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Finding useful patterns in datasets has attracted considerable interest in the field of visual

analytics. One of the most common tasks is the identification and representation of

clusters. However, this is non-trivial in heterogeneous datasets since the data needs to be

analyzed from different perspectives. Indeed, highly variable patterns may mask

underlying trends in the dataset. Dendrograms are graphical representations resulting

from agglomerative hierarchical clustering and provide a framework for viewing the

clustering at different levels of detail. However, dendrograms become cluttered when the

dataset gets large, and the single cut of the dendrogram to demarcate different clusters

can be insufficient in heterogeneous datasets.

In this work, we propose a visual analytics methodology called MCLEAN that offers a

general approach for guiding the user through the exploration and detection of clusters.

Powered by a graph-based transformation of the relational data, it supports a scalable

environment for representation of heterogeneous datasets by changing the spatialization.

We thereby combine multilevel representations of the clustered dataset with community

finding algorithms. Our approach entails displaying the results of the heuristics to users,

providing a setting from which to start the exploration and data analysis.

To evaluate our proposed approach, we conduct a qualitative user study, where

participants are asked to explore a heterogeneous dataset, comparing the results obtained

by MCLEAN with the dendrogram. These qualitative results reveal that MCLEAN is an

effective way of aiding users in the detection of clusters in heterogeneous datasets. The

proposed methodology is implemented in an R package available at

https://bitbucket.org/vda-lab/mclean
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ABSTRACT10

Finding useful patterns in datasets has attracted considerable interest in the field of visual analytics.

One of the most common tasks is the identification and representation of clusters. However, this is

non-trivial in heterogeneous datasets since the data needs to be analyzed from different perspectives.

Indeed, highly variable patterns may mask underlying trends in the dataset. Dendrograms are graphical

representations resulting from agglomerative hierarchical clustering and provide a framework for viewing

the clustering at different levels of detail. However, dendrograms become cluttered when the dataset

gets large, and the single cut of the dendrogram to demarcate different clusters can be insufficient in

heterogeneous datasets.
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In this work, we propose a visual analytics methodology called MCLEAN that offers a general approach

for guiding the user through the exploration and detection of clusters. Powered by a graph-based trans-

formation of the relational data, it supports a scalable environment for representation of heterogeneous

datasets by changing the spatialization. We thereby combine multilevel representations of the clustered

dataset with community finding algorithms. Our approach entails displaying the results of the heuristics to

users, providing a setting from which to start the exploration and data analysis.
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To evaluate our proposed approach, we conduct a qualitative user study, where participants are asked

to explore a heterogeneous dataset, comparing the results obtained by MCLEAN with the dendrogram.

These qualitative results reveal that MCLEAN is an effective way of aiding users in the detection of clusters

in heterogeneous datasets. The proposed methodology is implemented in an R package available at

https://bitbucket.org/vda-lab/mclean.
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INTRODUCTION30

Determining the number of clusters in a dataset is a frequent problem in data clustering, and is a distinct31

matter from the algorithm of actually solving the clustering problem. The correct choice of the number of32

groups is often ambiguous depending on the shape and scale of the points in a dataset and the desired33

clustering resolution by the user. The optimal choice of clusters depends on the intended use, but in34

general, it strikes a balance between the maximum compression using a single cluster and the highest35

resolution of the data by assigning each data point to its own cluster.36

Several clustering algorithms have been proposed for partitioning datasets (Jain et al., 1999). Most of37

these rely on parameter settings, such as the number of clusters in k-means, the reference value (ε) in38

DBSCAN or the cutoff distance in a hierarchical clustering. These parameters differ from the algorithm,39

but either directly or indirectly specify the number of clusters. Setting these parameters demands either40

detailed pre-existing knowledge of the data or time-consuming trial and error. Moreover, a singular cutoff41

can hide interesting underlying structures. In the real world, there might not be an single sensible cutoff,42

and it is common that automatic clustering methodologies ignore particular characteristics of clusters, as43

some of these might be for example particularly dense or sparse.44

As Boudjeloud-Assala et al. (2016) state, ”the clustering process is not complete until it is evaluated,45

validated, and accepted by the user. As such, visual validation and exploration can improve understanding46

of clustering structure, and can be very effective in revealing trends, highlighting outliers, and showing47
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clusters”. Visualizing clustering results can help to quickly assimilate the information and provide48

insights that support and complement textual outputs or statistical summaries. Typical questions to be49

answered regarding clustering results include how well defined the clusters are, how far away they are50

from each other, what their size is, and if the observations belong strongly to the cluster or only marginally.51

