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ABSTRACT 17 

Background. The Californian single-leaf pinyon (Pinus monophylla var. californiarum), a 18 

subspecies of the single-leaf pinyon (the world's only 1-needled pine), inhabits semi-arid zones of 19 

the Mojave Desert (southern Nevada and southeastern California, US) and also of northern Baja 20 

California (Mexico). This tree is distributed as a relict subspecies, at elevations of between 1,010 21 

and 1,631 m in the geographically isolated arid Sierra La Asamblea (Baja California, Mexico), an 22 

area characterized by mean annual precipitation levels of between 184 and 288 mm. The aim of 23 

this research was i) to estimate the distribution of P. monophylla var. californiarum in Sierra La 24 

Asamblea by using Sentinel-2 images, and ii) to test and describe the relationship between the 25 

distribution of P. monophylla and five topographic and 18 climate variables. We hypothesized that 26 

i) Sentinel-2 images can be used to predict the P. monophylla distribution in the study site due to 27 
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the finer resolution (x3) and greater number of bands (x2) relative to Landsat-8 data, which is 28 

publically available free of charge and has been demonstrated to be useful for estimating forest 29 

cover, and ii) the topographical variables aspect, ruggedness and slope are particularly important 30 

because they represent important microhabitat factors that can determine the sites where conifers 31 

can become established and persist. Methods. An atmospherically corrected a 12-bit Sentinel-2A 32 

MSI image with ten spectral bands in the visible, near infrared, and short-wave infrared light region 33 

was used in combination with the normalized differential vegetation index (NDVI). Supervised 34 

classification of this image was carried out using a backpropagation-type artificial neural network 35 

algorithm (BPNN). Stepwise multivariate binominal logistical regression and Random Forest 36 

classification including cross valuation (10-fold) were used to model the associations between 37 

presence/absence of P. monophylla and the five topographical and 18 climate variables. Results. 38 

Using supervised classification of Sentinel-2 satellite images, we estimated that P. monophylla 39 

covers 6,653 ± 319 hectares in the isolated Sierra La Asamblea. The NDVI was one of the variables 40 

that contributed most to the prediction and clearly separated the forest cover (NDVI > 0.35) from 41 

the other vegetation cover (NDVI < 0.20). Ruggedness was the most influential environmental 42 

predictor variable, indicating that the probability of occurrence of P. monophylla was higher than 43 

50% when the degree of ruggedness TRI was greater than 17.5 m. The probability of occurrence 44 

of the species decreased when the mean temperature in the warmest month increased from 23.5 to 45 

25.2 °C. Discussion. The accuracy of classification was similar to that reported in other studies 46 

using Sentinel-2A MSI images. Ruggedness is known to create microclimates and provides shade 47 

that minimizes evapotranspiration from pines in desert environments. Identification of the P. 48 

monophylla stands in Sierra La Asamblea as the most southern populations represents an 49 
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opportunity for research on climatic tolerance and community responses to climate variability and 50 

change. 51 

INTRODUCTION 52 

The Californian single-leaf pinyon (Pinus monophylla var. californiarum), a subspecies of the 53 

single-leaf pinyon (the world's only 1-needled pine), inhabits semi-arid zones of the Mojave Desert 54 

(southern Nevada and southeastern California, US) and also of northern Baja California (BC) 55 

(Mexico). It is both cold-tolerant and drought-resistant and is mainly differentiated from the typical 56 

subspecies Pinus monophylla var. monophylla by a larger number of leaf resin canals and longer 57 

fascicle-sheath scales (Bailey, 1987). This subspecies was first reported in BC in 1767 (Bullock et 58 

al., 2006). The southernmost record of P. monophylla var. californiarum in America was 59 

previously in BC, 26-30 miles north of Punta Prieta, at an elevation of 1,280 m (longitude -60 

114°.155; latitude 29°.070, catalogue number ASU 0000235), and the type specimen is held in the 61 

