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Floating dust weather is an annual natural phenomenon in early spring in south of Xinjiang

UygurAutonomous Region, northwestern China. Floating dust in air can influence human

health and plant growth. Populus euphratica is a rare tree species which can grow in hot

and dry conditions. Some investigations have evaluated the effect of floating dust on

plants by means of artificial dust to which simulates the natural sand and dust, but the

mechanism by which plants respond to sand is poorly understood. The investigation

presented in this paper focused on a comparison of the variation in net photosynthetic rate

(Pn) before and during floating dust weather, to elucidate the mechanisms involved.

Stomatal conductance (gs) and Pn appeared to increase during floating dust weather;in

contrast, stomatal limitation (Ls) and non-stomatal limitation (Lns) decreased with

photosynthetic active radiation in the range 500 to 2000 μmol m−2s−1,which is optimum for

plant growth. Aerosol ions, including potassium, dissolved in water collected by foliar

structures or tender stems, may come into contact with intercellular stroma and improve

chloroplast activity or ribulose-1,5-bisphosphate carboxylase/ oxygenase (Rubisco) levels,

such as potassium, thereby influencing Ls and Lns. Moreover, potassium, phosphorus,

nitrogen and sodium in aerosols appeared to increase Pn, and this may be due to nutrient

compounds in aerosols, which may have a similar effect to spraying fertilizer on leaves. In

addition, the high relative humidity and carbon dioxide concentration in air during floating

dust weather may facilitate an increase in Pn.
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Abstract

Floating dust weather is an annual natural phenomenon in early spring in south of Xinjiang 

Uygur Autonomous Region, northwestern China. Floating dust in air can influence human health 

and plant growth. Populus euphratica is a rare tree species which can grow in hot and dry 

conditions. Some investigations have evaluated the effect of floating dust on plants by means of 

artificial dust to which simulates the natural sand and dust, but the mechanism by which plants 

respond to sand is poorly understood. The investigation presented in this paper focused on a 

comparison of the variation in net photosynthetic rate (Pn) before and during floating dust 

weather, to elucidate the mechanisms involved. Stomatal conductance (gs) and Pn appeared to 

increase during floating dust weather; in contrast, stomatal limitation (Ls) and non-stomatal 

limitation (Lns) decreased with photosynthetic active radiation in the range 500 to 2000 μmol 

m−2s−1,which is optimum for plant growth. Aerosol ions, including potassium, dissolved in water 

collected by foliar structures or tender stems, may come into contact with intercellular stroma and

improve chloroplast activity or ribulose-1,5-bisphosphate carboxylase/ oxygenase  (Rubisco) 

levels, such as potassium, thereby influencing Ls and Lns. Moreover, potassium, phosphorus, 

nitrogen and sodium in aerosols appeared to increase Pn, and this may be due to nutrient 

compounds in aerosols, which may have a similar effect to spraying fertilizer on leaves. In 
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addition, the high relative humidity and carbon dioxide concentration in air during floating dust 

weather may facilitate an increase in Pn.

Keyword: Populus euphratica, Photosynthesis, Floating dust, Stomatal limitation, Non-

stomatal limitation

Introduction

Leaf responses to dust have been studied for a long time. Both the chemical and physical 

characteristics of dust can influence photosynthesis and leaf physiology (Hirano et al., 1995). 

Vardaka et al. (1995) reported that the average rate of leaf photosynthesis decreased 

exponentially with increasing levels of dust on leaf surfaces. Dust coatings on leaves can block 

stomata, which leads to a decrease in photosynthesis and respiration (Vardaka et al., 1995; Xi and

Sokolik, 2012), photosynthetic active radiation (PAR) and water use efficiency (Maletsika et al., 

2015). Moreover, increasing dust deposition may lead to a decrease in chlorophyll content and an

increase in ascorbic acid content (Squires, 2016). Similarly, Simon et al. (2016) found that metal 

content in dust on leaves correlated with the leaf tissue content. Toxic metals, phytotoxic gaseous 

pollution (Farmer, 1993) and calcium hydroxide (Czaja, 1962) in dust may penetrate leaf tissue, 

cause cell plasmolysis and may lead to death. 