Therefore the exploration of the different cluster scenarios and the identification of similar record groups52

(i.e., patterns) in the dataset is a challenge for the user (Vogogias et al., 2016).53

Hierarchical clustering is a widely used and effective algorithm to answer these questions, as it54

provides a framework for viewing the clustering at different levels of detail by imposing a hierarchy on55

it using a tree (Friedman et al., 2001). During the cutoff selection process of the tree, the analyst can56

instantly obtain insights from the graphical representation that suggest the adequacy of the solution but57

hierarchical clustering does have some drawbacks: (1) the dendrogram representation becomes cluttered58

when datasets get large; (2) a single cut of the dendrogram is sufficient when the dataset is homogeneous.59

However, when the dataset is heterogeneous, multiple cuts at different levels might be required. (3) If60

patterns are present at different levels, choosing a cutoff will hide all but one of these.61

Clustering methods often are a fixed process: loading a dataset, setting parameters, running the62

algorithm, and plotting the results. In other words: clustering is used generally to analyze the data, not63

to explore it (Boudjeloud-Assala et al., 2016). The integration of visualization and algorithm into the64

same model is a possible solution to make the clustering process dynamic. The framework to perform65

interactive visual clustering (IVC) presented by Boudjeloud-Assala et al. (2016) demonstrated a significant66

advantage in data mining since it allows users to participate in the clustering process by leveraging their67

visual perception and domain knowledge. As recommended by Keim et al. (2010), we believe that if we68

adapt the visualization environment and combine it with the clustering approach, this combined approach69

can be used to provide a very natural way for users to explore datasets.70

We suggest a novel and generic clustering and exploration approach called MCLEAN (Multilevel71

Clustering Exploration As Network) for grouping and visualizing multiple granularities of the data that72

enables: (1) exploration of the dataset using a overview-plus-detail representation, (2) simplification of73

the dataset using aggregation based on the similarity of data elements, (3) detection of substructures by74

means of community detection algorithms, and (4) inclusion of the human in the process of selection75

the number of clusters. Our methodology follows a synergistic approach that combines the strengths of76

connectivity-based algorithms, community detections techniques and the ability of humans to visually77

detect patterns, to explore moderately large datasets. It is a visual exploratory and clustering method78

that permits the user to interact with the algorithm results. The method combines hierarchical clustering79

algorithms with interactive tools to find optimal clusters and visualize them in a simplified network80

representation. Network visualizations are an effective means to understand the patterns of interaction81

between entities, to discover entities with interesting roles, and to identify inherent groups or clusters82

of entities (Liu et al., 2014). The MCLEAN methodology is implemented in an R package available at83

https://bitbucket.org/vda-lab/mclean.84

The remaining part of this paper is organized as follows. In the section Background we give an85

overview of related work in multilevel clustering and graph visualization techniques as an exploratory86

tool. The section Methods describes the proposed visualization technique for clustering exploration in87

detail, followed by the section Evaluation, in which we present an evaluation of our approach. Finally, the88

section Conclusions and Future Work presents conclusions and possible directions for future work.89

BACKGROUND90

The proposed framework allows the user to employ tacit knowledge in the clustering process in order91

to detect substructures. This process provides a multilevel environment through overview-plus-detail92

offering both a general outlook of the data grouping and the precise union of a subset of elements using93

graphs. To set our work in context, we present a set of examples of visual multilevel clustering and the94

network transformation of data to identify patterns.95

Visual multilevel clustering96

There are several methods to perform clustering analysis, but only a few of them support visual analysis.97