Arizona State University Vascular Plant Herbarium.  62 

This tree is distributed as a relict subspecies in the geographically isolated Sierra La Asamblea, at 63 

a distance of 196 km from the Southern end of the Sierra San Pedro Martir and at elevations of 64 

between 1,010 and 1,631 m (Moran, 1983) in areas with mean annual precipitation levels of 65 

between 184 and 288 mm (Roberts & Ezcurra, 2012). The Californian single-leaf pinyon grows 66 

together with up to about 86 endemic plant species, although the number of species decreases from 67 

north to south (Bullock et al., 2008).  68 

Adaptation of P. monophylla var. californiarum to arid ecosystems enables the species to survive 69 

annual precipitation levels of less than 150 mm. In fact, seeds of this variety survive well under 70 
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shrubs such as Quercus spp. and Arctostaphylus spp., a strategy that enables the pines to widen 71 

their distribution, as has occurred in the great basin in California (Callaway et al., 1996; Chambers, 72 

2001), and for them to occupy desert zones such as Sierra de la Asamblea. Despite the importance 73 

of this relict pine species, its existence is not considered in most forest inventories in Mexico 74 

(CONABIO, 2017).  75 

Remote sensing with Landsat images has been demonstrated to be useful for estimating forest 76 

cover; the The Landsat-8 satellite has sensors (7 bands) that can be used to analyze vegetation at a 77 

spatial resolution of 30 m (Madonsela et al., 2017). However, the European Space Agency's 78 

Copernicus program has made Sentinel-2 satellite images available to the public free of charge. 79 

The spatial resolution (10 m is pixel) of the images is three times finer that of Landsat images, thus 80 

increasing their potential for predicting and differentiating types of vegetation cover (Drush et al., 81 

2012; Borras et al., 2017). The Sentinel-2 has 13 bands, of which 10 provide high-quality 82 

radiometric images of spatial resolution 10 to 20 m in the visible and infrared regions of the 83 

electromagnetic spectrum. These images are therefore ideal for land classification (ESA, 2017). 84 

The aim of this research was i) to estimate the distribution of Pinus monophylla var. californiarum 85 

in Sierra La Asamblea, Baja California (Mexico) by using Sentinel-2 images, and ii) to test and 86 

describe the relationship between this distribution of P. monophylla and five topographic and 18 87 

climate variables. We hypothesized that i) the Sentinel-2 images can be used to accurately predict 88 

the P. monophylla distribution in the study site due to finer resolution (x3) and greater number of 89 

bands (x2) than in Landsat-8 data, and ii) the topographical variables aspect, ruggedness and slope 90 

are particularly influential because they represent important microhabitat factors that can 91 

determine where conifers can become established and persist (Marston, 2010). 92 
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MATERIALS AND METHODS 93 

Study area 94 

Sierra La Asamblea is located in Baja California’s central desert (-114° 9' W 29° 19´ N, elevation 95 

range 280-1,662 m, Fig. 1). The climate in the area is arid, with maximum temperatures of 40° C 96 

in the summer (Garcia, 1998). The sierra is steeper on the western slopes, with an average incline 97 

of 35º, and with numerous canyons with occasional springs and oases. Valleys and plateaus are 98 

common in the proximity of the Gulf of California. Granite rocks occur south of the sierra and 99 

meta-sedimentary rocks along the north and southeast of the slopes. The predominant type of 100 

vegetation is xerophilous scrub, which is distributed at elevations ranging from 200 to 1,000 m. 101 

Chaparral begins at an altitude of 800 m, and representative specimens of Adenostoma 102 

fasciculatum, Ambrosia ambrosioides, Dalea bicolor orcuttiana Quercus tuberculata, Juniperus 103 

california and Pinus monophylla are also present at elevations above 1,000 m. Populations of the 104 

endemic palm tree Brahea armata also occur in the lower parts of the canyons with superficial 105 

water flow and through the rocky granite slopes (Bullock et al., 2006). 106 

 107 

Figure 1. Map of Sierra La Asamblea. The black circles indicate georeferenced sites occupied by 108 

Pinus monophylla. 109 

 110 
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 111 

Datasets 112 

Sentinel-2 113 

The Sentinel-2A multispectral instrument (MSI) L1C dataset, acquired on 11 October 2016, in the 114 

trajectory of coordinates latitude 29º.814, longitude 114º.93, was downloaded from the US. 115 