The size distribution of dust particles can cause different effects in plants. The dust of 

smaller particles caused a shading effect (Squires, 2016) which decreased photosynthetic rate by 

shading the leaf surface, but increased leaf temperature and transpiration (Armbrust, 1986; 

Hirano et al., 1995). All these factors can impact on photosynthesis. However, the shading effect 

of dust layers may be different among different plants. Manning (1971) found that leaves of Vitis 

vinifera were a much darker green when exposed to limestone dust, but the leaves of Populus 

euphratica did not suffer seriously from a shading effect (Vardaka et al., 1995). An investigation 

into the effect of iron ore dust on mangroves provided no evidence of cell damage caused by 

these particles (Paling et al., 2001).
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Floating dust in southern Xinjiang almost always occurs in spring, and it may affect plant 

photosynthesis. P. euphratica is a native relic plant of the Taklimakan desert, but there have been 

few studies on the effect of floating dust on photosynthesis of P. euphratica. Human health 

effects, due to particle size distribution and particulate content, have received much attention, but 

there is a lack of information about the effect on plants. The aim of this research was to determine

the effects of floating dust on Pn changes in P. euphratica. Because Wang et al. (2016) showed 

that aerosol ions dissolved in water collected by foliar structures or tender stems moves into 

intercellular stroma and improves the activity of chloroplasts or Rubisco levels such as 

potassium(Erel et al., 2015), this survey also investigated the relationship between Pn and the ions

in aerosols. This study may increase our understanding of the survival strategies of P. euphratica 

in response to floating dust weather in early spring.

Materials and methods

Site description

The research area was located in a natural forest on the southern edge of Taklimakan desert 

in Zepu County, Xinjiang Uygur Autonomous Region, northwestern China. P. euphratica and 

Elaeagnus angustifolia are the dominant species in these forest communities, with an average 

height of about 11 m and 3 m, respectively. The forest lies at the border between desert and oasis,

and it is approximately 12km from the Yarkant river. The monthly mean temperature in April is 

15.7℃, and the monthly mean rainfall is 9.6 mm. 

Experimental design

Leaf responses to light were measured in P. euphratica using a portable infrared gas 

analyzer (LI-COR 6400, Lincoln, NE, USA) on April 16 (sunny) and April 19, 2017 (floating 

dust), respectively. At the same time, the leaf chlorophyll content was measured using portable 

chlorophyll meter (SPAD-502Plus, Minolta, Osaka, Japan). Particulate size distributions were 

measured using an Anderson particle sizing sampler at the top of a bungalow on sunny days and 

floating dust days. The particle sizing sampling site was approximately 1.2 km away from the 
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experimental natural woodland. Composition of ions in dust was determined by 

chromatography (Dionex Integrion Hpic, Thermo Scientific, USA). The ion experiment was 

carried out using the method of Shen et al. (2014). 

Results

Leaf gs characteristics of P. euphratica

Figure 1 shows an unexpected result: there were higher levels of Pn and gs in floating dust 

weather than in sunny weather. Normally, gs is positively correlated with Pn across a certain range

for many plants, but gs would be expected to decrease while Pn is above a certain threshold (Gao 

et al., 2016). On a sunny day, Pn increases, followed by an increase in gs when PAR is below 2000

μmol m−2s−1; thereafter, Pn begins to decrease followed by a gs increase, as shown in Fig. 1 (a and 

b). During floating dust weather, the gs response curves indicated there were some obvious 

fluctuations during low and high levels of PAR; the Pn response curves were similar with gs 

except for low and high levels of PAR (Fig. 1). The measurements were carried out on the same 

tree, which had a height of 1.5 m, and the dates were adjacent, so we deduced the differences may

have been caused by environmental factors. 

 Fig. 1 Comparison of sunny and floating dust weather for Pn and gs. April 16 was sunny weather, while April 19 was floating dust

weather.

Stomatal limitation and non-stomatal limitation

Photosynthesis is influenced by various environmental factors. These environmental factors 

interact with each other, so it can be difficult to confirm which factor leads to a photosynthetic 

change. The main factors can be summarized as those influencing Ls and Lns. Ls can be calculated 

by Formula 1, which indicates the photosynthetic rate change caused by stomata (Berry and 

Downton, 1982). In contrast, the ratio of Ci/gs has been used as a parameter to describe the Lns of 

photosynthesis (Ramanjulu et al., 1998), which indicates the activities of chloroplasts and 

Rubisco (Yang et al., 2015).
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          Ls=1-Ci/Ca                           (Formula 1)

 Fig. 2 The comparison of Ls and Lns influenced by PAR in 

sunny and floating dust weather.