Even fewer provide interactive exploration capabilities of the clusters in different levels of detail. However,98

the importance of visual interaction for performing clustering analysis is increasingly recognized (Nielsen99

et al., 2012), as the expert users are capable of steering the analysis to produce more meaningful results.100
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The tacit knowledge often motivates the decisions of the users that algorithms are not able to process or101

incorporate by themselves. Therefore, including a human in the loop for taking decisions and for guiding102

the analysis is essential (Vogogias et al., 2016).103

Hierarchical clustering has been long used in many different fields including biology, social sciences,104

and computer vision due to the ease of interpreting the output by the user. The selection of the clusters is105

based on a single similarity threshold, where the tree is cut at a uniform height. Unfortunately, large and106

heterogeneous datasets usually require a more flexible approach allowing the user to explore different107

clustering scenarios. Some methods have been proposed to cut the tree at different levels. Langfelder et al.108

(2007) suggested an automatic approach that cuts the branches of the dendrogram in different levels based109

on their shape. Obulkasim et al. (2015) proposed a procedure to detect clusters from the dendrogram,110

called guided piecewise snipping. The method overcomes the drawbacks of the fixed height cut approach111

by allowing the piecewise rather than the fixed-height cut and incorporating external data to decide upon112

the optimal cut. In the same line of research, MLCut (Vogogias et al., 2016) is a tool that provides visual113

support for exploring dendrograms of heterogeneous data sets at different levels of detail.114

Partition-based clustering techniques such as k-means and CLARANS (Ng and Han, 2002) attempt to115

break a data set into k clusters optimizing a given criterion. Boudjeloud-Assala et al. (2016) presented a116

semi-interactive system for visual data exploration of multidimensional datasets using iterative clustering.117

Their framework connects the user and the data mining process, which allows the user to play an active118

role in the clustering tasks. Looney’s approach (Looney, 2002) implements a process of removing small119

clusters in an iterative way, reassigning them into more dense regions. In doing this, consistency in the120

clustering results is improved. Similary, Bruneau and Otjacques (2013) proposed an approach to integrate121

user preferences into the clustering algorithm in an interactively way through 2D projection of the dataset.122

Rinzivillo et al. (2008) proposed an exploratory methodology for exploring a large number of trajectories123

using clustering techniques. The grouping of the trajectories is progressively applied by the users refining124

the parameters of the clustering algorithm.125

Graph representation126

The dendrogram visual representation is not scalable to larger datasets. A technique presented by Chen127

et al. (2009) uses a uniform threshold to provide improved visibility by simplifying the dendrogram128

representation. This is a useful technique for summarising the dendrogram in a selected level of detail129

and making it fit in smaller displays. However, it does not provide support for multilevel cuts or data130

exploration at multiple levels.131

Given a matrix whose entries represent the similarity between data items, many methods can be used132

to find a graph representation. In fact, modeling data items as a graph is a common conceptualization133

used in hierarchical clustering algorithms. In a more general approach, Ploceus (Liu et al., 2014) offers134

an approach for performing multidimensional and multilevel network-based visual analysis on tabular135

data. Users can flexibly create and transform networks from data tables through a direct manipulation136

interface. Ploceus integrates dynamic network manipulation with visual exploration for a seamless137

analytic experience.138

The WhatsOnWeb system (Di Giacomo et al., 2007) takes advantage of graph-based visualization139

created by the results of a Web search engine. In their system, a search query produces a graph that140

represents sets of Web pages as nodes, which are connected if documents are sufficiently semantically141

related. The strength of the relationship is encoded with an edge weight and a topological clustering142

algorithm is recursively applied to the graph, forming a graph hierarchy and showing different levels of143

information.144

Systems presented for clustering and exploration in Duman et al. (2009), Desjardins et al. (2007),145

Beale (2007) and, Lee et al. (2012) transform the data into a spring-embedded graph layout, encoding the146

distance between the elements as forces in the force-directed layout. The objective in these systems is the147

projection of the distances in a reduced dimension allowing clustering assignment using partitioning-based148

methods. Links are usually omitted in the representation facilitating the readability of the spatialization of149

the nodes. They present an alternative to standard dimension reduction methods such as projection pursuit150

or multi-dimensional scaling.151

The network exploration of MCLEAN can be considered close to the solutions proposed for the152

navigation of the clustering results for large-scale graph visualization systems, such as Eades and Feng153