Geological Survey (USGS) Global Visualization Viewer at http://glovis.usgs.gov/. The 12-bit 116 

Sentinel-2A MSI image has 13 spectral bands in the visible, NIR, and SWIR wavelength regions 117 

with spatial resolutions of 10-60 m. However, band one, used for studies of coastal aerosols, and 118 

bands nine and ten, applied for respectively water vapour correction and cirrus detection, were not 119 

used in this study (ESA, 2017). Hence, the data preparation involved four bands at 10 m and the 120 

resampling of the six S2 bands acquired at 20 m to obtain a layer stack of 10 spectral bands at 10 121 

m (Table 1) using the ESA´s Sentinel-toolbox ESA Sentinel Application Platform (SNAP) and 122 

then converted to ENVI format.  123 

Because atmospherically improved images are essential to enable assessment of spectral indices 124 

with spatial reliability and product comparison, Level-1C data were converted to Level-2A 125 
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(Bottom of Atmosphere -BOA- reflectance) by taking into account the effects of aerosols and 126 

water vapour on reflectance (Radoux et al., 2016). The corrections were made using the Sen2Cor 127 

tool (Telespazio VEGA Deutschland GmbH, 2016) for Sentinel-2 images. 128 

Table 1. Sentinel-2 spectral bands used to predict the Pinus monophylla forest cover 129 

Bands Central wave length (µm) Resolution (m) 

Band 2–Blue 0.490 10 

Band 3 –Green 0.560 10 

Band 4 – Red 0.665 10 

Band 5- Vegetation red edge 0.705 20 

Band 6– Vegetation red edge 0.740 20 

Band 7– Vegetation red edge 0.783 20 

Band 8- NIR 0.842 10 

Band 8A– Vegetation red edge 0.865 20 

Band 11 –SWIR 1.610 20 

Band 12 –SWIR 2.190 20 

 130 

The following equation was used to calculate the normalized difference vegetation index (NDVI): 131 

NDVI = (NIR – R) / (NIR + R), where NIR is the near infrared light (band) reflected by the 132 

vegetation, and R is the visible red light reflected by the vegetation (Rouse et al., 1974). The NDVI 133 

is useful for discriminating the layers of temperate forest from scrub and chaparral. Areas occupied 134 

by large amounts of unstressed green vegetation will have values much higher than 0 and areas 135 

with no vegetation will have values close to 0 and, in some cases, negative values (Pettorelli, 136 

2013). The NDVI image was combined with the previously described multi spectral bands. 137 

Environmental variables 138 

Tree species distribution is generally modulated by hydroclimate and topographical variables 139 

(Elliot et al., 2005; Decastilho et al., 2006), which can be estimated from digital terrain models 140 

(DTM) (Osem et al., 2005; Spasojevic et al., 2016). A DTM was obtained by using tools available 141 
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from the Instituto Nacional de Estadistica y Geografía 142 

(http:www.inegi.org.mx/geo/contenidos/datosrelieve) with a spatial resolution of 15 m. The DTM 143 

was processed with the QGIS (QGIS Development Team, 2016), using Terrain analysis tools, 144 

elevation, slope and aspect (Table 2). 145 

The ruggedness was estimated using two indexes: i) the terrain ruggedness index (TRI) of Riley 146 

et al. (1999) and ii) a vector ruggedness measure (VRM), both implemented in QGIS (QGIS 147 

Development Team, 2016). The TRI computes the values for each grid cell of a DEM. This 148 

calculates the sum change in elevation between a grid cell and its eight-neighbor grid cell. VRM 149 

incorporates the heterogeneity of both slope and aspect. This measure of ruggedness uses 3-150 

dimensional dispersion of vectors normal to planar facets on landscape. This index lacks units and 151 

ranges from 0 (indicating a totally flat area) to 1 (indicating maximum ruggedness) (Sappington et 152 

al., 2007).  153 

In addition, 18 climate variables with a 30-arc second resolution (approximate 800 meters) (Table 154 

2) were obtained from a national database managed by the University of Idaho 155 

(http://charcoal.cnre.vt.edu/climate) and which requires point coordinates (latitude, longitude and 156 

elevation) as the main inputs (Rehfeldt, 2006; Rehfeldt et al., 2006). These variables are frequently 157 

used to study the potential effects of global warming on forests and plants in Western North 158 

