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Housekeeping genes are ubiquitously expressed and maintain basic cellular function

across tissue/cell types conditions. The present study aimed to develop a set of pig

housekeeping genes and compare characteristics of structure, evolution and function of

housekeeping genes in the human-pig lineage. Using RNA sequencing data, we identified a

list of 3,136 pig housekeeping genes. Comparing to human homologous counterparts, we

found pig housekeeping genes were longer and subjected to slight weaker purifying

selection pressure and faster neutral evolution. Common housekeeping genes, shared by

the two species, have stronger purifying selection than species-specific genes. But pig-

specific and human-specific housekeeping genes have similar functions. Some species-

specific housekeeping genes have evolved independently to form similar protein-active

sites or structure, such as classical catalytic serine-histidine-aspartate triad and zinc finger

features, implying that they have converged for maintaining the basic cellular function,

which led to equivalent solutions for adapting to the environment. Human and pig

housekeeping genes have varied in their structure and gene list, but they have converged

on the maintenance of basic cellular functions essential for the existence of a cell,

regardless of its specific role in the species. The results shed light on the evolutionary

dynamics of housekeeping genes.

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.3450v1 | CC BY 4.0 Open Access | rec: 6 Dec 2017, publ: 6 Dec 2017



1 Divergent and convergent evolution of housekeeping genes in 

2 human-pig lineage
3

4 Kai Wei  , Tingting Zhang  , Lei Ma *

5

6 College of Life Science, Shihezi University, Shihezi City, Xinjiang Province, China

7

8  These authors contributed equally to this work

9 *Corresponding author

10  Lei Ma: malei1979@hotmail.com

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.3450v1 | CC BY 4.0 Open Access | rec: 6 Dec 2017, publ: 6 Dec 2017



11 Abstract 

12 Housekeeping genes are ubiquitously expressed and maintain basic cellular function across 

13 tissue/cell types conditions. The present study aimed to develop a set of pig housekeeping genes 

14 and compare characteristics of structure, evolution and function of housekeeping genes in the 

15 human-pig lineage. Using RNA sequencing data, we identified a list of 3,136 pig housekeeping 

16 genes. Comparing to human homologous counterparts, we found pig housekeeping genes were 

17 longer and subjected to slight weaker purifying selection pressure and faster neutral evolution. 

18 Common housekeeping genes, shared by the two species, have stronger purifying selection than 

19 species-specific genes. But pig-specific and human-specific housekeeping genes have similar 

20 functions. Some species-specific housekeeping genes have evolved independently to form 

21 similar protein-active sites or structure, such as classical catalytic serine-histidine-aspartate triad 

22 and zinc finger features, implying that they have converged for maintaining the basic cellular 

23 function, which led to equivalent solutions for adapting to the environment. Human and pig 

24 housekeeping genes have varied in their structure and gene list, but they have converged on the 

25 maintenance of basic cellular functions essential for the existence of a cell, regardless of its 

26 specific role in the species. The results shed light on the evolutionary dynamics of housekeeping 

27 genes.

28 Keywords: Housekeeping genes; Gene structure; Basal cellular function; Convergent evolution; 

29 Pig

30 Background 
31 Housekeeping genes are typically genes consistently expressed across tissues and developmental 

32 stages for the maintenance of basic cellular functions (Butte et al.2001; Zhu et al.2003). They 

33 have unique genomic features, including gene structure (Eisenberg and Levanon 2003; 
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34 Vinogradov 2004), nucleotide composition (Vinogradov 2003), and upstream sequence 

35 conservation (Farré et al.2007; Belloraet al.2007). They are often considered as the minimally 

36 essential gene set for normal cellular physiology (Butte et al.2001) and are widely used as 

37 internal controls for gene expression experiments as well as computational biology studies 

38 (Thellin et al.1999; Robinson and Oshlack 2010;Rubie et al.2005; Vandesompele et al.2002). 