By comparison, there were consistently higher values of Lns in sunny weather than in 

floating dust weather; however, Ls was complex. During floating dust weather Ls was slightly 

higher than in sunny weather when PAR was under 250 μmol m−2s−1, which can be possibly 

ascribed to stomatal blockage caused by aerosols. Meanwhile, Ls in sunny weather was higher 

when PAR was 500 to 2000μmol m−2s−1 (Fig. 2), which is an optimum range for plant growth, and

may be attributable to ion absorption in aerosols; it is abnormal. One possible explanation is that 

some substances promote the activities of chloroplasts or the Rubisco; another explanation is an 

increase in photosynthetic necessities, such as chloroplasts, CO2 and H2O. Indeed, chloroplast 

content (sunny weather is 30.8 SPAD, floating dust weather is 33.7 SPAD), CO2 and H2O were 

increased according to the measurements shown in figure 3. Nevertheless, it should not be 

ignored that Lns had low values in floating dust weather, which may imply the existence of 

substances which promote the activity of chloroplasts or the Rubisco. Furthermore, recent 

research has shown that aerosol ions may be dissolved in water collected by foliar structures or 

tender stems (Wang et al., 2016), and may move into the intercellular stroma and improve the 

activity of chloroplasts or the Rubisco, such as potassium (Erel et al., 2015). 

Fig.3 Comparison of CO2 and H2O air content, and relative humidity (RHR) in

sunny and floating dust weathers.

Characteristics of plant macronutrients in aerosols
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Nitrogen, phosphorus and potassium are important plant macronutrients. There are two 

pathways for nutrient intake; one is through root absorption, and the other is by foliar uptake. 

Wang et al. (2016) have reported that some plants living in extremely arid habitats can extract 

water from the air through their foliar structures or tender stems. Water-soluble ions in air 

particles will be dissolved in water concentrated from the air by stomata or water-absorbing 

scales, and thus move into foliar structures, especially tender stems. Potassium is an essential 

macronutrient which plays an important role in photosynthetic processes; furthermore, sodium 

can partially substitute for potassium in some plants (Erel et al., 2015).To investigate the effects 

of macronutrients on plant photosynthesis, we measured the concentration of some 

macronutrients in air particles using ion chromatography and the photosynthesis-light response, 

such as concentrations of K+, Na+, PO4
3−, NH4

+ and NO3
− in air particles collected by an Anderson 

particle sizing sampler.

The sampling was carried out from April 16 to 20, 2017; the weather was sunny from April 

16 to18, and April 19 to 20 was floating dust weather. The aerosols in floating dust weather had 

more mass concentration than in sunny weather (Fig. 4). The concentrations of ammonium and 

nitrate were low, shown in Table 1. The concentration of sodium and phosphate were relatively 

high in all samples (Fig. 4). All five ion concentrations indicate that floating dust days had higher

levels than sunny days, but the potassium content of aerosols is relatively low (Fig. 4).

Table 1 Distribution of NH4
+ and NO3

- in different particle sizes in aerosols.

Fig. 4 Ion concentration distribution in different particle sizes.

Discussion

Modelling of stomatal conductance

Stomatal conductance (gs) of leaves respond differently to environmental stimuli due to 

different leaf age, species and acclimation to the environment (Baldocchi, 1989). There are two 

classical models for modeling vegetative stomatal conductance, namely the Jarvis model (Jarvis, 
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1976) and the BWB model (Ball et al., 1987). The Jarvis model was widely used for surficial 

processes and biogeochemical (Guyot et al., 2017; Whitley et al., 2009; Ye and Yu, 2009; Yu et 

al., 2017). Both models are used to investigate the impact of different environmental conditions 

on plant photosynthesis caused by different environment status (Hongpakdee and Ruamrungsri, 

2015; Hoshika et al., 2017; Ma et al., 2011). However, both of them are based on 

empirical or semi-empirical formulae; moreover, some aspects of the formulae have 

ambiguous biological meaning. Ye et al. (2013) established a mechanistic model (Formula 1) for 

the light response of photosynthetic electron transport rates based on light harvesting properties 

of photosynthetic pigment molecules (Ye et al., 2013). 

The Pn measurements were conducted on 17 April to 19 April. The mechanistic model for 

stomatal conductance is based on photosynthetic electron transport, described by Ye et al. (2013, 

2014), and the meanings of symbols in the mechanistic model referred to in Ye et al. (2013). 