America and Mexico (Sáenz-Romero et al., 2010; Silva-Flores et al., 2014). 159 

 160 

 161 

 162 
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Table 2. Topographical and climatic variables considered in the study 163 

Variable Abbreviation Units Mean SD Max Min 

Ruggedness IRT m 20.33 6.66 35.90 4.69 

Ruggedness VRM VRM NA 0.005 0.007 0.13 0 

Slope S º 28.38 8.92 48.34 3.42 

Aspect * A º 190.51 68.72 350.44 20.55 

Elevation *  E m 1302.41 124.96 1631 1010 

Mean annual temperature * MAT °C 16.57 0.38 17.4 15.5 

Mean annual precipitation * MAP mm 229.56 19.95 288 184 

Growing season precipitation, April-

September * 

GSP mm 79.08 9.60 108 57 

Mean temperature in the coldest 

month * 

MTCM °C 10.85 0.37 11.7 9.8 

Minimum temperature in the coldest 

month * 

MMIN °C 3.42 0.41 4.3 2.3 

Mean temperature in the warmest 

month 

MTWM °C 24.52 0.31 25.2 23.5 

Maximum temperature in the 

warmest month 

MMAX °C 34.10 0.31 34.7 33.1 

Julian date of the last freezing data of 

spring * 

SDAY Days 82.57 7.86 106 60 

Julian date of the first freezing data of 

autumn * 

FDAY Days 331.28 2.62 339 324 

Length of the frost-free period * FFP Days 259.22 8.36 285 240 

Degree days Ã 5°C * DD5 Days 4245.26 137.52 4550 3852 

Degree days Ã 5°C accumulating 
within the frost-free period * 

GSDD5 Days 3491.82 164.76 3944 2995 

Julian date when the sum degree days 

Ã 5°C reaches 100 * 

D100 Days 17.07 1.10 20 15 

Degree days Â 0 °C * DD0 Days 0 0 0 0 

Minimum degree days Â 0 °C * MMINDD0 Days 8.07 20.29 145 45 

Spring precipitation Sprp mm 7.54 0.71 10 6 

Summer precipitation * Smrp mm 43.74 6.29 62 29 

Winter precipitation * Winp mm 110.93 7.93 133 93 

* Variables for which no significant difference between the medians was obtained after 164 

Bonferroni correction (α = 0.0005) were excluded from further analysis. 165 

 166 
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Pixel-based classification 167 

Classification method 168 

Pixel-based classification was carried out in order to identify four different types of land cover in 169 

the study area (P. monophylla, scrub, chaparral and no apparent vegetation). A supervised 170 

classification approach with a backpropagation-type artificial neural network (BPNN) (SNAP, 171 

2017) was applied. BPNN is widely used because of its structural simplicity and robustness in 172 

modelling non-linear relationships. In this study, the BPNN comprises a set of three layers (raster): 173 

an input layer, a hidden layer and an output layer (Richards, 1993). Each layer consists of a series 174 

of parallel processing elements (neurons or nodes). Each node in a layer is linked to all nodes in 175 

the next layer (Guo et al., 2013).  176 

The first step in BPNN supervised classification is to enter the input layer, which in this study 177 

corresponded to the values of the pixels of ten Sentinel-2 bands and of the NDVI image. Weights 178 

were then assigned to the BPNN to produce analytical predictions from the input values. These 179 

data were contrasted with the category to which each training pixel belongs, corresponding to 180 

Georeferenced sites (Datum WGS-84, 11N) obtained in the field in October 2014 and October 181 

2015.  182 

A stratified random sampling method (Olofsson et al., 2013) was used to generate the reference 183 

data in QGIS software (QGIS Development Team 2016). A total of 4017 random points were 184 

sampled, with at least 400 points for each class (Goodchild et al., 1994). The following classes 185 

were considered: i) P. monophylla, 502 sites, ii) scrub, 563 sites, iii) chaparral, 419 sites, and iv) 186 

no apparent vegetation, 419 sites. Class discrimination processes occurred in the hidden layer and 187 

the synapses between the layers were estimated by an activation function. We used a logistic 188 
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function and training rate of 0.20, previously applied to land cover classification (Hepner et al., 189 