(1996) and Eades and Huang (2000). They allow the user to navigate a graph by iteratively expanding154
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or collapsing the aggregated nodes (meta-nodes). However, users often lose context when navigating155

clustered graphs with deeper hierarchies (Abello et al., 2006).156

METHODS157

The MCLEAN method takes a similarity matrix of all data records as input, and produces a simplified158

graph representation showing a higher abstraction of the clustering process. MCLEAN combines two159

visual representations. First, an overview plot (barcode-tree), related to a dendrogram and topological160

barcode plot, shows how the general cluster structure changes for different values of a parameter ε ,161

indicating how close points need to be in the multi-dimensional space to be considered belonging to the162

same cluster. Second, a node-link plot represents the clustering results at a given ε . For this ε , clustering163

information in the node-link diagram is dual-layered. First, graph connected components correspond to164

data clusters at this threshold ε . Second, different colours within a connected component indicate that this165

subnetwork would be split when using a more stringent ε ; in other words, it indicates substructures in this166

cluster.167

A connected component is a subgraph in which all the vertices are directly or indirectly connected. We168

use connected components to define the clusters in the dataset. In addition, MCLEAN employs community169

detection algorithm to find subclusters inside connected components. As a result, user knowledge (tacit or170

other) can inform on whether a cluster is distinct or is a part of a larger cluster. This ambiguity is common171

in heterogeneous data sets.172

As most of the clustering techniques, the agglomerative algorithm that we use depends on one single173

parameter. This parameter is a threshold (ε) that defines the distance of union between two data elements.174

We find similarities between the MCLEAN approach and topological data analysis (TDA). Analyzing the175

multidimensional spaces from a topological structure perspective, interpreting the persistent homology176

by calculating the number of connected components (b0 from betti numbers) and using the persistence177

concept to define the optimal threshold of network representation prove that although the aims are distinct178

they share a same philosophy of analysis (Topaz et al., 2015).179

The MCLEAN method consists of four parts as illustrated in Figure 1: (1) transformation of the180

distance matrix into a node-link representation based on the threshold defined; (2) simplification of181

the network creating aggregated nodes; (3) detection of substructures employing community detection182

algorithms; and (4) exploration of the resulting networks for different threshold values.183

The methodology in this section is illustrated using a dataset taken from the UCI repository website184

(see Figure 2). This dataset contains 600 examples of control charts synthetically generated as described185

by Alcock and Manolopoulos (1999). We used Dynamic Time Warping (DTW) for measuring similarity186

between the temporal sequences. Figure 2 illustrates both representations of the raw data (Figure 2A and187

B) and classical visualizations of the distance matrix such as the dendrogram (Figure 2C) and a scatterplot188

of the two first dimensions of multidimensional scaling (Figure 2D).189

Graph transformation190

Multidimensional Scaling (MDS) projects the data elements in reduced dimension ordination space.191

Two or three dimensions are often used, which is based on ease of visualization rather than on the192

dimensionality of substructures in the data. Unfortunately, in some cases, these projections blur patterns193

due to the heterogeneity of the distances and the limitations of the space visualized. Therefore, a change194

to the spatialization (such as network visualization) can help to overcome the limitations of complex195

datasets. An example of these weaknesses can be seen in the MDS applied to the Synthetic dataset in196

Figure 2D.197

Although the distance matrix does not contain explicit network semantics, MCLEAN uses this198

approach to transform the encoding of distances by the use of links in the network. Moreover, the199

algorithm employed in the final drawing of the network (i.e. force-directed graph) is optimized to avoid200

overlapping between the nodes.201

The graph transformation step of MCLEAN is similar to the DBSCAN method (Ester et al., 1996), in202

that it relies on a parameter ε which defines the radius that designates points to be lying in each other’s203

neighbourhood. In DBSCAN, a second parameter numPts is used to define the minimal number of points204

that can constitute a cluster. In MCLEAN, however, all datapoints are considered network nodes, and205

datapoints that are within a distance ε from each other are linked. The result of this step produces a graph206

where there exists a path between two nodes if and only if they belong to the same connected component.207
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Figure 1. Workflow diagram of MCLEAN algorithm, consisting of four steps: [1] graph transformation,

[2] node aggregation, [3] community detection and, [4] barcode-tree creation.