Figure 5 shows the comparison between modeled and observed Pn in response to PAR in sand and

non-sand weather. There were no significant differences between fitted and measured values for 

sunny days and floating dust weather by means of two independent sample tests (psunny =0.94, 

pfloating dust=0.97), which verified the applicability of the Ye et al. model. The paired-sample T test 

for the measured Pn values were carried out, and 

the results indicated significant differences between sunny and floating dust weather (r=0.988, 

p<0.001, n=16). The higher Pn values in floating dust weather than in sunny weather was 

unexpected, although both of Pn have the same trends. We deduced the results of σik/σ0 and Nk/N0 

from Formula 2 and Formula 3 (Fig. 6).
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147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.3452v1 | CC BY 4.0 Open Access | rec: 8 Dec 2017, publ: 8 Dec 2017



p

n p d

p
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,

1

I
P I R

I

β
α

γ

−
= −

+                              (Formula 3)

Fig. 5 Comparison of the measured and fitted values for Pn in sunny weather and floating dust weather.

The non-linear decreases of σik/σ0 with increases of PAR indicate that the capacity of light 

absorption by photosynthetic pigment molecules decreased with increased PAR in both sunny and

floating dust weather, and the high values in floating dust weather indicated that the plant’s 

photosynthetic pigment molecules had strong optical absorption capacities. The non-linear 

increases of Nk/N0 with the increases of PAR indicate that the decrease in the capacity for light 

absorption, and the lower values of Nk/N0 in floating dust weather, were due to more ground state 

photosynthetic pigment molecules which can facilitate photosynthesis. So, the floating dust 

weather had a better Pn according to both σik/σ0 and Nk/N0.

Fig. 6 Light-response curves of both the ratio of the effective light absorption cross-section and Eigen-absorption cross-section 

(σik/σ0) and the ratio of the numbers of excited state photosynthetic pigment molecules and the ground state photosynthetic 

pigment molecules (Nk/N0) versus photosynthetic active radiations (PAR) in floating dust and sunny weathers.

Variations in micro-environmental factors

In order to investigate the causes of variations in Pn, we conducted a Pearson correlation 

analysis of the micro-environment factors on the leaves. No significant correlation for Pn with the

micro-environment factors was seen (Table 2). However, Pn had a significant correlation with Ci, 

CiPa and Ci/Ca (Table 3). Consequently, it is possible that the factors causing the decrease of Pn 

were not micro-environment factors, but due to the intercellular material or the physiological 

parameters of leaves, instead. This conclusion is consistent with the results reached by the 

comparison between Ls and Lns. Aerosols contain some macronutrients, which can enter into 
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intercellular tissue and facilitate photosynthesis. In addition, the increase in CO2 concentration 

and H2O can facilitate the photosynthesis assumed with rich radiation (Fig.3). For the 

temperature per hour at Zepu County (China Meteorological Administration) all-day is above the 

dew point temperature with 4.05℃ on April 19, 10.7℃ on April 16, respectively, the leaves 

absorbed water just by means of its gaseous state, and the dew point temperatures were calculated

from the formula of Goff-Gratch (John, 1957) and the correctional empirical calculation formula 

of the dew point temperature (Bu and Wang, 2001). Although research on water absorption of P. 

euphratica leaves or tender stems is very limited, it is known that many other xerophytes and 

halophytes have the ability to use atmospheric water vapor by absorption through aerial plant 

parts, such as Reaumuria soongorica (Wang et al., 2016) and Stipagrostis sabulicola (Ebner et 

al., 2011).The water soluble ions in fine particles of aerosols, mainly consisting of hydrophilic 

substances, may be absorbed via stomata or the cuticle pathway (Burkhardt, 2010). In addition, a 

proportion of fine particles can induce air water vapor to change to liquid water, which may be 

absorbed by stomata and cuticles (Burkhardt, 2010).

Table 2 Pearson Correlation analyses on the micro-environment factors of leaves

Table 3 Pearson Correlation analyses on photosynthetic parameters of leaves

Conclusion

This investigation discovered that tender leaves of P. euphratica have high values of Pn 

given sufficient radiation of floating dust weather than in sunny weather at Zepu County, 

Northwestern China. The growth processes of plants will increase the chlorophyll content thus 

improve Pn, which is not considered because there are just two days intervals between the two 

time measurements. Nevertheless, the low level of Lns in floating dust weather implies lower 

chlorophyll and Rubisco activity, which seems to be the effect of the nutrients in aerosols, such as

potassium (Wu and Berkowitz, 1992). It should be noted that the high level of air humidity in 

floating dust weather is an important factor, which can accelerate the dissolution of aerosols. The 
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nutrients in aerosols may be absorbed by the leaves through stomata or cuticles (Wang et al., 

