLAST hits to animals with E-236values ≤ 0.1 . We classified these six (ML012034a, ML06718a, ML03277a, ML02232a,237ML18354a, ML219316a) as absent from all other animals. We analyze these six further below.

238

239 For the remaining 29 candidates, we conducted detailed phylogenetic analyses using the 240 top 10 hits of unique non-animal and animal taxa from each of the RefSeq searches along with 241 sequences from Amphimedon queenslandica, Trichoplax adhaerens, Nematostella vectensis, 242 *Capitella teleta*, *Drosophila melanogaster*, and *Homo sapiens* that were top hits from our initial 243 BLASTs of the alien index database (Fig. 1C). HGT candidates that formed a clade with all 244 other animals were ruled out as potential HGTs, while candidates that disrupted animal 245 monophyly were tested further. We discarded 14 candidates with more than 2 non-ctenophore 246 animal sequences disrupting animal monophyly; in cases of 2 or less sequences, the disrupting 247 sequences were considered potential contaminants and pruned (e.g., Fig. S1). We discarded three 248 more candidates after pruning because the trees continued to result in a non-monophyletic clade 249 of animals. We then applied the SOWH and AU tests to the remaining 12 candidates to compare 250 the maximum-likelihood topology to the alternative hypothesis that HGT candidates were more 251 closely related to animals (Fig. 2). This involved comparing likelihood values of optimal trees to 252 those that were constrained to produce a monophyletic Animalia. Our results showed that the AU 253 test was more conservative in confirming HGTs than the SOWH test (Table 1). For perspective 254 on how optimal trees compared to constrained trees, we performed AU tests comparing optimal

and constrained trees to bootstrap trees (Fig. 3). The likelihood scores of the constrained trees from HGTs supported by the AU test tend to fall outside or on the tails of the distribution of likelihood scores of suboptimal trees, whereas the likelihood scores of constrained trees for unsupported HGTs were all closer to the most likely tree than the bootstrap trees (Fig. 3). We confirmed seven HGTs in which gene trees significantly differed (p < 0.05) from the metazoan constraint trees in both the SOWH and AU analyses (Table 1).

261

We then analyzed the BLAST results of the seven HGT candidates confirmed by 262 263 phylogenetic analyses and the six genes which were absent in other animals (ML012034a, 264 ML06718a, ML03277a, ML02232a, ML18354a, ML219316a). We removed four of these genes 265 from contention (ML092610a, ML06718a, ML03277a, ML02232a) because the top BLAST hits 266 against RefSeq were either Choanoflagellatea or Filasterea (two of the closest protistan lineages to animals (Hehenberger et al. 2017; Torruella et al. 2015)) (E-value ≤ 0.1). If ctenophores are 267 268 the sister group to the rest of animals, vertical inheritance remains a possibility for these cases. 269 As such, these tests support a total of nine HGTs.

270

We used the *M. leidyi* genome browser to examine the intron/exon structure of each of
these nine HGTs, as well as the origin of their neighboring genes for evidence of bacterial
contamination (lack of introns would indicate bacterial contamination). Eight HGTs were found
on scaffolds with intron-containing genes and eight HGTs contained introns (Table 2).
ML49231a (itself containing 6 introns) is the only gene on its scaffold. All intron-containing
genes had U2 spliceosomal introns (except ML219315a, a gene on the same scaffold as an

HGT). These data suggest that the majority of the HGT candidates did not appear to be bacterialcontaminants.

279

280 To further test these nine genes for contamination, we confirmed using BLAST that the 281 genes were also present in a transcriptome from an *M. leidvi* individual collected from St. 282 Augustine, FL (M. leidyi genome and gene models were from individuals collected in Woods 283 Hole, MA). We also performed reciprocal best BLASTP searches for each of the nine HGTs 284 against seven of the ctenophore transcriptomes published in Moroz et al. (2014): Bolinopsis 285 infundibulum, Beroe abyssicola, Dryodora glandiformis, Pleurobrachia bachei, Vallicula 286 multiformis, Coeloplana astericola, Euplokamis dunlapae. Each HGT was present in the 287 transcriptome of at least one other ctenophore species and in the Florida M. leidvi transcriptome 288 (Fig. 4). Furthermore, the gene lacking introns (ML012034a) is expressed in all examined 289 ctenophore transcriptomes. Because it is unlikely that the same species contaminated each of 290 these datasets, these comparisons provide additional evidence against HGT sequences resulting 291 from contamination. Here, we have included as much evidence as possible to carefully confirm 292 nine HGTs in *M. leidvi*.

293

294 HGTs are expressed in development

295

We summed tpm values (medians for each set of expression values at 25 time points) from single-embryo RNA-Seq analyses over 20 hours for each of the nine confirmed HGTs to identify those HGTs that were expressed during development. Six of the nine HGTs had sums greater than 100 (Fig. 5), suggesting that these had some role in development. ML00955a was

NOT PEER-REVIEWED

Peer Preprints

300	expressed maternally (0 hours post fertilization (hpf)) and throughout early cleavage stages (1-3
301	hpf) with reduced expression later in development. Three genes (ML005129a, ML18354a,
302	ML012034a) were expressed later in development with spikes during tentacle morphogenesis (9-
303	12 hpf). ML02771a and ML219316a displayed cyclic expression throughout development
304	suggesting a potential role in cell cycle.
305	
306	HGTs are enzymes originating from non-animal eukaryotes and bacteria
307	
308	We used phylogenetic evidence to determine the origin of these nine HGTs. Four HGTs
309	originated from bacteria and five from non-animal eukaryotes (Table 3). We found no evidence
310	of HGTs that were transferred from Archaea. Specific lineage origins of three HGTs appear to be
311	from Proteobacteria, Firmicutes, and Rhodophyta. We were unable to identify the lineage origins
312	of the remaining HGTs. To characterize gene function, we BLASTed the nine confirmed HGTs
313	against the UniProt database. All HGTs except one uncharacterized protein (ML219316a) were
314	homologous to known characterized enzymes (Table 3).
315	
316	Discussion
317	
318	HGTs in ctenophores and their implications
319	
320	It had been previously speculated that ctenophores had HGTs since initial profiling
321	revealed that many 'bacteria-like' genes in ctenophores contained introns and were on
322	chromosomes with vertically inherited (i.e., non-HGT) genes (Artamonova et al. 2015). We

323 confirmed that all HGTs except ML012034a had spliceosomal introns and were on scaffolds 324 with other spliceosomal intron-containing genes (Table 2). This provided evidence that these 325 candidates were not the result of extrinsic contamination. We provided additional evidence that 326 candidates were not contaminants by showing that all HGTs were found in both Massachusetts 327 and Florida M. leidvi individuals, as well as in many other ctenophore species (Fig. 4). Six HGTs 328 were present in the *E. dunlapae* transcriptome suggesting that the majority of these HGT events 329 occurred very early in ctenophore evolution (Fig. 4). This deep evolutionary history suggests that 330 these HGTs may have had important impacts on the biology of ctenophores. 331 332 Mechanisms driving HGT in ctenophores 333 334 While we are uncertain about the mechanisms driving HGT, we speculate that some of 335 these may have resulted from symbiotic relationships with bacteria and non-animal eukaryotes. 336 Proteobacteria is the most abundant group of bacteria associated with ctenophores (Daniels & 337 Breitbart 2012) and have been identified as donors of the gene ML00955a in the *M. leidvi* 338 genome (Table 3) and confirmed in almost all other ctenophore transcriptomes (Fig. 4). Other 339 possible donors could have been gymnamoebae symbionts that have been described living on the 340 surface of comb plates and on the ectoderm of ctenophores (Moss et al. 2001). However, studies 341 investigating symbiotic relationships with ctenophores are limited. Future studies are needed to 342 improve our understanding of how symbiotic relationships impact HGT, as well as to understand

344

343

345 *Mnemiopsis leidyi* HGTs are expressed during development and encode enzymes

the mechanisms that drive HGT between organisms.