39

40 In previous studies, many human housekeeping gene sets have been identified. However, some 

41 sets have little overlap. For example, only 155 genes were shared by three lists of microarray-

42 defined housekeeping genes, including 501, 425 and 567 genes, respectively (Warrington et 

43 al.2000; Hsiao et al.2001; Eisenberg and Levanon 2003). The low overlap may be explained by 

44 several reasons. First, their complex transcriptional organization may cause diverse definitions of 

45 housekeeping genes (Gingeras 2007). Second, the expression of some housekeeping genes may 

46 vary depending on experimental conditions (Greer et al.2010). The question of why these genes 

47 vary across conditions awaits further investigations. Third, traditional techniques have their own 

48 drawbacks. For instance, the microarray technology has limited dynamic range and sensitivity, 

49 and also suffers from poor detectability and reproducibility for low-copy and transiently-

50 expressed genes (Marioni et al.2008; Fu et al.2009; Bradford et al.2010; Draghici et al.2006).

51

52 RNA sequencing (RNA-seq) data greatly improve the detectability of housekeeping genes. For 

53 example, the amount of human housekeeping genes revisited by the RNA-seq data has increased 

54 ten-fold the previous estimates based on microarray data (Eisenberg and Levanon 2013). With 

55 advances in technology, large-scale RNA sequencing has provided new insights into the 
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56 definition of housekeeping genes. Some studies have suggested that transcripts should be used as 

57 housekeeping units (Gingeras 2007; Gerstein et al.2007). 

58

59 The comparative analysis of housekeeping genes between human and other animals is of great 

60 interest. Human housekeeping genes are commonly used as control genes in the real-time 

61 quantitative polymerase chain reaction (qRT-PCR) for other animals. However, whether human 

62 genes can be used as references for other animals remains unclear. For instance, the most 

63 commonly used human reference genes (e.g. ACTB and GAPDH) do not always apply to all 

64 tissues of different organisms (Brattelid et al.2010; Kozera et al.2013). Therefore, to well define 

65 a housekeeping genes set in another animal may be valuable.

66

67 As an important meat resources for humans, the pig (Sus Scrofa) is a well-studied organism. And 

68 because of anatomical similarities with humans, the pig is often used as a biomedical model in 

69 research as well (Lunney 2007; Rolandsson et al.2002; Lee et al.2009; Becker et al.2010). 

70 Surveying pig housekeeping genes may help pave the way for a greater understanding basal 

71 mechanisms that maintain cell function. In the present study, we identified housekeeping genes 

72 in pig using the RNA-seq data, and then compared their structure and function with human 

73 orthologs. In addition, we discussed the impact of selection pressure and convergent evolution on 

74 functional conservation of housekeeping genes. The present study provided detailed information 

75 of pig housekeeping genes and their functional features, and offered insights into evolutionary 

76 dynamics on them.

77
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78 Materials and Methods

79 Data preparation

80 In order to define housekeeping gene sets, the gene expression datasets were downloaded from 

81 Sequencing Read Achieve (SRA) database of National Center for Biotechnology Information 

82 (NCBI, Sep, 2016) (Kodama et al.2012). In addition, pig genomic annotation (Sus Sscrofa10.2) 

83 was downloaded from the Ensembl Genome Browser (Sep, 2016) (Kinsellaet al.2011). The 

84 RNA-seq dataset of 14 experiments were used to identify housekeeping genes, which were 

85 derived from 21 tissues (heart, spleen, liver, kidney, lung, musculus longissimus dorsi, occipital 

86 cortex, hypothalamus, frontal cortex, cerebellum, endometrium, mesenterium, greater omentum, 

87 backfat, gonad, ovary, placenta, testis, blood, uterine and lymph nodes), containing a total of 131 

88 samples(Supplementary material1: Table S1 ). The SRA files were downloaded from the NCBI 

89 and then converted to fastq files using fastq-dump (Kodama et al.2012). RNA-seq reads were 

90 then filtered by IlluQC.pl (Patel and Jain 2012) while requiring an average read quality above 20, 

91 and then were aligned to pig genome sequence (Sus Sscrofa10.2) using Tophat (Trapnell et 

92 al.2009; Külahoglu et al.2014; Ghosh S, Chan et al.2016). The alignments were then fed to an 

93 assembler Cufflinks (Trapnel et al.2010) to assemble aligned RNA-seq reads into transcripts and 

94 estimate their abundances, which were measured in Fragments Per Kilobase of exon per Million 

95 fragments mapped (FPKM).