At this stage of the methodology clusters are represented as connected components in topological space.208

Figure 3 shows the graph transformation process for four snapshots of different parameters ε applied to209

the same dataset. As ε increases, the number of links grows between the nodes.210

Node aggregation211

In case of large datasets, the node-link representation can become visually overwhelming for the user212

without a proper level of aggregation. The challenge is to extract understandable information buried in213

the structure of multiple nodes and links. In addition, a layout of the entire graph is costly to compute.214

MCLEAN simplifies and highlights the structure of the raw network. This process of simplification is215

founded on the use of aggregating nodes (meta-nodes) that represent a subgraph at a higher level of216

abstraction.217

Node aggregation is based on degree centrality, where the degree of a node is defined as the number218

of connections that the node has within a network. This value is computed for all nodes, and the highest219

one is the first candidate to be the center of an aggregated node (meta-node). All nodes connected directly220

with the candidate are converted into an aggregated node. All connections with other data elements221

are inherited in the meta-node keeping the structure of the connected component. The result of node222

aggregation for the graphs created in Figure 3 is shown in Figure 4.223

Our simplification graph approach was designed to preserve the structure of the input graph. According224

to Archambault et al. (2008), a topologically preserving graph must respect the following two properties:225

1. Edge Conservation: An edge exists between two meta-nodes m1 and m2 if and only if there exists226

an edge between two leaves in the input graph l1 and l2 such that l1 is a descendant of m1 and l2 is227

a descendant of m2.228
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Figure 2. Representation of a synthetic dataset that contains 600 examples of control charts synthetically

generated by the process in Alcock and Manolopoulos (1999). (A) Time series are treated as a unique

group. (B) Underlying (hidden) time series are split by their label. (C) Dendrogram using single linkage.

(D) Two first dimensions of classical multidimensional scaling. Color represents the label in the dataset.

Figure 3. Node-link network transformation using force-directed layout from the distance matrix using

a distance threshold of 150 in part A, 190 in part B, 220 in part C and, 290 in part D. All data elements

are represented as a node in the network. Edges are defined based on the threshold.

2. Connectivity Conservation: Any subgraph contained inside a meta-node must be connected.229

By respecting these two properties, we ensure that the resulting graph preserves the topological230

features of the initial graph: edge conservation guarantees that any edge in the simplified graph is present231

in the initial graph, while connectivity conservation ensures that any path can continue through any232

meta-node (Archambault et al., 2009).233

In MCLEAN, meta-nodes are created through the densest nodes (highest degree) in a connected234

component. The node with the highest degree is the best candidate to be the center of the meta-node.235

Figure 5A shows an illustration of a connected component where node eight is the best candidate. All236

nodes connected directly to the best candidate become part of the meta-node as shown in Figure 5B.237

A meta-node inherits the edges with the external nodes or meta-nodes that do not belong to it. The238

aggregation is an iterative process until all nodes become part of a meta-node. Aggregated nodes are239

excluded from the process preventing them to be included into another meta-node. For example node ten240

is part of the meta-node of node eight. Therefore, it cannot be included in or be a candidate for a new241

meta-node although it has the same degree as four and fourteen in Figure 5B. The number of connected242

components or clusters does not change after the simplification process. Figure 5D show the result of the243
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Figure 4. Network representation of the clustered dataset using a parameter ε of 150 in part A, 190 in

part B, 220 in part C and, 290 in part D. This representation preserves the same structure shown in

Figure 3.

node aggregation process.244

Figure 5. Illustration of node aggregation process for a set of fifteen elements.

Community detection245

The simplified network representation (Figure 4) preserves structural data in a compressed way, which246

together with community detection allows revealing substructures inside connected components. A247

community refers to a group of nodes that are internally highly connected. Community detection in248

networks is not a trivial problem, and many algorithms have been proposed. MCLEAN relies on the249

Infomap algorithm (Information-theoretic method) (Rosvall and Bergstrom, 2008), which provides250

multilevel solutions for analyzing undirected, directed, unweighted, and weighted networks. In MCLEAN,251

the number of data elements in each simplified node is used as vertex weight in the Infomap algorithm252

to reduce the effect of aggregation. Different communities in a single connected component are shown253

in different colors. Figure 6 shows the networks created after graph transformation (Figure 3) and node254

aggregation (Figure 4) applying the results of community detection. Prevalence of communities increases255

with network size, as shown in Figure 6 where part A does not reveal any substructure but part D shows256

three in a single connected component.257

Figure 6. Network representation of the clustered dataset using the distance threshold of 150 in part A,