346

347 Many HGTs are likely to be deleterious and lost, but some HGTs will be neutral or provide a selective advantage and spread throughout a population (Thomas & Nielsen 2005). 348 349 HGT integration is thought to mainly occur in neutral genes with low levels of expression (Park 350 & Zhang 2012). Once integrated, neutral HGTs may become a source of novel genetic variation 351 upon which selection can act (Soucy et al. 2015). HGTs may then become more highly expressed 352 after recruitment of transcription factors and regulators from the host genome (Lercher & Pál 353 2008). Six of the nine HGTs we identified showed high expression during the first 20 hours of 354 development, suggesting potentially important developmental roles (Fig. 5). ML02771a is 355 expressed during development and encodes penicillin acylase or amidase, which catalyzes the 356 hydrolysis of benzylpenicillin. This reaction creates key intermediates for penicillin synthesis 357 and may be important to defend against microbial infection or colonization.

358

359 Observations of HGT patterns in prokaryotes have also suggested that there is a 360 preference to retain operational genes (e.g., metabolic enzymes) rather than informational genes 361 (Lawrence & Roth 1996; Jain et al. 1999; Garcia-Vallvé et al. 2000). Informational genes, such 362 as those involved in DNA replication, transcription, and translation are seldom found in sets of 363 HGTs (Thomas & Nielsen 2005). This propensity for operational genes is thought to occur 364 because informational genes are involved in larger and complex systems (Jain et al. 1999). 365 Recently, this pattern has also been observed in animal HGTs (Boto 2014) (e.g., Zhu et al. 2011; 366 Boschetti et al. 2012; Sun et al. 2013; Eyres et al. 2015; Conaco et al. 2016). These reports 367 suggest that operational genes are preferentially transferred and/or retained in both prokaryotes

368	and eukaryotes. Our data support this idea since all of the characterizable genes in our HGT set
369	encode enzymes.
370	
371	Commonly used BLAST-based methods for identifying HGTs in animals are insufficient
372	
373	Identifying HGTs can be challenging due to bacterial associations with hosts
374	(Artamonova & Mushegian 2013; Chapman et al. 2010; Fraune & Bosch 2007), DNA extraction
375	kits and reagents that have led to contamination (Naccache et al. 2013; Salter et. al 2014), and/or
376	laboratory conditions that can contaminate preparations during DNA extraction (Laurence et al.
377	2014; Strong et al. 2014). These challenges associated with sequencing and assembly have
378	resulted in contamination in public databases (Longo et al. 2011; Merchant et al. 2014) and make
379	HGT predictions difficult. Moreover, while BLAST-based approaches (i.e., alien index and the
380	HGT index) are useful for identification of HGT candidates, they are difficult to implement, lack
381	an evolutionary perspective, and do not address problems associated with contamination.
382	
383	To overcome some of these challenges, we developed alien_index to automate the
384	generation of alien index and HGT index scores for rapid identification of HGT candidates. We
385	confirmed HGTs by using rigorous phylogenetic approaches to address the problems associated
386	with the lack of evolutionary perspective from BLAST methods. Our phylogenetic tests of
387	incongruence provided clear metrics from which to judge the level of certainty applied to each
388	HGT candidate. Our study showed that many of the predictions based on BLAST did not stand
389	up to hypothesis testing and suggest that the similarity between sequences that cause high alien
390	indices do not necessarily provide true phylogenetic signal. Consequently, incorporation of

- 391 phylogenetic likelihood-based methods are necessary when performing HGT analyses in
- animals.
- 393
- 394 Conclusion
- 395

396 The importance of HGT as an evolutionary mechanism in prokaryotes and eukaryotes has 397 been underestimated. While studies of HGT in animals are gradually becoming more accepted, 398 many challenges remain to quantify the extent of HGT and its impacts. To mitigate some of 399 these challenges, rigorous approaches that employ both BLAST- and phylogenetic likelihood-400 based methods should be applied to future HGT studies in animals. Here we provided evidence 401 of nine cases of HGT in ctenophores by applying these rigorous methods (among others), and 402 found similar patterns of transfer between prokaryotes and eukaryotes with preference for 403 operational genes. It should be noted that we implemented an extremely conservative approach 404 and there are likely to be more HGTs in *M. leidyi*. However, many more studies will be 405 necessary to gain a comprehensive overview of HGT and the mechanisms by which HGT occurs 406 in animals.

407 Acknowledgements

- 408 We would like to thank Melissa DeBiasse for constructive comments on earlier versions of this
- 409 manuscript.

410 References

- Alamaru A., Brokovich E., Loya Y. 2015. Four new species and three new records of benthic
 ctenophores (Family: Coeloplanidae) from the Red Sea. *Marine Biodiversity* 46:261-279.
 DOI: 10.1007/s12526-015-0362-4
- 414 Anavy L., Levin M., Khair S., Nakanishi N., Fernandez-Valverde SL., Degnan BM., Yanai Y.
- 415 2014. BLIND ordering of large-scale transcriptomic developmental timecourses.
- 416 *Development* 141:1161–1166. DOI: 10.1242/DEV.105288
- Anders S., Pyl PT., Huber W. 2015. HTSeq--a Python framework to work with high-throughput
 sequencing data. *Bioinformatics* 31:166–169. DOI: 10.1093/bioinformatics/btu638
- Andersson JO., Doolittle WF., Nesbø CL. 2001. Are There Bugs in Our Genome? *Science*292:1848-1850.
- Andersson JO., Hirt RP., Foster PG., Roger AJ. 2006. Evolution of four gene families with
 patchy phylogenetic distributions: influx of genes into protist genomes. *BMC Evolutionary Biology* 6:27. DOI: 10.1186/1471-2148-6-27
- Arcila D., Ortí G., Vari R., Armbruster JW., Stiassny MLJ., Ko KD., Sabaj MH., Lundberg J.,
 Revell LJ., Betancur-R. R. 2017. Genome-wide interrogation advances resolution of
 recalcitrant groups in the tree of life. *Nature Ecology & Evolution* 1:20. DOI:
 10.1038/s41559-016-0020
- Artamonova II., Mushegian AR. 2013. Genome sequence analysis indicates that the model
 eukaryote Nematostella vectensis harbors bacterial consorts. *Applied and Environmental Microbiology* 79:6868–6873. DOI: 10.1128/AEM.01635-13
- 431 Artamonova II., Lappi T., Zudina L., Mushegian AR. 2015. Prokaryotic genes in eukaryotic
 432 genome sequences: when to infer horizontal gene transfer and when to suspect an actual
 432 Artamonova II., Lappi T., Zudina L., Mushegian AR. 2015. Prokaryotic genes in eukaryotic
 432 genome sequences: when to infer horizontal gene transfer and when to suspect an actual
 433 Artamonova II., Lappi T., Zudina L., Mushegian AR. 2015. Prokaryotic genes in eukaryotic
 434 Artamonova II., Lappi T., Zudina L., Mushegian AR. 2015. Prokaryotic genes in eukaryotic
 435 Artamonova II., Lappi T., Zudina L., Mushegian AR. 2015. Prokaryotic genes in eukaryotic
 436 Artamonova II., Lappi T., Zudina L., Mushegian AR. 2015. Prokaryotic genes in eukaryotic
 436 Artamonova II., Lappi T., Zudina L., Mushegian AR. 2015. Prokaryotic genes in eukaryotic
 436 Artamonova II., Lappi T., Zudina L., Mushegian AR. 2015. Prokaryotic genes in eukaryotic
 437 Artamonova II., Lappi T., Zudina L., Mushegian AR. 2015. Prokaryotic genes in eukaryotic
 438 Artamonova II., Lappi T., Zudina L., Mushegian AR. 2015. Prokaryotic genes in eukaryotic
 439 Artamonova II., Lappi T., Zudina L., Mushegian AR. 2015. Prokaryotic genes in eukaryotic
- 433 microbe. *Environmental Microbiology* 17:2203–2208. DOI: 10.1111/1462-2920.12854
- Bapteste E., Moreira D., Philippe H. 2003. Rampant horizontal gene transfer and phospho-donor
 change in the evolution of the phosphofructokinase. *Gene* 318:185-191.
- Bhattacharya D., Pelletreau KN., Price DC., Sarver KE. 2013. Genome Analysis of Elysia
 chlorotica Egg DNA Provides No Evidence for Horizontal Gene Transfer into the Germ
 Line of This Kleptoplastic Mollusc. *Molecular Biology and Evolution* 30:1843–1852. DOI:
 10.1093/molbev/mst084
- Boothby TC., Tenlen JR., Smith FW., Wang JR., Patanella KA., Nishimura EO., Tintori SC., Li
 Q., Jones CD., Yandell M., Messina DN., Glasscock J., Goldstein B. 2015. Evidence for
- 442 extensive horizontal gene transfer from the draft genome of a tardigrade. *Proceedings of the*