96 To define housekeeping genes

97 Housekeeping genes were defined according to the following criteria: (i) the transcripts could be 

98 detected in all 21 tissues; (ii) the transcripts showed low expression variance across tissues: P > 

99 0.1 (Kolmogorov-Smirnov test); (iii) no
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100 exceptional expression in any single tissue; that is, the expression values were restricted within 

101 the fourfold range of the average across tissues; and (iv) all transcripts of a housekeeping 

102 candidate gene met the above criteria. 

103 Structure analysis of housekeeping genes

104 The structure data of genes were taken from the Ensembl BioMart (Kinsella et al.2011). Human 

105 housekeeping genes were derived from the reference (Eisenberg and Levanon 2013), considering 

106 its similar type of data and stringency of the definition. We obtained 3,136 and 3,804 

107 housekeeping genes of pig and human, respectively. Length of various parts of housekeeping 

108 genes between them were compared by Mann-Whitney test (Table 1).

109 Gene ontology analysis of housekeeping genes

110 The analysis of functional annotations of housekeeping genes was performed using DAVID, ver. 

111 6.7, available on their website (Huang da et al.2009; Huang da et al.2009). All expressed genes 

112 in the data were used as background. Comparative analysis of housekeeping genes between 

113 human and pig was performed. The false discovery rates (FDR) were calculated to estimate the 

114 extent to which genes were enriched in GO categories (Ashburner et al.2000). Probabilities less 

115 than 0.01 were used as the cut-off value and considered to show significant level of the 

116 correlation. Heat map analysis was also conducted through DAVID outcomes to visualize a 

117 matrix of enriched GO.

118 Evolutionary feature analysis of housekeeping genes

119 The number of non-synonymous substitutions per non-synonymous site (dN) and the number of 

120 synonymous substitutions per synonymous site (dS) were estimated using the Nei-Gojobori 

121 method embedded in MEGA 7.0 (Z-test, P<0.05)(Kumar et al.2016; Nei and Kumar 2000). From 

122 the Scope row, select the Overall Average option. For the Gaps/Missing data treatment option, 
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123 select Pairwise Deletion. The genome sequence of orthologous genes were downloaded from 

124 Ensembl BioMart. The dN/dS ratios were calculated to assess selection pressure (Hurst 2002; 

125 Yang and Nielsen 2002; Dasmeh et al.2014). The information of active sites and zinc fingers of 

126 proteins were obtained from UniProt Knowledgebase (UniProtKB) (Boutet et al.2016; Pundir et 

127 al.2015). Species-specific housekeeping genes that have similar function were processed to 

128 search their active sites or zinc fingers.

129

130 Results 

131 Gene expression profile

132 To identify the housekeeping genes in pig, we surveyed the expression distribution of 30,585 

133 transcripts across 21 tissues of pig (see Methods, Figure 1, Supplementary material 1: Figure S1). 

134 The detectability of RNA-seq data was high, and only 116 transcripts undetected in the present 

135 study. The 226 transcripts showed tissue-specific expression(expressed in one tissue), whereas 

136 6072 transcripts was found broadly expressed in all tissues (Figure 1). This finding was 

137 consistent with the expression tissue-breadth of human genes (Zhu et al.2008; Eisenberg and 

138 Levanon 2013).

139

140 Identification of pig housekeeping genes

141 To obtain the transcripts with the ubiquitous expression level across pig tissues, we selected the 

142 transcripts detected in all tissues and then obtained 6072 candidates. The background differences 

143 between different sequencing projects result in batch effect between samples, including 

144 difference of sequencing depth and coverage. Therefore, we chose a single sequencing project to 

145 assess the uniformity of gene expression, which contains a larger sample size. Furthermore, the 
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146 expression uniformity of those candidates in ERP002055 sequencing project was tested by the 