190 in part B, 220 in part C and, 290 in part D. Communities are detected through Infomap. The coloring

of nodes illustrates the communities detected by the algorithm.
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Barcode-tree258

As indicated above, the generated connected components depend on the value of parameter ε , as can be259

seen in the four subplots in Figure 3. In general, the network consists of isolated vertices for small values260

of the threshold. At the largest value, the entire dataset is a single connected component. The selection261

of a representative threshold without prior knowledge of the underlying space is however difficult for262

any dataset. In addition, heterogeneous datasets may need multiple levels of partitions and therefore will263

require the exploration of multiple thresholds.264

In order to provide guidance in the parameter choice and a contextual overview of the relation265

between ε and clustering results, MCLEAN generates these graphs across a range of ε values. These266

are subsequently combined in the tree representation called barcode-tree, which is inspired by both a267

clustering dendrogram and barcode representation (Topaz et al., 2015) as used in topological data analysis.268

The barcode-tree (Figure 7) is a visual representation of cluster arrangement. The horizontal axis269

corresponds to threshold ε and refers to the distance measure of union between the data elements that270

define the network (see Graph transformation section). The individual components are arranged along271

the vertical axis of the plot. At any given threshold, the number of connected components is the number272

of lines that intersect the vertical line through the threshold. Meta-nodes are formed in the join points273

that are aggregations of individual data elements or existing meta-nodes at a smaller threshold (see Node274

aggregation section). This tree overcomes the limitations of binary structure of a dendrogram, allowing275

for a more clear representation of branches. Moreover, the barcode-tree implements a leaf ordering276

method motivated by the MOLO algorithm presented by Sakai et al. (2014). The branches are evaluated277

backwards recursively (from the single cluster until the singleton) to be the center of the subtree at each278

threshold avoiding the crossing of the branches.279

Meta-nodes for a small threshold are aggregated into new ones created by the larger threshold: if280

ε1 ≤ ε2 ≤ ε3 ≤ ...≤ εN−1 ≤ εN then M1 ⊆ M2 ⊆ M3 ⊆ ...⊆ MN−1 ⊆ MN with Mi being the meta-nodes281

in network i. If the user is interested in understanding the structure of the input data, then topological282

hierarchies are useful tools to explain the origin of all edges viewed in a cut. Both the objective for the283

barcode-tree view in MCLEAN and the barcode in TDA is to find the persistent topological structures284

across a range of thresholds. Those structures which persist over an extensive range are considered285

signals of the underlying topology. As the threshold changes, the topological structures of network change286

accordingly.287

Figure 7. Barcode-tree for a sequence of thresholds from 0 to 300 by steps of 5 using gradient color to

represent the number of communities for each connected component.

In Figure 7, we see the representation of the connected component for the range of ε from 0 to 300.288

For ε = 100, we see 600 connected components because there are no connections amongst the individual289

elements in the dataset. For ε = 220, we see a big connected component and a significant subset of290

individual elements, reflecting the fact that some vertices have joined into a larger connected component.291

For ε = 290, we see a single connected component that indicates the joining of all data elements.292

The resolution of the plot depends on the number of evaluations, showing a general overview with only293

a few thresholds (Figure 8E) or allowing detailed understanding of connected component composition294
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with a more dense covering of thresholds (Figure 8A).295

Although the exploration of the connected components path around a threshold of interest can give an296

intuition of the resulting network, the analysis of the connected components using the network representa-297

tion (Figure 6) is a necessary step to identify hidden substructures using only the tree representation. For298

example, at threshold 290 in Figure 7, we identify a single connected component. However, we identify299

more details in the structure of the network at Figure 6D.

Figure 8. Set of five curves of connected components vs. threshold distance according to different

granularities. A barcode-tree for the range of ε (0 to 300) by steps of 1, B by steps of 2, C by steps of 5,

D by steps of 10 and, E by steps of 15 and. F by steps of 20.