- *National Academy of Sciences of the United States of America* 112:15976–15981. DOI:
 10.1073/pnas.1510461112
- Borowiec ML., Lee EK., Chiu JC., Plachetzki DC. 2015. Extracting phylogenetic signal and
 accounting for bias in whole-genome data sets supports the Ctenophora as sister to
 remaining Metazoa. *BMC Genomics* 16:987. DOI: 10.1186/s12864-015-2146-4
- Boschetti C., Carr A., Crisp A., Eyres I., Wang-Koh Y., Lubzens E., Barraclough TG., Micklem
 G., Tunnacliffe A. 2012. Biochemical Diversification through Foreign Gene Expression in
- 450 Bdelloid Rotifers. *PLoS Genetics* 8:e1003035. DOI: 10.1371/journal.pgen.1003035
- Boto L. 2010. Horizontal gene transfer in evolution: facts and challenges. *Proceedings*.
 Biological Sciences 277:819–827. DOI: 10.1098/rspb.2009.1679
- 453 Boto L. 2014. Horizontal gene transfer in the acquisition of novel traits by metazoans.
- 454 *Proceedings of the Royal Society of London B: Biological Sciences* 281:20132450. DOI:
 455 10.1098/rspb.2013.2450
- Buss LW. 1983. Evolution, development, and the units of selection. *Proceedings of the National Academy of Sciences* 80:1387-1391.
- 458 Castresana J. 2000. Selection of conserved blocks from multiple alignments for their use in
 459 phylogenetic analysis. *Molecular Biology and Evolution* 17:540-552. DOI:
 460 10.1093/oxfordjournals.molbev.a026334
- 461 Chang ES., Neuhof M., Rubinstein ND., Diamant A., Philippe H., Huchon D., Cartwright P.
- 462 2015. Genomic insights into the evolutionary origin of Myxozoa within Cnidaria.
- 463 Proceedings of the National Academy of Sciences of the United States of America
- 464 112:14912–14917. DOI:10.1073/pnas.1511468112
- 465 Chapman JA., Kirkness EF., Simakov O., Hampson SE., Mitros T., Weinmaier T., Rattei T., 466 Balasubramanian PG., Borman J., Busam D., Disbennett K., Pfannkoch C., Sumin N., 467 Sutton GG., Viswanathan LD., Walenz B., Goodstein DM., Hellsten U., Kawashima T., 468 Prochnik SE., Putnam NH., Shu S., Blumberg B., Dana CE., Gee L., Kibler DF., Law L., 469 Lindgens D., Martinez DE., Peng J., Wigge PA., Bertulat B., Guder C., Nakamura Y., 470 Ozbek S., Watanabe H., Khalturin K., Hemmrich G., Franke A., Augustin R., Fraune S., Hayakawa E., Hayakawa S., Hirose M., Hwang JS., Ikeo K., Nishimiya-Fujisawa C., Ogura 471 A., Takahashi T., Steinmetz PRH., Zhang X., Aufschnaiter R., Eder M-K., Gorny A-K., 472 473 Salvenmoser W., Heimberg AM., Wheeler BM., Peterson KJ., Böttger A., Tischler P., Wolf 474 A., Gojobori T., Remington KA., Strausberg RL., Venter JC., Technau U., Hobmayer B., 475 Bosch TCG., Holstein TW., Fujisawa T., Bode HR., David CN., Rokhsar DS., Steele RE. 2010. The dynamic genome of Hydra. *Nature* 464:592–596. DOI: 10.1038/nature08830. 476
- 477

Church SH., Ryan JF., Dunn CW. 2015. Automation and Evaluation of the SOWH Test with
SOWHAT. *Systematic Biology* 64:1048–1058. DOI: 10.1093/sysbio/syv055

480 Conaco C., Tsoulfas P., Sakarya O., Dolan A., Werren J., Kosik K. S. 2016. Detection of
481 Prokaryotic Genes in the Amphimedon queenslandica Genome. *PLOS ONE* 11:e0151092.
482 DOI: 10.1371/journal.pone.0151092

- 483 Daniels C., Breitbart M. 2012. Bacterial communities associated with the ctenophores
 484 Mnemiopsis leidyi and Beroe ovata. *FEMS Microbiology Ecology* 82:90–101. DOI:
- 485 10.1111/j.1574-6941.2012.01409.x

486 Dehal P., Satou Y., Campbell RK., Chapman J., Degnan B., De Tomaso A., Davidson B., Di 487 Gregorio A., Gelpke M., Goodstein DM., Harafuji N., Hastings KEM., Ho I., Hotta K., Huang W., Kawashima T., Lemaire P., Martinez D., Meinertzhagen IA., Necula S., Nonaka 488 489 M., Putnam N., Rash S., Saiga H., Satake M., Terry A., Yamada L., Wang H-G., Awazu S., 490 Azumi K., Boore J., Branno M., Chin-bow S., DeSantis R., Doyle S., Francino P., Keys 491 DN., Haga S., Hayashi H., Hino K., Imai KS., Inaba K., Kano S., Kobayashi K., Kobayashi 492 K., Lee B-I., Makabe KW., Manohar C., Matassi G., Medina M., Mochizuki Y., Mount S., 493 Morishita T., Miura S., Nakayama A., Nishizaka S., Nomoto H., Ohta F., Oishi K., 494 Rigoutsos I., Sano M., Sasaki A., Sasakura Y., Shoguchi E., Shin-i T., Spagnuolo A., 495 Stainier D., Suzuki MM., Tassy O., Takatori N., Tokuoka M., Yagi K., Yoshizaki F., Wada S., Zhang C., Hyatt PD., Larimer F., Detter C., Doggett N., Glavina T., Hawkins T., 496 497 Richardson P., Lucas S., Kohara Y., Levine M., Satoh N., Rokhsar DS. 2002. The Draft 498 Genome of Ciona intestinalis: Insights into Chordate and Vertebrate Origins. Science 499 298:2157-2167. DOI: 10.1126/science.1080049

- Delmont TO., Eren AM. 2016. Identifying contamination with advanced visualization and
 analysis practices: metagenomic approaches for eukaryotic genome assemblies. *PeerJ* 4:e1839. DOI: 10.7717/peerj.1839.
- 503 Doolittle WF. 1999. Phylogenetic Classification and the Universal Tree. *Science* 284:2124-2128.

Dunn CW., Hejnol A., Matus DQ., Pang K., Browne WE., Smith SA., Seaver E., Rouse GW.,
Obst M., Edgecombe GD., Sørensen M V., Haddock SHD., Schmidt-Rhaesa A., Okusu A.,
Kristensen RM., Wheeler WC., Martindale MQ., Giribet G. 2008. Broad phylogenomic
sampling improves resolution of the animal tree of life. *Nature* 452:745–749. DOI:
10.1038/nature06614.

- Eliáš M., Klimeš V., Derelle R., Petrželková R., Tachezy J. 2016. A paneukaryotic genomic
 analysis of the small GTPase RABL2 underscores the significance of recurrent gene loss in
 eukaryote evolution. *Biology direct* 11:5. DOI: 10.1186/s13062-016-0107-8
- 512 Eyres I., Boschetti C., Crisp A., Smith TP., Fontaneto D., Tunnacliffe A., Barraclough TG. 2015.
 513 Horizontal gene transfer in bdelloid rotifers is ancient, ongoing and more frequent in species
 514 from desiccating habitats. *BMC Biology* 13. DOI: 10.1186/s12915-015-0202-9.