147 Kolmogorov-Smirnov (K-S) test and then was accessed by the P-value of the test(Farajzadeh et 

148 al.2013). Figure S2 of Supplementary material 1 represents the frequencies of the candidates 

149 with the P-value being greater than the given cutoff. For about 67% of all candidates, the P-

150 values were above 0.1, implying their expression levels were not significantly varied across 

151 tissues and had a high level of the expression uniformity. Therefore, we defined the cutoff of the 

152 uniform level as P > 0.1 for the following analyses, which resulted in a list of 4068 unique 

153 transcripts, belonging to 3754 genes. The housekeeping gene was further restricted into the gene 

154 whose all transcripts passed the criteria. Altogether, the 3,136 genes passed the restriction 

155 (Supplementary material 2), about a third of which were unannotated.

156

157 Figure 2 shows the overlap of pig housekeeping genes identified in the present study with 

158 previously reported human housekeeping genes (Warrington et al.2000; Hsiao et al.2001; 

159 Eisenberg and Levanon 2003; Eisenberg and Levanon 2013). In order to more accurately 

160 describe the features, housekeeping genes were grouped into three sets of genes, namely, 

161 common housekeeping genes observed both in pig and human, human-specific and pig-specific 

162 housekeeping genes. We obtained 1,012 common, 2,792 human-specific and 2,124 pig-specific 

163 housekeeping genes, respectively.

164

165

166 Structure comparison of housekeeping genes between pig and human

167 The comparison of length distribution of total intron, 59 untranslated region (UTR) and coding 

168 sequence (CDS) in homologous housekeeping genes shows that pig genes dominates the fraction 
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169 of long length whereas human genes are prone to short length (Figure 3A - C). Furthermore, 

170 Table 1 compares the average lengths of various structures of the housekeeping genes that 

171 correspond to one another in pig and human. All structures of pig housekeeping genes were 

172 significantly longer than human9s (Table 1), which were consistent with the previous analyses of 

173 pig genomes (Groenen et al.2012), implying that different purifying selection pressures were 

174 applied between pig and human. Selective pressure may make gene as short as possible for 

175 reducing the cost in the transcription process (Ucker and Yamamoto 1984; Castillo-Davis et 

176 al.2002). 

177

178 Evolutionary dynamics of housekeeping genes

179 Evolutionary features of housekeeping genes may provide a deeper understanding for the 

180 evolutionary trend of housekeeping gene in different species. For the maintenance of essential 

181 function, housekeeping genes are thought to evolve more slowly than other genes (Zhang and Li 

182 2004). To survey that feature, the number of non-synonymous substitutions per non-synonymous 

183 site (dN), the number of synonymous substitutions per synonymous site (dS) and dN/dS ratio 

184 were calculated for pig and human housekeeping genes using mouse(Mus musculus) as outgroup 

185 (Supplementary material 3 and 4), respectively. Generally, synonymous substitutions occurred 

186 randomly and do not appear to change the gene function, but the non-synonymous substitutions 

187 occurred nonrandomly, which may change the function of housekeeping genes and suffer strong 

188 selection pressure (Nei and Kumar 2000, Kimura 1983).

189

190 The dN followed a power law distribution similar to that of the dN/dS (Figure 4A, 

191 Supplementary material 1: Figure S3A), displaying a relatively large number of genes with a few 

192 non-synonymous substitutions and a small fraction of genes with much more substitutions 
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193 (Figure 4A). In addition, most of the dN/dS ratios were lower than one, implying that purifying 

194 selection have acted on housekeeping genes to ensure the stability of most of genes9 function. 

195 The less the dN/dS ratio is, the stronger purifying selection is. Furthermore, purifying selection 

196 pressure on housekeeping genes were slightly stronger in human than in pig (Figure 4A, B).