1990; Richards, 1993; Braspenning & Thuijisman, 1995). Learning occurs by adjusting the 190 

weights in the node to minimize the difference between the output node activation, and BPNN 191 

then calculates the error at each iteration with root square error (RMS). The output layer comprised 192 

four neurons representing the four target classes of land cover (P. monophylla, scrub, chaparral 193 

and no apparent vegetation). 194 

Validation 195 

The BPNN classification was cross-validated (10-fold) using a confusion matrix, which is a table 196 

that compares the reference data and the classification results. The confusion matrix was also used 197 

to estimate the overall accuracy (the proportion of the area mapped correctly), user accuracy 198 

(proportion of the area mapped as a particular category that is actually that category) and producer 199 

accuracy (proportion of the area that is a particular category on the ground that is also mapped as 200 

that category) (Congalton, 1991). We estimated the uncertainty of the classification through 201 

estimated error matrix with 95% confidence intervals. We then generated a map from the results 202 

of the probability of class assignment. Finally, we estimated the area of P. monophylla and estimate 203 

the standard error, error-adjusted and 95% confidence intervals proposed by Olofsson et al. (2013).  204 

The accuracy of classification was also estimated using the Kappa (K) coefficient. The K 205 

coefficient is often used as an overall measure of accuracy (Abraira, 2001). This coefficient takes 206 

values of between 0 and 1, where values close to one indicate a high degree of agreement between 207 

classes and observations, and a value of 0 suggests that the observed agreement is random (Abraira, 208 

2001). However, the use of K is controversial because i) K would underestimate the probability 209 

that a randomly selected pixel is correctly classified, ii) K is highly correlated with overall accuracy 210 

so reporting Kappa is redundant for overall accuracy (Olofsson et al., 2014). 211 
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Relationship between presence of P. monophylla and environmental variables 212 

To model and test the association between presence/absence of P. monophylla in the study area 213 

and topographical or climate variables, a Kruskal-Wallis test was used to estimate the difference 214 

in the median values in relation to presence and absence of P. monophylla. All variables for which 215 

no significant difference between the median values was predicted after Bonferroni correction (α 216 

= 0.0005) were excluded from further analysis. The collinearity between the variables with a 217 

significant difference between the medians of presence and absence was estimated using the 218 

Spearman correlation coefficient (rs). When the rs value for the difference between two variables 219 

was greater than 0.7, only the variable with the lowest p value in the Kruskal-Wallis test was used 220 

in the multivariate models (as reported by Salas et al., 2017 and Shirk et al., 2018). Finally, 221 

stepwise multivariate binominal logistical regression and Random Forest classification including 222 

cross valuation (10-fold) were used to model the associations between presence/absence of P. 223 

monophylla and the most important topographical and climate variables (Shirk et al., 2018). 224 

Regression and classification including cross-validations were carried out using the trainControl, 225 

train, glm (family = "binomial") and rf functions, as well as the <randomForest= and <caret= 226 

packages (Venables and Ripley, 2002) in R (version 3.3.2) (Development Core Team, 2017). The 227 

goodness-of-fit of the logistical regression model was evaluated using the Akaike information 228 

criterion (AIC), root-mean-square error (RMSE) and residual deviance. Validation of the 229 

randomForest model was performed using under the curve (AUC; Fawcett, 2006), True Skill 230 

Statistic (TSS; Allouche et al., 2006), Kappa (Abraira, 2001), specificity and sensitivity. 231 
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RESULTS 232 

Pixel-based classification 233 

We estimated the area of P. monophylla cover of 6,653 ± 319 hectares in Sierra de la Asamblea, 234 

Baja California, Mexico. The supervised classification with BPNN yielded predictions with an 235 

overall accuracy of identification of 87.74% (Table 3). This level of accuracy was estimated in the 236 