515

Fraune S., Bosch TCG. 2007. Long-term maintenance of species-specific bacterial microbiota in 516 the basal metazoan Hydra. Proceedings of the National Academy of Sciences of the United 517 States of America 104:3146–13151. DOI: 10.1073/PNAS.0703375104 518 Feuda R., Dohrmann M., Pett W., Philippe H., Rota-Stabelli O., Lartillot N., Wörheide G., Pisani 519 D. 2017. Improved Modeling of Compositional Heterogeneity Supports Sponges as Sister to 520 All Other Animals. Current Biology 27:3864-3870. DOI: 10.1016/j.cub.2017.11.008. 521 Garcia-Vallvé S., Romeu A., Palau J. 2000. Horizontal gene transfer in bacterial and archaeal 522 complete genomes. Genome Research 10:1719-1725. DOI: 10.1101/GR.130000 523 Gladyshev EA., Meselson M., Arkhipova IR. 2008. Massive horizontal gene transfer in bdelloid 524 rotifers. Science 320:1210-1213. DOI: 10.1126/science.1156407 525 Glynn PW., Coffman B., Fuller MPC., Moorhead SG., Williams MK., Primov KD., Fortson TN., 526 Barrales RN., Glynn PJ. 2017. Benthic ctenophores (Platyctenida: Coeloplanidae) in south 527 Florida: environmental conditions, habitats, abundances, and behaviors. Invertebrate 528 Biology 136:379-393. DOI: 10.1111/ivb.12189.

- Haegeman A., Jones JT., Danchin EG. 2011. Horizontal gene transfer in nematodes: a catalyst 529 530 for plant parasitism?. Molecular Plant-Microbe Interactions 24:879-887.
- 531 Hall C., Brachat S., Dietrich, FS. 2005. Contribution of horizontal gene transfer to the evolution 532 of Saccharomyces cerevisiae. Eukaryotic Cell 4:1102-1115. DOI: 10.1128/EC.4.6.1102-533 1115.2005
- 534 Hashimshony T., Wagner F., Sher N., Yanai I. 2012. CEL-Seq: Single-Cell RNA-Seq by 535 Multiplexed Linear Amplification. Cell Reports 2:666-673. DOI:
- 536 10.1016/J.CELREP.2012.08.003.
- 537 Hehenberger E., Tikhonenkov D V., Kolisko M., del Campo J., Esaulov AS., Mylnikov AP., 538 Keeling PJ. 2017. Novel Predators Reshape Holozoan Phylogeny and Reveal the Presence 539 of a Two-Component Signaling System in the Ancestor of Animals. Current Biology
- 27:2043-2050.e6. DOI: 10.1016/J.CUB.2017.06.006. 540
- 541 Heinol A., Obst M., Stamatakis A., Ott M., Rouse GW., Edgecombe GD., Martinez P., Baguñà 542 J., Bailly X., Jondelius U., Wiens M., Müller WEG., Seaver E., Wheeler WC., Martindale 543 MQ., Giribet G., Dunn CW. 2009. Assessing the root of bilaterian animals with scalable 544 phylogenomic methods. Proceedings of the Royal Society of London B: Biological Sciences 545 276:4261-4270. DOI: 10.1098/rspb.2009.0896.
- 546 Jain R., Rivera MC., Lake JA. 1999. Horizontal Gene Transfer among Genomes: The Complexity Hypothesis. Proceedings of the National Academy of Sciences of the United 547 548 States of America Evolution 96:3801–3806. DOI: 10.1073/pnas.96.7.3801

- Jensen L., Grant JR., Laughinghouse HD., Katz LA. 2016. Assessing the effects of a sequestered
 germline on interdomain lateral gene transfer in Metazoa. *Evolution* 70:1322–1333. DOI:
 10.1111/evo.12935.
- Katoh K., Misawa K., Kuma K., Miyata T. 2002. MAFFT: a novel method for rapid multiple
 sequence alignment based on fast Fourier transform. *Nucleic Acids Research* 30:3059–3066.
 DOI: 10.1093/nar/gkf436.
- Katoh K., Standley DM. 2013. MAFFT Multiple Sequence Alignment Software Version 7:
 Improvements in Performance and Usability. *Molecular Biology and Evolution* 30:772–780.
 DOI: 10.1093/molbev/mst010.
- Katz LA. 2002. Lateral gene transfers and the evolution of eukaryotes: theories and data.
 International Journal of Systematic and Evolutionary Microbiology 52:1893–1900. DOI: 10.1099/00207713-52-5-1893
- Keeling PJ., Palmer JD. 2008. Horizontal gene transfer in eukaryotic evolution. *Nature Reviews Genetics* 9:605–618. DOI: 10.1038/nrg2386
- Koutsovoulos G., Kumar S., Laetsch DR., Stevens L., Daub J., Conlon C., Maroon H., Thomas
 F., Aboobaker AA., Blaxter M. 2016. No evidence for extensive horizontal gene transfer in
 the genome of the tardigrade *Hypsibius dujardini*. *Proceedings of the National Academy of Sciences* 113:5053-5058. DOI: 10.1073/pnas.1600338113.
- 567 Kryukov K., Imanishi T. 2016. Human Contamination in Public Genome Assemblies. *PLOS* 568 *ONE* 11:e0162424. DOI: 10.1371/journal.pone.0162424.
- 569 Lander ES., Linton LM., Birren B., Nusbaum C., Zody MC., Baldwin J., Devon K., Dewar K., 570 Doyle M., FitzHugh W., Funke R., Gage D., Harris K., Heaford A., Howland J., Kann L., 571 Lehoczky J., LeVine R., McEwan P., McKernan K., Meldrim J., Mesirov JP., Miranda C., 572 Morris W., Naylor J., Raymond C., Rosetti M., Santos R., Sheridan A., Sougnez C., Stange-573 Thomann N., Stojanovic N., Subramanian A., Wyman D., Rogers J., Sulston J., Ainscough 574 R., Beck S., Bentley D., Burton J., Clee C., Carter N., Coulson A., Deadman R., Deloukas P., Dunham A., Dunham I., Durbin R., French L., Grafham D., Gregory S., Hubbard T., 575 576 Humphray S., Hunt A., Jones M., Lloyd C., McMurray A., Matthews L., Mercer S., Milne S., Mullikin JC., Mungall A., Plumb R., Ross M., Shownkeen R., Sims S., Waterston RH., 577 578 Wilson RK., Hillier LW., McPherson JD., Marra MA., Mardis ER., Fulton LA., Chinwalla AT., Pepin KH., Gish WR., Chissoe SL., Wendl MC., Delehaunty KD., Miner TL., 579 580 Delehaunty A., Kramer JB., Cook LL., Fulton RS., Johnson DL., Minx PJ., Clifton SW., 581 Hawkins T., Branscomb E., Predki P., Richardson P., Wenning S., Slezak T., Doggett N., 582 Cheng J-F., Olsen A., Lucas S., Elkin C., Uberbacher E., Frazier M., Gibbs RA., Muzny 583 DM., Scherer SE., Bouck JB., Sodergren EJ., Worley KC., Rives CM., Gorrell JH., Metzker ML., Naylor SL., Kucherlapati RS., Nelson DL., Weinstock GM., Sakaki Y., Fujiyama A., 584 585 Hattori M., Yada T., Toyoda A., Itoh T., Kawagoe C., Watanabe H., Totoki Y., Taylor T., Weissenbach J., Heilig R., Saurin W., Artiguenave F., Brottier P., Bruls T., Pelletier E., 586 587 Robert C., Wincker P., Rosenthal A., Platzer M., Nyakatura G., Taudien S., Rump A.,

588 Smith DR., Doucette-Stamm L., Rubenfield M., Weinstock K., Lee HM., Dubois J., Yang 589 H., Yu J., Wang J., Huang G., Gu J., Hood L., Rowen L., Madan A., Qin S., Davis RW., 590 Federspiel NA., Abola AP., Proctor MJ., Roe BA., Chen F., Pan H., Ramser J., Lehrach H., 591 Reinhardt R., McCombie WR., de la Bastide M., Dedhia N., Blöcker H., Hornischer K., Nordsiek G., Agarwala R., Aravind L., Bailey JA., Bateman A., Batzoglou S., Birney E., 592 Bork P., Brown DG., Burge CB., Cerutti L., Chen H-C., Church D., Clamp M., Copley RR., 593 594 Doerks T., Eddy SR., Eichler EE., Furey TS., Galagan J., Gilbert JGR., Harmon C., 595 Hayashizaki Y., Haussler D., Hermjakob H., Hokamp K., Jang W., Johnson LS., Jones TA., 596 Kasif S., Kaspryzk A., Kennedy S., Kent WJ., Kitts P., Koonin E V., Korf I., Kulp D., 597 Lancet D., Lowe TM., McLysaght A., Mikkelsen T., Moran J V., Mulder N., Pollara VJ., Ponting CP., Schuler G., Schultz J., Slater G., Smit AFA., Stupka E., Szustakowki J., 598 599 Thierry-Mieg D., Thierry-Mieg J., Wagner L., Wallis J., Wheeler R., Williams A., Wolf 600 YI., Wolfe KH., Yang S-P., Yeh R-F., Collins F., Guyer MS., Peterson J., Felsenfeld A., 601 Wetterstrand KA., Myers RM., Schmutz J., Dickson M., Grimwood J., Cox DR., Olson M 602 V., Kaul R., Raymond C., Shimizu N., Kawasaki K., Minoshima S., Evans GA., Athanasiou 603 M., Schultz R., Patrinos A., Morgan MJ. 2001. Initial sequencing and analysis of the human 604 genome. Nature 409:860-921. DOI: 10.1038/35057062.