197

198 The dN/dS ratios of common housekeeping genes showed no difference between pig and human, 

199 but the ratios of species-specific housekeeping genes were significantly lower in human than in 

200 pig (Mann-Whitney test, P < 0.05) (Figure 4B, Figure 5D). Furthermore, for both human and pig, 

201 the dN/dS ratios of common genes were significantly lower than species-specific genes (Figure 

202 5A for pig and Supplementary material 1: Figure S4 for human). This result suggested that 

203 common housekeeping genes suffered more stringent purifying selection to remove alleles than 

204 species-specific genes. 

205

206 On the other side, these results of the dN/dS (or dN) also implied that human housekeeping 

207 genes have evolved more stably than pig genes (Figure 5B-D). The dS of human species-specific 

208 genes were prone towards lower values than pig genes (Figure 5C), showing that human 

209 housekeeping genes have slower neutral evolution than pig housekeeping genes.

210

211 The dS followed an approximately normal distribution (Supplementary material 1ÿFigure S3B), 

212 occurring to be around a central value (0.77 and 0.63 in pig and human housekeeping genes, 

213 respectively). This finding implies the random tendency of synonymous substitutions. There was 

214 no statistic difference in the synonymous substitutions between common and species-specific 

215 genes within a species (Figure 5A for pig and Supplementary material 1: Figure S4 for human).
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216

217 In addition, considering the mouse is close to human and pig in phylogeny, and may be more 

218 close to human(Meredith et al. 2011). So, we also selected elephant (Loxodonta africana) as 

219 outgroup to calculate dN,dS, and dN/dS for pig and human housekeeping genes, 

220 respectively(Additional 5 and 6). Furthermore, all analyses of evolutionary dynamics were 

221 performed to verify foregoing results using elephant as outgroup, and the results is similar to the 

222 previous analysis of mouse as outgroup (Supplementary material 7). 

223

224 Associated function of housekeeping genes

225 We then characterized the housekeeping genes that enriched molecular function, biological 

226 process, cellular component, and disease, respectively, based on the Database for Annotation, 

227 Visualization, and Integrated Discovery (DAVID) program. The heat map shown in Figure 6 

228 illustrates the similar enrichment of housekeeping genes between pig and human. Briefly, 

229 housekeeping genes were predominantly detected as the genes associated with Gene Ontology 

230 (GO) terms related to basal metabolism that are indispensable for cellular physiology, indicating 

231 housekeeping genes are essential for basic physiological processes (Figure 6).

232

233 It was worth noting that many pig housekeeping genes were enriched in human diseases, 

234 especially in several cancers with high mortality rates: breast cancer, lung cancer and colorectal 

235 cancer (Figure 6D). This finding may be beneficial for studies of human disease (Tu et al.2006), 

236 given that pig may not have some human risk genes. For instance, alcohol-induced cirrhosis was 

237 enriched in human housekeeping genes, but not in pig.

238
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239 Functional convergence

240 Interestingly, the functional enrichment analyses showed a coherent trend in pig and human 

241 housekeeping genes although the low overlap of gene lists and the difference in gene structure 

242 between the two species were found. For example, for biological process, pig and human showed 

243 a slight difference in the GO term enrichment (Figure 6A). In addition, similar trends were also 

244 observed in the active molecules that related to basic metabolism and gene expression (Figure 6B 

245 and C). 

246

247 The above analysis revealed that functions of housekeeping genes between pig and human were 

248 consistent, implying that selection pressure may preclude the species-differentiation of 

249 housekeeping genes for the maintenance of basal cellular functions, especially for species-

250 specific housekeeping genes. To confirm this conjecture, we performed functional enrichment 

251 analysis for common and species-specific housekeeping genes, respectively. The heat map 

252 shown in Figure 7 illustrates the more similarity between two species-specific terms than 

253 between common and species-specific terms. These results indicated housekeeping genes 

254 suffered strong selection pressure for maintaining normal life activities, and human and pig 

255 species-specific housekeeping genes converged on the basal cellular function.

256

257 Mechanistic convergence

258 To understand the mechanistic constraints on the function of housekeeping proteins, we analyzed 

259 the evolutionary constraints on protein structure, active site feature and chemical reaction center. 