300

EVALUATION301

To understand the implications of the proposed methodology and the interaction between the visuals, we302

performed a qualitative evaluation regarding learnability and usability of MCLEAN. We recruited six303

participants, including four doctoral and two post-doctoral researchers in the area of data science with304

knowledge of clustering techniques (e.g. hierarchical or k-means clustering) and dimensionality reduction305

techniques (e.g. multidimensional scaling and PCA). None had seen or used MCLEAN before the306

evaluation test. The goal of the evaluation was to identify qualitative insights about how well MCLEAN307

supports the identification of patterns according to the simplification of the dataset.308

Tasks and procedures309

We gave a brief introduction to MCLEAN, explaining the fundamentals of the methodology and demon-310

strating the main functionalities of the interface developed to interact with the network and barcode-tree311

including the bidirectional selection of elements between the two visuals (see Figure 2). A training312

exercise was performed to familiarize the participants with the MCLEAN workflow using the Fisher313

Iris dataset (Fisher and Marshall, 1936). We asked the participants to explore the general patterns in314

the barcode-tree and specific topological structures utilizing the network representation and community315

finding results. We repeated the exercise for the actual evaluation over the control charts dataset, ex-316

plaining only that it concerned time-series data. We asked the participants to think aloud, observed their317

interaction with the interface, recorded their patterns selection as hand-written notes, and sought their318

impressions and comments on the methodology after they completed the tasks. To conclude we asked319

them to complete a questionnaire to evaluate the efficacy and their satisfaction of MCLEAN compared to320

dendrogram. We also sought to know how difficult the methodology was to learn and use, if there were321
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any problematic design issues, and how we might be able to address the difficulties experienced by the322

participants.323

Results and analysis324

The evaluation exercise was split into three parts: detection of patterns using the barcode-tree, selection325

of thresholds comparing the dendrogram and barcode-tree, and detection of patterns combining the326

network representation and barcode-tree. After the exercise, the questionnaire was provided to obtain user327

satisfaction and additional feedback.328

Detection of patterns using the barcode-tree329

In a first evaluation, we sought to identify to what extent participants are able to identify the different330

underlying patterns as shown in Figure 2B. Five participants (participants A-E) identified four different331

patterns in the temporal dataset using the barcode-tree exclusively for the range of ε 0 to 300 by steps of332

5 (Figure 7). Participant F identified two patterns using the same representation, grouping pattern A1, A2333

and A3 as a single pattern and pattern A4 independently from the rest (see Figure 9). Identical results334

were found in the dendrogram exploration. In addition, pattern A4 was classified as a group of outliers by335

participants D and E.336

When identifying four patterns, users A-E aggregated Type 3 and Type 5 (see Figure 2B) signals into337

a single pattern (pattern A2; see Figure 9A), and Type 4 and Type 6 in pattern A3. In both cases, the pairs338

behave similarly, but in opposing directions: a continually increasing or decreasing trend, or a shift in the339

middle of the time series. In each pair, the global distance between the different types is small compared340

to the rest of patterns due to the sequence alignment using DTW.341

When using the dendrograms, (Figure 9B), participants A-E identified between three and five patterns.342

Two or three groups were detected in the middle, and the heterogeneous data elements (pattern B1) were343

recognized as an additional pattern and misunderstood as two independent clusters by users B and E due344

to the location of the branches. Participant C identified a single cluster containing signals of Type 1, Type345

3 and Type 5, and another containing Type 4 and Type 6. This result shows a slight loss of perception in346

the dendrogram compared to barcode-tree and a possible potential misinterpretation of the dendrogram347

due to to the position of the branches.348

Changes in tree resolution did not present a change in the interpretation of participants when resolution349

was increased, i.e., steps of 1 and 2 (Figure 8A and B) but it did when the resolution decreased. Three350

participants (B, C and E) detected six patterns when we evaluated the number of connected component in351

steps of 20 as shown in Figure 8F. This fact reveals that different resolutions lead to different possible352

interpretations of the data.353

Figure 9. Detection of patterns between the barcode-tree and dendrogram. Part A highlights the four

patterns detect by five out of six participants in the barcode-tree. Part B shows the four patterns detected

in the dendrogram. Pattern B1* was identified as an additional pattern by two out of five participants.