- Langmead B., Salzberg SL. 2012. Fast gapped-read alignment with Bowtie 2. *Nature Methods* 9:357–359. DOI: 10.1038/nmeth.1923
- Laurence M., Hatzis C., Brash DE. 2014. Common Contaminants in Next-Generation
 Sequencing That Hinder Discovery of Low-Abundance Microbes. *PLoS ONE* 9:e97876.
 DOI: 10.1371/journal.pone.0097876
- Lawrence JG., Roth JR. 1996. Selfish Operons: Horizontal Transfer May Drive the Evolution of
 Gene Clusters. *Genetics* 143:1843-1860.
- Lercher MJ., Pal C. 2008. Integration of Horizontally Transferred Genes into Regulatory
 Interaction Networks Takes Many Million Years. *Molecular Biology and Evolution* 25:559–
 567. DOI: 10.1093/molbev/msm283
- 615 Levin M., Anavy L., Cole AG., Winter E., Mostov N., Khair S., Senderovich N., Kovalev E.,
- 616 Silver DH., Feder M., Fernandez-Valverde SL., Nakanishi N., Simmons D., Simakov O.,
- 617 Larsson T., Liu S-Y., Jerafi-Vider A., Yaniv K., Ryan JF., Martindale MQ., Rink JC.,
- 618 Arendt D., Degnan SM., Degnan BM., Hashimshony T., Yanai I. 2016. The mid-
- developmental transition and the evolution of animal body plans. *Nature* 531:637–641.
- 620 DOI: 10.1038/nature16994.
- Longo MS., O'Neill MJ., O'Neill RJ., Clamp M., Barton G. 2011. Abundant Human DNA
 Contamination Identified in Non-Primate Genome Databases. *PLoS ONE* 6:e16410. DOI:
 10.1371/journal.pone.0016410.
- 624 Madhusoodanan J. 2015. Horizontal Gene Transfer a Hallmark of Animal Genomes? Available
- at http://www.the-scientist.com/?articles.view/articleNo/42420/title/Horizontal-Gene-
- 626 Transfer-a-Hallmark-of-Animal-Genomes-/

- 627 Martinson EO., Martinson VG., Edwards R., Mrinalini., Werren JH. 2016. Laterally Transferred
- 628 Gene Recruited as a Venom in Parasitoid Wasps. *Molecular Biology and Evolution*
- 629 33:1042–1052. DOI: 10.1093/molbev/msv348.
- Merchant S., Wood DE., Salzberg SL. 2014. Unexpected cross-species contamination in genome
 sequencing projects. *PeerJ*, 2:e675. DOI: 10.7717/peerj.675
- 632 Moreland RT., Nguyen A-D., Ryan JF., Schnitzler CE., Koch BJ., Siewert K., Wolfsberg TG.,
- Baxevanis AD. 2014. A customized Web portal for the genome of the ctenophore
- 634 Mnemiopsis leidyi. *BMC genomics* 15:316. DOI: 10.1186/1471-2164-15-316.
- Moroz LL., Kocot KM., Citarella MR., Dosung S., Norekian TP., Povolotskaya IS., Grigorenko
 AP., Dailey C., Berezikov E., Buckley KM., Ptitsyn A., Reshetov D., Mukherjee K., Moroz
 TP., Bobkova Y., Yu F., Kapitonov V V., Jurka J., Bobkov Y V., Swore JJ., Girardo DO.,
 Fodor A., Gusev F., Sanford R., Bruders R., Kittler E., Mills CE., Rast JP., Derelle R.,
 Solovyev V V., Kondrashov FA., Swalla BJ., Sweedler J V., Rogaev EI., Halanych KM.,
 Kohn AB. 2014. The ctenophore genome and the evolutionary origins of neural systems.
- 641 *Nature* 510:109–114. DOI: 10.1038/nature13400.
- Moss AG., Estes AM., Muellner LA., Morgan DD. 2001. Protistan epibionts of the ctenophore
 Mnemiopsis mccradyi Mayer. *Hydrobiologia* 451:295–304.
- Naccache SN., Greninger AL., Lee D., Coffey LL., Phan T., Rein-Weston A., Aronsohn A.,
 Hackett J., Delwart EL., Chiu CY. 2013. The perils of pathogen discovery: origin of a novel
 parvovirus-like hybrid genome traced to nucleic acid extraction spin columns. *Journal of virology* 87:11966–11977. DOI: 10.1128/JVI.02323-13.
- 648 O'Leary NA., Wright MW., Brister JR., Ciufo S., Haddad D., McVeigh R., Rajput B., Robbertse 649 B., Smith-White B., Ako-Adjei D., Astashyn A., Badretdin A., Bao Y., Blinkova O., Brover 650 V., Chetvernin V., Choi J., Cox E., Ermolaeva O., Farrell CM., Goldfarb T., Gupta T., Haft 651 D., Hatcher E., Hlavina W., Joardar VS., Kodali VK., Li W., Maglott D., Masterson P., McGarvey KM., Murphy MR., O'Neill K., Pujar S., Rangwala SH., Rausch D., Riddick 652 653 LD., Schoch C., Shkeda A., Storz SS., Sun H., Thibaud-Nissen F., Tolstoy I., Tully RE., 654 Vatsan AR., Wallin C., Webb D., Wu W., Landrum MJ., Kimchi A., Tatusova T., DiCuccio 655 M., Kitts P., Murphy TD., Pruitt KD. 2016. Reference sequence (RefSeq) database at 656 NCBI: current status, taxonomic expansion, and functional annotation. Nucleic Acids 657 Research 44:D733–D745. DOI: 10.1093/nar/gkv1189.
- Park C., Zhang J. 2012. High Expression Hampers Horizontal Gene Transfer. *Genome Biology and Evolution* 4:523–532. DOI: 10.1093/gbe/evs030
- Paradis E., Claude J. Strimmer K. 2004. APE: analyses of phylogenetics and evolution in R
 language. *Bioinformatics* 20:289-290.
- Philippe H., Derelle R., Lopez P., Pick K., Borchiellini C., Boury-Esnault N., Vacelet J., Renard
 E., Houliston E., Quéinnec E., Da Silva C., Wincker P., Le Guyader H., Leys S., Jackson

DJ., Schreiber F., Erpenbeck D., Morgenstern B., Wörheide G., Manuel M. 2009.
Phylogenomics revives traditional views on deep animal relationships. *Current biology* 19:706–12. DOI: 10.1016/j.cub.2009.02.052.

- Pible O., Hartmann EM., Imbert G., Armengaud J. 2014. The importance of recognizing and
 reporting sequence database contamination for proteomics. *EuPA Open Proteomics* 3:246–
 249. DOI: 10.1016/J.EUPROT.2014.04.001.
- Pick KS., Philippe H., Schreiber F., Erpenbeck D., Jackson DJ., Wrede P., Wiens M., Alié A.,
 Morgenstern B., Manuel M., Wörheide G. 2010. Improved phylogenomic taxon sampling
 noticeably affects nonbilaterian relationships. *Molecular biology and evolution* 27:1983–7.
 DOI: 10.1093/molbev/msq089.

Pisani D., Pett W., Dohrmann M., Feuda R., Rota-Stabelli O., Philippe H., Lartillot N., Wörheide
G. 2015. Genomic data do not support comb jellies as the sister group to all other animals. *Proceedings of the National Academy of Sciences of the United States of America*112:15402–7. DOI: 10.1073/pnas.1518127112.