260 We found some similar active site features in housekeeping peptidases (Figure 8, Table 2), which 

261 reflected the intrinsic chemical constraints on enzymes, leading evolution to independently 

262 converge on equivalent solutions repeatedly (Buller and Townsend 2013; Dodson and Wlodawer 
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263 1998). The chemical and physical constraints on enzyme catalysis have caused identical triad 

264 arrangements in housekeeping peptidases in human-pig lineage, such as classical catalytic 

265 Ser/His/Asp triad and non-classical variants (Table 2). However, the peptide sequences and 

266 three-dimensional structure profiles of them were totally different (Figure 8A and B). Classical 

267 Ser/His/Asp catalytic triad is a universal phenomenon in the serine protease class (E.C. 3.4.21), 

268 where serine is the nucleophile, histidine is the general base or acid, and the aspartate helps 

269 orient the histidine residue and neutralize the charge that develops on the histidine during the 

270 transition states (Polgar 2005; Ekici et al.2008). Interestingly, almost all proteins in Table 2 

271 contained histidine as an active site to provide a proton receptor (Wang et al.2006). In addition, 

272 Cys/His and Glu/His/Asp in peptidases also evolved convergent; however, these active sites have 

273 rarely been mentioned in previous reports to our knowledge. 

274

275 Structural convergence

276 Moreover, many housekeeping proteins tended to form common zinc finger features involved in 

277 the regulation of gene expression (Figure 9, Supplementary material 1: Table S2 and S3). For 

278 example, C2H2 type is one of major zinc fingers in transcription factors (Wolfe et al.2000; Li et 

279 al.2004). This analysis of housekeeping protein structure and function revealed several 

280 interrelated and previously unrecognized relationships of structure3function constraints. These 

281 fundamental constraints have promoted the convergent evolution of housekeeping genes, 

282 especially for species-specific housekeeping genes and low homology genes.

283
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284 Discussion 
285 In the present study, we defined a set of pig housekeeping genes with a wide range of expression 

286 and low expression variation across tissues. The present set of housekeeping genes in pig showed 

287 lower overlap with a human set. Some housekeeping genes of human were not in our list, such as 

288 GAPDH and ACTB (Barber et al.2005;de Jonge et al.2007; Nygard et al.2007), thus whether 

289 human housekeeping genes can be used as reference controls for other species remains to be 

290 further verified. 

291

292 After divergence from common ancestor, pig and human have accumulated difference in the 

293 sequence and structure of housekeeping genes. On a molecular level, that can happen from 

294 random mutation, for example, the synonymous substitution. The dS distribution followed an 

295 approximately normal distribution, showing a random tend of synonymous substitutions. On the 

296 other side, the divergence was also related to adaptive changes. Human housekeeping genes were 

297 found to be shorter than pig genes (Figure 3A - C). The possible reason is food intake and stored 

298 energy is less in.human than pig, so the shorter structure is good for human to consume less time 

299 and cost in the process of gene expression (Ucker and Yamamoto 1984; Izban and Luse 1992). 

300 In addition, the stronger purifying selection in human comparing to pig (Figure 4A) might result 

301 in a lower degree of genetic redundancy as well (Zhang and Li 2004). In other words, human 

302 housekeeping genes would have evolved more stably than pig, because advantageous and stable 

303 living environment. Moreover, human and pig have evolved their own species-specific 

304 housekeeping genes, which might lead to the formation of the two species, allowing 

305 differentiated fixation of characteristics. In addition, purifying selection is stronger in common 

306 than in species-specific housekeeping genes and show some differences in GO enrichment. This 

307 may indicate common housekeeping genes were more indispensable than species-specific and 
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308 involve more functions for sustain life. Such as GTF2H1 (general transcription factor IIH subunit 

309 1) and CXXC1 (CXXC finger protein 1) in common are crucial for regulation of many of gene 

310 expression(Shiekhattar et al.1995; Andersen et al.2001), but in species-specific housekeeping 

311 genes were not enrichment.