Selection of cutoffs in dendrogram and barcode-tree354

Using dendrogram exploration, only participant F experienced difficulties in cutoff selection, whereas355

participants A-E selected a single cutoff between thresholds 180 and 195, describing two or three notable356
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clusters and ungrouped data-elements. Using the barcode-tree, participants A-E selected a similar357

threshold. Participant D investigated an additional threshold at 220. Participant F picked the threshold358

285 with the intention of exploring the network representation. The number of cutoffs was not limited359

in any of the representations allowing the user to explore different partitioning perspectives. Overall,360

users were more confident in choosing thresholds using the barcode-tree than when using the dendrogram.361

A persistent segment starts at the ε threshold of 185 until the join of three clusters at threshold 202.362

Discussion with the participants indicated that this persistence in the barcode-tree makes for better363

readibility and therefore higher confidence in threshold selection. In contrast, the binary union of the364

branches and non-optimisation of the leave ordering in the dendrogram can lead to misinterpretation of365

the cutoff selection leaving some elements outside of a potential cluster.366

Detection of patterns combining the network representation and barcode-tree367

In this part, we aimed to evaluate the detection of the structures through community detection and interac-368

tion between the visualizations. We identified three relevant thresholds for the network representation at369

the start of the three most persistent topological structures (see Figure 9A), more specifically at threshold370

187, 202, and 283, and invited the participants to describe the patterns seen using both the network and371

the tree representations (Figure 10). We encouraged them to use the interaction between these visual372

encoding to clarify their relationship. Three participants (C,E and, F) identified six patterns at threshold373

187, while the others recognized four. The number of patterns recognized was three for all participants374

at thresholds 202 and 283. Both the network representation and the color-encoding to represent the375

communities detected by Infomap were clear for all participants. The difference in number of perceived376

patterns shows a critical sense of the community detection results, demonstrating the added value of the377

human in the pattern selection.378

Figure 10. Network representations of the synthetic time-series dataset (Figure 2) at the beginning of

the three most persistent structures detected in the barcode-tree. (A) The grey node corresponds to Type 1

signal. The two connected components correspond to signals of Type 3/5 and Type 4/6, respectively. In

both cases, ascending - respectively descending - signals are combined in a single connected component

but still distinguish between gradual or stepwise change based on colour.

User satisfaction and comments379

All the participants indicated that they liked the MCLEAN methodology, especially the obtained interpre-380

tation due to the change of the layout in the network creation. Although some participants considered381

the selection of thresholds and interpretation of community detections nontrivial, they still agreed that382

the methodology was consistent and the learning curve was not too high. Participants strongly favored383

the use of MCLEAN over dendrogram in terms exploration and clustering technique due to the better384

readability of the tree and the power of combining the two visualizations interactively. This indicates the385

benefits of this methodology as an interactive visual clustering facilitating the integration and evaluation386

of the results by the user.387

CONCLUSION AND FUTURE WORK388

In this paper, we described a method for interactive multi-resolution exploration of clustering results389

in complex datasets. Evaluation experiments indicated that combining visualizations and analytical390
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techniques can increase the understanding of the information for the user by providing more transparency391

and confidence to the process. Although the number of clusters and their quality is strongly related to user392

behavior, we believe that this is actually a strength of the system (one that was specifically aimed for), and393

that these approaches used in conjunction are crucial to allowing a user-centric approach to information394

discovery, to exploit heterogeneous data sources better.395

Although the presented network and barcode-tree representations help the user in gaining insight in396

their data, there are some clear points for future work. For example, the current approach relies on single397

linkage clustering whereas average and/or complete linkage clustering might be more useful for particular398

datasets (especially where the distance matrix does not exhibit gaps). In addition, the current visual399

encoding of the barcode-tree shows visual artifacts (parallel lines merging with a cluster) depending on400

the granularity level used. Finally, it will be useful to investigate further methods for directly comparing401

how data elements are integrated across thresholds.402

In conclusion, incorporating the domain user in the clustering process itself allows for retaining the403

richness of multilevel patterns in cluster results. MCLEAN facilitates integrating tacit or other user404

knowledge in clustering result interpretation and exploration, while simplifying the representation of405

groups especially in the presence of noise or outliers. We argue that the MCLEAN approach provides406

new opportunities beyond existing techniques for cluster visualization and exploration.407
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