Pundir S., Martin MJ., O'Donovan C. 2017. Uniprot protein knowledgebase. *Protein Bioinformatics: From Protein Modifications and Networks to Proteomics*, 41-55.

Radzvilavicius AL., Hadjivasiliou Z., Pomiankowski A., Lane N. 2016. Selection for
 Mitochondrial Quality Drives Evolution of the Germline. *PLoS biology* 14:e2000410. DOI:
 10.1371/journal.pbio.2000410.

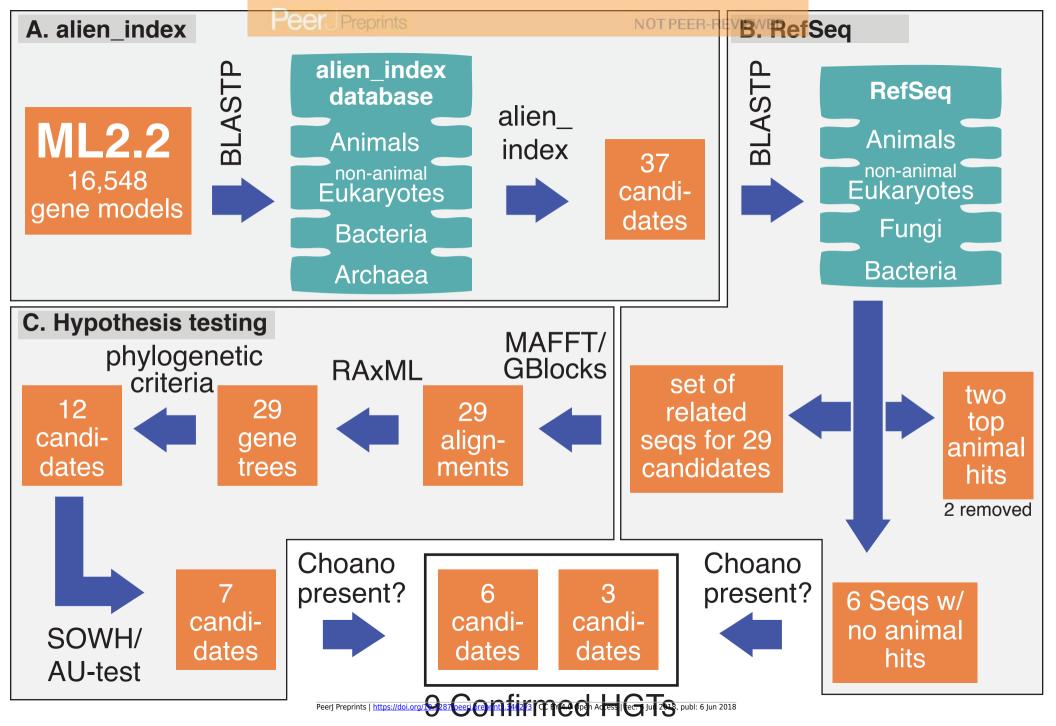
Richards TA., Dacks JB., Campbell SA., Blanchard JL., Foster PG., McLeod R., Roberts CW.
2006. Evolutionary origins of the eukaryotic shikimate pathway: gene fusions, horizontal
gene transfer, and endosymbiotic replacements. *Eukaryotic cell* 5:1517–31. DOI:
10.1128/EC.00106-06.

- Ryan JF., Pang K., Schnitzler CE., Nguyen A-D., Moreland RT., Simmons DK., Koch BJ.,
 Francis WR., Havlak P., Smith SA., Putnam NH., Haddock SHD., Dunn CW., Wolfsberg
 TG., Mullikin JC., Martindale MQ., Baxevanis AD. 2013. The Genome of the Ctenophore *Mnemiopsis leidyi* and Its Implications for Cell Type Evolution. *Science* 342:1242592. DOI:
 10.1126/science.1242592
- Salter SJ., Cox MJ., Turek EM., Calus ST., Cookson WO., Moffatt MF., Turner P., Parkhill J.,
 Loman NJ., Walker AW. 2014. Reagent and laboratory contamination can critically impact
 sequence-based microbiome analyses. *BMC Biology* 12:87. DOI: 10.1186/s12915-0140087-z.
- Salzberg SL., White O., Peterson J., Eisen JA. 2001. Microbial Genes in the Human Genome:
 Lateral Transfer or Gene Loss? *Science* 292:1903-1906. DOI: 10.1126/science.1061036

Schönknecht G., Weber APM., Lercher MJ. 2014. Horizontal gene acquisitions by eukaryotes as
 drivers of adaptive evolution. *BioEssays*, 36:9–20. DOI: 10.1002/bies.201300095

- Shen X-X., Hittinger CT., Rokas A. 2017. Contentious relationships in phylogenomic studies can
 be driven by a handful of genes. *Nature ecology & evolution* 1:0126. DOI: 10.1038/s41559 017-0126
- Shimodaira H., Hasegawa M. 2001. CONSEL: for assessing the confidence of phylogenetic tree
 selection. *BIOINFORMATICS APPLICATIONS NOTE* 17:1246–1247.
- Simion P., Philippe H., Baurain D., Jager M., Richter DJ., Di Franco A., Roure B., Satoh N.,
 Quéinnec É., Ereskovsky A., Lapébie P., Corre E., Delsuc F., King N., Wörheide G.,
 Manuel M. 2017. A Large and Consistent Phylogenomic Dataset Supports Sponges as the
 Sister Group to All Other Animals. *Current Biology* 27:958–967. DOI:
 10.1016/j.cub.2017.02.031.
- Song J-I., Hwang S-J. 2010. New Species of Genus *Coeloplana* (Ctenophora: Tentaculata:
 Platyctenida) from Korea. *Animal Systematics, Evolution and Diversity* 26:217–221. DOI:
- 712 10.5635/KJSZ.2010.26.3.217
- Soucy SM., Huang J., Gogarten JP. 2015. Horizontal gene transfer: building the web of life.
 Nature Reviews Genetics 16:472–482. DOI: 10.1038/nrg3962
- Stamatakis A. 2014 RAxML Version 8: A tool for phylogenetic analysis and post-analysis of
 large phylogenies. *Bioinformatics* 30:1312–1313.
- Stanhope MJ., Lupas A., Italia MJ., Koretke KK., Volker C., Brown JR. 2001. Phylogenetic
 analyses do not support horizontal gene transfers from bacteria to vertebrates. *Nature*411:940–944. DOI: 10.1038/35082058.
- Strong MJ., Xu G., Morici L., Bon-Durant SS., Baddoo M., Lin Z., Fewell C., Taylor CM.,
 Flemington EK. 2014. Microbial Contamination in Next Generation Sequencing:
 Implications for Sequence-Based Analysis of Clinical Samples. *PLoS Pathogens*10:e1004437. DOI: 10.1371/journal.ppat.1004437.
- Sun BF., Xiao JH., He SM., Liu L., Murphy RW., Huang DW. 2013. Multiple ancient horizontal
 gene transfers and duplications in lepidopteran species. *Insect Molecular Biology* 22:72–87.
 DOI: 10.1111/imb.12004.
- Telford MJ., Budd GE., Philippe H. 2015. Phylogenomic Insights into Animal Evolution.
 Current Biology 25:R876–R887. DOI: 10.1016/j.cub.2015.07.060
- Thomas CM., Nielsen KM. 2005. Mechanisms of, and Barriers to, Horizontal Gene Transfer
 between Bacteria. *Nature Reviews Microbiology* 3:711–721. DOI: 10.1038/nrmicro1234
- 731 Torruella G., de Mendoza A., Grau-Bové X., Antó M., Chaplin MA., del Campo J., Eme L.,
- Pérez-Cordón G., Whipps CM., Nichols KM., Paley R., Roger AJ., Sitjà-Bobadilla A.,
- 733 Donachie S., Ruiz-Trillo I. 2015. Phylogenomics Reveals Convergent Evolution of

Lifestyles in Close Relatives of Animals and Fungi. *Current Biology* 25:2404–2410. DOI:
10.1016/j.cub.2015.07.053.


Whelan NV., Kocot KM., Moroz LL., Halanych KM. 2015. Error, signal, and the placement of
Ctenophora sister to all other animals. *Proceedings of the National Academy of Sciences of the United States of America* 112:5773–8. DOI: 10.1073/pnas.1503453112.