2016), similar to the effect of spraying leaves with nutrients. It is important to note that further 

studies should be conducted on the permeation of aerosol nutrients into leaves. The increase in 

the concentration of CO2 and water vapor were due to the lower temperature caused by floating 

dust shade effects, both of which are necessary for photosynthesis. This study increased our 

understanding of the growth strategy of P. euphratica when suffering from floating dust weather 

in early spring.
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Figure 1

Comparisons of sunny and floating dust weather for Pn and gs; April 16 is sunny

weather while April 19 is floating dust weather
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Figure 2

The comparison of Ls and Lns influenced by PAR in sunny and floating dust weather.
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Figure 3

Comparison of CO2 and H2O air content, and relative humidity (RHR) in sunny and

floating dust weathers.
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Figure 4

Ion concentration distribution in different particle sizes.
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Figure 5

Comparison of the measured and fitted values for Pn in sunny weather and floating dust

weather
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Figure 6

Light-response curves of both the ratio of the effective light absorption cross-section

and Eigen-absorption cross-section (σik/σ0) and the ratio of the numbers of excited state

photosynthetic pigment molecules and the ground state pho
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Table 1(on next page)

Distribution of NH4
+ and NO3

- in different particle sizes in aerosols
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Table 1 Distribution of NH4
+ and NO3

- in different particle sizes in aerosols.

　 2017.4.16-4.18 2017.4.18-4.19 2017.4.19-4.20

Particle

sizes(μm)

Ammonium

concentration(ng/

m3)

Nitrate

concentration(n

g/m3)

Ammonium

concentration(ng/

m3)

Nitrate

concentration(n

g/m3)

Ammonium

concentration(ng/

m3)

Nitrate

concentration(n

g/m3)

9.0-10 0 0 0 0 0 0

5.8-9.0 0 0 0 0 0 0

4.7-5.8 0 0 29.13 4.47 0 0

3.3-4.7 0 0 0 0 0 0

2.1-3.3 0 0 0 0 0 0

1.1-2.1 0 0 0 0 0 0

0.65-1.1 0 0 0 0 0 0

0.47-0.65 0 0 0 0 59.58 0

<0.47 22.17 0 37.97 0 0 0

Sum 22.17 0 67.09 4.47 59.58 0
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Table 2(on next page)

Pearson Correlation analyses on the micro-environment factors of leaves
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Table 2 Pearson Correlation analyses on the micro-environment factors of leaves

　 Pn Trmmol Tleaf CO2R H2OR RH_R PARo Press VpdL VpdA

Pn 1 -0.256 -0.211 0.294 -0.134 -0.127 0.13 -0.395 -0.254 0.086

Trmmo

l

1 -.818** -0.175 0.487 .749** -0.234 .935** .980** -.961**

Tleaf 1 0.103 -0.451 -.716** -0.067 -.616* -.813** .920**

CO2R 1 -0.12 -0.157 0.052 -0.226 -0.18 0.153

H2OR 1 .926** -0.133 0.428 .651** -.617*

RH_R 1 -0.154 .666** .862** -.852**

PARo 1 -0.439 -0.234 0.118

Press 1 .911** -.835**

VpdL 1 -.975**

VpdA 　 　 　 　 　 　 　 　 　 1

*. Correlation is significant at the 0.05 level (2-tailed).

**. Correlation is significant at the 0.01 level (2-tailed).
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Table 3(on next page)

Pearson Correlation analyses on photosynthetic parameters of leaves
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Table 3 Pearson Correlation analyses on photosynthetic parameters of leaves

　 Pn gs Ci CndTotal VpdL VpdA CndCO2 Ci_Pa Ci/Ca

Pn 1 0.36

4

.584* 0.276 -0.254 0.086 0.288 .585* .601*

gs 1 -0.094 .993** .661** -.766** .995** -0.093 -

0.071

Ci 1 -0.18 -.562* 0.404 -0.169 1.000** .999**

CndTota

l

1 .744** -.834** 1.000** -0.18 -

0.158

VpdL 1 -.975** .734** -.562* -.552*

VpdA 1 -.825** 0.404 0.392

CndCO2 1 -0.169 -

0.147

Ci_Pa 1 .999**

Ci/Ca 　 　 　 　 　 　 　 　 1

*. Correlation is significant at the 0.05 level (2-tailed).

**. Correlation is significant at the 0.01 level (2-tailed).
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