312

313 However, although human and pig have been divergent for millions of years, both species 

314 independently converged towards similar features of housekeeping genes. One of the most 

315 unexpected observations stemmed from species-specific housekeeping genes. The GO 

316 enrichment analysis revealed that pig-specific and human-specific housekeeping genes have 

317 similar functions. In addition, some housekeeping proteins evolved independently to have similar 

318 active sites, sidechains, catalytic centers or binding sites to complete similar catalytic reaction or 

319 molecular function (Buller and Townsend 2013; Polgar 2005; Ekici et al.2008; Brannigan et 

320 al.1995; Chen et al. 2008; Klug 2010; Klug 1999; Hall 2005; Brown 2005), although these 

321 proteins showed very low homology with each other. They have "converged" on the maintenance 

322 of basic cellular functions, which led to equivalent solutions for adapting to the environment 

323 (Nielsen 2005; Hurst 2009). Functional similarity across species may be caused by adaptive 

324 evolution (Zhang and Li 2004; Kimura 1983), which drive different species-specific genes to 

325 perform similar essential functions, regardless of its specific role in species.

326

327 As known, it is still under investigation to attain large-scale gene expression profile. The current 

328 transcriptome sequencing data in pig may be inadequate to meet the requirement to define the 

329 housekeeping genes. The accurate definition of housekeeping genes is still an unresolved issue. 

330 Therefore, the present set of pig housekeeping genes had limitations, but it successfully offered 
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331 some instances, the characteristics of which were similar to those reported in previous studies. 

332 As new technologies emerge, high-quality deep-sequencing transcriptome profiling data may 

333 open up opportunities to improve the stringency in defining housekeeping genes and narrowing 

334 the catalog of housekeeping genes that are expressed in a single cell (Tang et al.2009). 

335 Furthermore, the advancement of statistical methods will greatly improve housekeeping gene 

336 detection. More specifically, the concept of "housekeeping" or "maintenance" should be defined 

337 in a hierarchical way related to cell types, growth stages, cell cycles as well as various 

338 physiological conditions, and in terms of specific transcript variant (Zhu et al.2008). Thus, we 

339 will be able to observe several sets of housekeeping genes in a single species. In addition, more 

340 stringent sets of housekeeping genes will also provide powerful support for structural and 

341 functional genomics, especially to analyze the cellular basal function of different species (Kumar 

342 and Hedges 1998; Meredith et al.2011; Kumar et al.2002).

343 Conclusions 
344 The present study offered insight into the general aspects of housekeeping gene structure and 

345 evolution. Diverging from the ancestor of human and pig, housekeeping genes have varied in 

346 gene structure and gene list, but they have converged on the maintenance of basic cellular 

347 function that are essential for the existence of a cell, regardless of their specific role in species. 

348 The results in the present study will shed light on the evolutionary dynamics of the housekeeping 

349 genes.
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Figure 1(on next page)

The number of tissues where a given transcript was detected.

The expression breadth (horizontal axis) denotes the number of tissues where a given

transcript was detected. The zero value of the expression breadth indicates undetected

transcripts.
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Figure 2(on next page)

Overlap of housekeeping genes between pig and human.

Overlap of pig housekeeping gene set identified in the present study(A) with three human

gene sets identified by microarray data (Warrington et al.2000; Hsiao et al.2001; Eisenberg

and Levanon 2003) and (B)with a human set identified by RNA-seq data (Eisenberg and

Levanon 2013).
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Figure 3(on next page)

Comparison of length distribution of homologous housekeeping gene structures

between pig and human.

nt, nucleotide(s); 59UTR, 59untranslated region (UTR); CDS, coding sequence.
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Figure 4(on next page)

Purifying selection on housekeeping genes.

(A) The distribution of the dN/dS ratio. (B) The dN/dS ratios of total (all HK), common (co-HK)

and species-specific (sp-HK) housekeeping genes were compared between pig and human

(Mann-Whitney test, * denoted P < 0.05), respectively.
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Figure 5(on next page)

Comparison of evolutionary features of housekeeping genes.