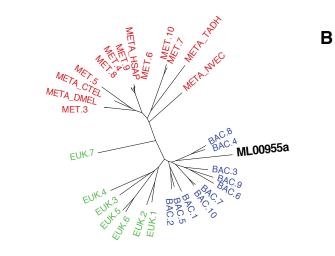
- Whelan NV., Kocot KM., Moroz TP., Mukherjee K., Williams P., Paulay G., Moroz LL.,
 Halanych KM. 2017. Ctenophore relationships and their placement as the sister group to all
 other animals. *Nature Ecology & Evolution* 1:1737–1746. DOI: 10.1038/s41559-017-0331-
- 742 3.
- Wybouw N., Pauchet Y., Heckel DG., Van Leeuwen T. 2016. Horizontal Gene Transfer
 Contributes to the Evolution of Arthropod Herbivory. *Genome biology and evolution*
- 745 8:1785–801. DOI: 10.1093/gbe/evw119.
- 746 Zhu B., Lou M-M., Xie G-L., Zhang G-Q., Zhou X-P., Li B., Jin G-L. 2011. Horizontal gene
- transfer in silkworm, *Bombyx mori. BMC Genomics* 12:248. DOI: 10.1186/1471-2164-12248.

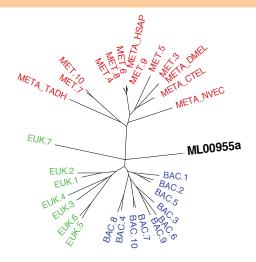
Figure 1(on next page)

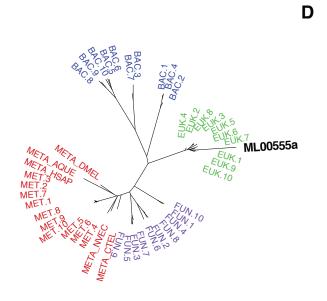
Pipeline and outputs to identify and confirm HGTs.

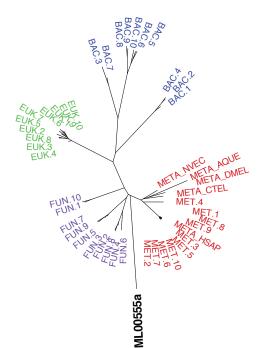
(A) alien_index was used to identify 37 HGT candidates. (B) These candidates were then BLASTed against RefSeq; two candidates were removed because they only had two significant animals hits and six were set aside for future testing because they lacked animal hits. (C) The remaining 29 candidates were tested by phylogenetic analyses and hypothesis testing (SOWH and AU test). The 6 candidates that lacked animal hits and those that passed hypothesis testing (7 candidates) were screened for significant hits to Choanoflagellates. More details on genes passing through the pipeline are described in Table S2.

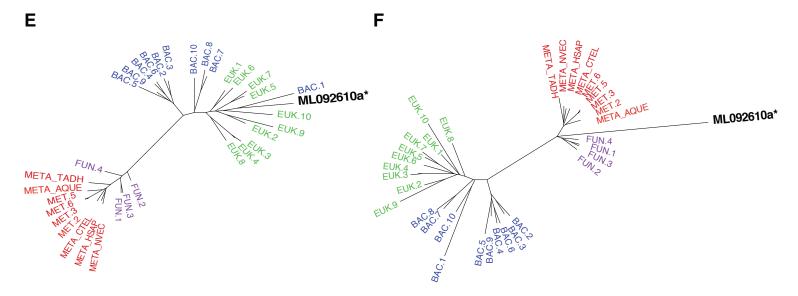
Figure 2(on next page)


Maximum-likelihood best tree and metazoan-constraint tree compared in the SOWH and AU tests.


Gene IDs (in black) denote the putative HGTs. (A), (C), and (E) are examples of RAxML best trees for HGT candidates validated by phylogenetic analyses and hypothesis testing. (B), (D), and (F) are examples of trees where putative HGTs have been constrained to produce monophyletic Animalia and have been optimized in RAxML. Taxa that are prefixed "META_" are from our alien_index database version 0.01 (i.e., META_NVEC (*Nematostella vectensis*), META_TADH (*Trichoplax adhaerens*), META_HSAP (*Homo sapiens*), META_CTEL (*Capitella teleta*), META_DMEL (*Drosophila melanogaster*), META_AQUE (*Amphimedon queenslandica*). MET=Metazoa; BAC=Bacteria; EUK=Eukaryota; FUN=Fungi; More details for each taxon are specified in Table S3. The asterisk indicates a gene that is later removed from contention.


Α


С


NOT PEER-REVIEWED

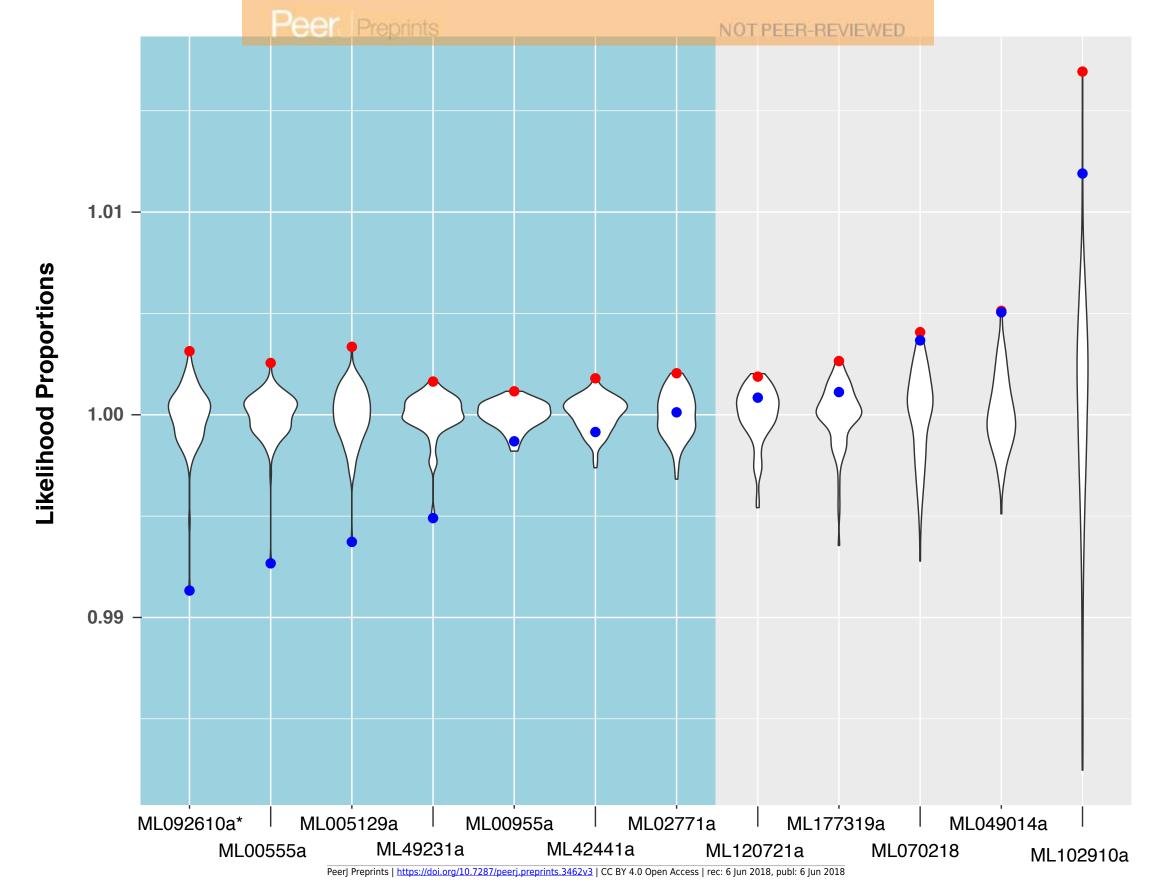
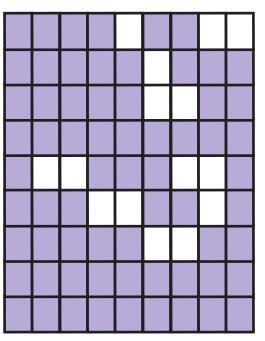


Figure 3(on next page)

A comparison of likelihood proportions between the best tree, metazoan-constrained tree, and bootstrap trees for HGT candidates with BLAST hits to Metazoa.

Likelihood proportions are individual likelihood values divided by the average likelihood value for suboptimal trees (i.e., bootstrap trees). Red points indicate likelihood proportions of the best tree (i.e., tree indicating HGT). Blue points indicate likelihood proportions of the metazoan constrained tree (i.e., tree contradicting HGT). The violin plot shows the distribution of likelihood proportions of 100 bootstrap trees for each HGT candidate. The side in teal shows HGT candidates validated by hypothesis testing and the side in gray shows HGT candidates unsupported by hypothesis testing. The asterisk indicates a gene that is later removed from contention.


Figure 4(on next page)

Expression of confirmed HGTs from the *M. leidyi* genome in ctenophore transcriptomes.

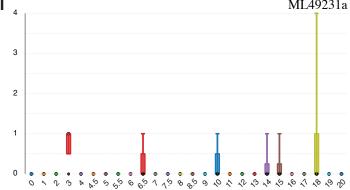
Purple boxes indicate the specified HGT is present in the species' transcriptome confirmed by reciprocal best BLAST hits; white boxes indicate the gene is absent in the species' transcriptome. Tree was inferred by Moroz et al. (2014). Percent identity among genes are described in Table S4.

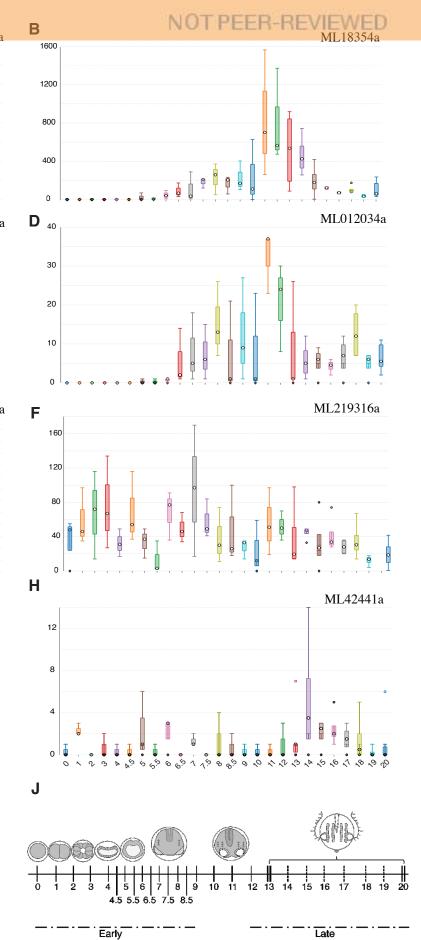
Peer Preprints

ML012034a ML005129a ML18354a ML00955a ML02771a ML49231a ML49231a ML42441a ML219316a

Euplokamis dunlapae Coeloplana astericola Vallicula multiformis Pleurobrachia bachei Dryodora glandiformis Beroe abyssicola Bolinopsis infundibulum Mnemiopsis leidyi (FL) Mnemiopsis leidyi (MA)

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.3462v3 | CC BY 4.0 Open Access | rec: 6 Jun 2018, publ: 6 Jun 2018


Figure 5(on next page)


Expression profiles of the nine HGTs identified in this study.

Single-embryo RNA-Seq analyses were performed over 20 hours. (A-F) Confirmed HGTs with tpm values (medians for each set of time point replicates) greater than or equal to 100 over 20 hours (25 time points) are shown. (G-I) Confirmed HGTs with tpm values less than 100 over 20 hours. (J) Ctenophore stages of development over the timecourse. Early cleavage stages occur at 1-3 hpf. Gastrulation occurs at 4-6 hpf . Tentacle morphogenesis occurs at 9-12 hpf. N refers to the number of replicates.

P

ML00955a ļ J ę Number of Mapped Reads (Transcripts-per-million) Ω_{m}° ML02771a J ML005129a c ē ML00555a • • L ML49231a

| N = 3 | N = 4 || N = 6

Hours post fertilization PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.3462v3 | CC BY 4.0 Open Access | rec: 6 Jun 2018, publ: 6 Jun 2018

Table 1(on next page)

Hypothesis testing on HGT candidates that were confirmed by phylogenetic analyses.

P-values indicate the level of support for HGTs in comparison to the metazoan constraint tree for the SOWH test and suboptimal trees (bootstrap and manually generated) in the AU test. Candidates in blue have significant values in all three tests ($p \le 0.05$) likely HGTs. The asterisk indicates a gene that is later removed from contention.

Genes	SOWH p-value	AU Bootstrap p-value	AU Manual p-value
ML00555a	<0.001	4.00E-45	7.00E-06
ML49231a	<0.001	2.00E-44	7.00E-103
ML092610a*	<0.001	2.00E-31	4.00E-68
ML005129a	<0.001	1.00E-04	6.00E-06
ML00955a	<0.001	0.021	0.002
ML02771a	<0.001	0.023	0.029
ML42441a	<0.001	0.047	0.022
ML177319a	<0.001	0.226	0.042
ML120721a	<0.001	0.48	0.245
ML049014a	0.985	0.862	0.604
ML070218a	0.262	0.849	0.361
ML102910a	0.229	0.719	0.255

1

Table 2(on next page)

Intron structure of nine HGTs and surrounding genes.

The genes highlighted in red are the HGT candidates. The gene with an asterisk indicates one non-spliceosomal intron.

Candidate HGT	Number of introns in candidate HGTs and surrounding genes							
ML00955a	ML00952a	ML00953a	ML00954a	ML00955a	ML00956a	ML00957a	ML00958a	
	5	0	4	1	0	7	2	
ML18354a	ML18351a	ML18352a	ML18353a	ML18354a	ML18355a	ML18356a	ML18357a	
	6	14	7	5	1	0	0	
ML02771a				ML02771a	ML02772a	ML02773a	ML02774a	
				7	8	16	3	
ML012034a	ML012031a	ML012032a	ML012033a	ML012034a	ML012035a	ML012036a		
	6	5	6	0	3	6		
ML005129a	ML005126a	ML005127a	ML005128a	ML005129a	ML005130a	ML005131a	ML005132a	
	0	7	2	1	0	4	8	
ML219316a	ML219313a	ML219314a	ML219315a	ML219316a	ML219317a			
	6	3	7*	4	6			
ML00555a	ML00552a	ML00553a	ML00554a	ML00555a	ML00556a	ML00557a	ML00558a	
	0	12	0	14	3	0	5	
ML42441a				ML42441a	ML42442a	ML42443a	ML42444a	
				1	14	3	10	
ML49231a				ML49231a				
				6				
1								

Table 3(on next page)

Sumary of confirmed HGT origins and functions.

HGT functions were determined by BLAST against the UniProt database and associated Pfam-A domains were searched on the *Mnemiopsis* Genome Portal. The origin column shows the domains of life from which these genes are predicted to have been transferred (Bac = Bacteria; Euk = Eukaryota). The RefSeq column shows a more detailed classification for the origin of HGTs. All rows highlighted in orange indicate genes that show developmental expression.

Genes	Function	Pfam Domains	Origin	Lineage
ML00955a	Putative metalloendopeptidase	Peptidase family M13	Bac	Proteobacteria
ML005129a	2-oxoglutarate (2OG) and Fe(II)- dependent oxygenase superfamily protein	2OG-Fe(II) oxygenase superfamily	Euk	Unknown
ML02771a	Penicillin acylase	Penicillin amidase	Bac	Unknown
ML012034a	Uncharacterized protein	2OG-Fe(II) oxygenase superfamily	Euk	Unknown
ML18354a	Putative chalcone and stilbene synthase	Chalcone and stilbene synthases, 3- Oxoacyl- synthase III, FAE1/Type III polyketide synthase	Bac	Unknown
ML219316a	Uncharacterized protein		Bac	Firmicutes
ML00555a	Phospholipase D alpha 1	C2, Phospholipase D	Euk	Unknown
ML49231a	Phospholipase D gamma 1	Phospholipase D	Euk	Rhodophyta
ML42441a	NADH dehydrogenase, putative	Pyridine nucleotide-disulphide oxidoreductase	Euk	Unknown