(A) The dN, dS and dN/dS of all, common and species-specific of pig housekeeping genes

were compared based on the Mann-Whitney test, respectively. All such means which share a

common English letter are similar; otherwise, they differ significantly at p < 0.05. (B) - (D)

Distributions of dN, dS and dN/dS of species-specific housekeeping genes in pig and human.
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Figure 6(on next page)

Functional enrichment analysis for housekeeping genes.

Housekeeping genes were enriched in GO categories of (A)biological process, (B) cellular

component, (C) molecular function, (D) molecular functions . The basal cellular function

between pig and human showed high consistency. (A) (1) Biological process categories

included the basal metabolism, (2) regulation of metabolic processes, (3) cellular transport,

(4) cell cycle, (5)gene expression and regulation. (B) (1) Cellular component categories

included organelle, (2) nuclear, (3) micromolecular complex. (C) (1) Molecular function

categories included catalytic activity, (2) transcription factor activity, (3)binding activity, (4)

transporter activity. (D) (1) Disease categories included tumour, (2) cancer, (3) chromosomal

damage and repair, (4) other disease.
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Figure 7(on next page)

Comparison of functional enrichment analysis.

When we compared functional enrichment, common housekeeping genes (co-HK) showed

significant difference with species-specific housekeeping genes (sp-HK), but the sp-HKgenes

between pig and human showed very high consistency. (A) (1) Biological process categories

included the basal metabolism and regulation, (2) cellular transport, (3 )gene expression and

regulation, (4) nuclear division. (B) (1) Molecular function categories included catalytic

activity, (2 )transcription factor activity, (3) binding activity, (4) transporter activity.
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Figure 8(on next page)

Structures of the <classical= Ser/His/Asp triad configuration.

(A) Serine protease HTRA4 from pig. (B) OTU domain-containing protein 5 from human. A

zoomed-in view of the catalytic domain is shown to the right of each structure. The side

chains of Ser/His/Asp triad are shown in principle.
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Figure 9(on next page)

Convergent evolution of regulatory proteins towards forming common zinc finger.

The number of zinc fingers per gene was standardized through dividing the number of each

type of zinc finger by the number of proteins containing the zinc finger.
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Table 1(on next page)

Comparison of housekeeping genes between pig and human

a The length is measured in nucleotides. b The value gives the average and standard error of

mean. c The p-value was calculated based on the Mann-Whitney test. UTR, untranslated

region; CDS, coding sequence.
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1 Table 1 Comparison of housekeeping genes between pig and human

2
a The length is measured in nucleotides. b The value gives the average and standard error of mean. 

3
c The p-value was calculated based on the Mann-Whitney test. UTR, untranslated region; CDS, 

4 coding sequence.

5

Structure Pig Human P-value c

Total intron length a 28,108±173 b 21,062±297 1.5e-105

5' UTR length 156±3 125±1.5 3.7e-34

3' UTR length 658±13 549±5 1.4e-73

Average exon length per gene 261±3 227±1 1.8e-6

CDS length 2,181±10 1,460±5 8.7e-234

Transcript length 3,312±13 2,200±5 7.7e-7

Number of exons 9.2±0.1 8.8±0.2 1.7e-4
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Table 2(on next page)

Active site of convergently related peptidases.

a the number following amino acid represents the position of the amino acid in protein.
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1 Table 2 Active site of convergently related peptidases

Species Gene Protein Nucleophile a General base Other active site 

residues

BLMH Bleomycin hydrolase Cys73 His372 Asn396

AFG3L2 AFG3-like protein 2 Glu575 His574 Asp649

HTRA4 Serine protease HTRA4 Ser326 His218, Asp248

Pig

CAPN7 Calpain-7 Cys290 His458 Asn478

OTUD5 OTU domain-containing protein 5 Ser224 His334 Asp221

SENP6 Sentrin-specific protease 6 Cys1030 His765 Asp917

USP14 Ubiquitin carboxyl-terminal hudrolase 14 Cys114 His435

Human

LONP1 Lon protease homolog, mitochondrial Ser855 Lys898

2
a the number following amino acid represents the position of the amino acid in protein.

3
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