32 interactions with 0.04 RMS training. The proportion of omission errors in the pine class was 237 

only 12.42%, i.e. 87.58% of the pixels were correctly classified. The chaparral class had the larger 238 

proportion of omission errors (27.65%) (Fig. 2; Fig. 3). The value of NDVI in the P. monophylla 239 

forest fluctuated between 0.30 and 0.41, and in chaparral between 0.24 and 0.28. The lowest values 240 

of NDVI corresponded to scrub vegetation, with values between 0.10 and 0.15.  241 

Table 3. Estimated error matrix based of sample counts expressed as the estimated area 242 

proportions (Wi). Accuracy measures are presented with a 95% confidence interval. Map 243 

categories are the rows while the reference categories are the columns. 244 

Classification data P S C WV Total   Wi     User´s  Producer´s Overall 

P 522 0 14 0 536 0.169 0.974±0.07 0.790±0.04 0.877±0.01 

S 24 619 119 2 764 0.387 0.810±0.02 1.000  

C 50 0 348 7 405 0.258 0.859±0.01 0.752±0.07  

WV 0 0 20 418 438 0.186 0.954±0.002 0.970±0.02  

Total 596 619 501 427 2,143 1    

* P = Pinus monophylla; S = Shrub; C = Chaparral; WV= Without Vegetation; Wi = estimated 245 

area proportions. 246 

 247 
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Figure 2. (A) Estimated land cover classes using BPNN classification in Sierra La Asambla. (B) 248 

Probability map of class assignment.  249 

 250 

Figure 3. Spectral signatures of cover vegetation in Sierra La Asamblea, Baja California.251 

 252 
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Relationship between presence of P. monophylla and environmental variables 253 

The Kruskal-Wallis test indicated that the median values for ruggedness TRI (p < 2.1x10-16), slope 254 

(p < 2.2x10-16), ruggedness VRM (p = 4.9x10-9), MTWM (p = 0.000014), MMAX (p = 0.000048) 255 

and SPRP (p = 0.00037) were most variable between sites in which P. monophylla was present 256 

and absent. The variable slope was closely correlated with ruggedness as well as with MMAX and 257 

MTWM (rs > 0.7). The pslope of the Kruskal-Wallis test was larger than pruggedness and pMMAX was 258 

larger than pMTWM. Slope and MMAX were therefore excluded from the multivariate model 259 

analysis. The stepwise multivariate binominal logistical and Random Forest models showed that 260 

the <presence of P. monophylla= model included the independent variables ruggedness, ruggedness 261 

VRM and average temperature in the warmest month (MTWM) (Table 4). 262 

The ruggedness factor was the most influential predictor variable and indicated that the probability 263 

of P. monophylla occurrence was larger than 50% when the degree of ruggedness TRI was higher 264 

than 17.5 m (Table 4). The ruggedness VRM also indicated that a minimum change in roughness 265 

increases the probability of presence of the pine. The probability of occurrence of Pinus 266 

monophylla decreased when MTWM increased from 23.5 to 25.2 °C (Table 5). After cross 267 

validation (10-fold), the Random Forest model revealed that the variables ruggedness TRI, 268 

ruggedness VRM and MTWM yielded a high correlation for their ability to predict presence of the 269 

P. monophylla (AUC = 0.920, TSS = 0.69, Kappa = 0.691). The sensitivity was 0.812 and 270 

specificity was 0.878. 271 

Table 4. Results of the multivariate binomial logistic regression model (AIC = 601.8; residual  272 

deviance= 593.85 on 588 degrees of freedom), TRI = terrain ruggedness index, VRM = vector 273 

ruggedness measure, MTWM = mean temperature in the warmest month. 274 
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Variable Estimate Std. Error Z value Pr(>|z|) 

Intercept 25.351 8.895 2.850 0.0044 

MTWM -1.159 0.362 -3.201 0.0014 

Roughness TRI 0.178 0.015 11.200 < 2e-16 

Roughness VRM 28.476 13.847 2.056 0.0397 

 275 

DISCUSSION 276 

Pixel-based classification 277 

Predicting the presence of pine forest by using BPNN proved feasible. The NDVI was one of the 278 

variables that contributed to the prediction and clearly separated forest cover (NDVI > 0.35) from 279 

the other types of vegetation cover (NDVI < 0.20). The overall accuracy of classification (K = 280 

0.87) was similar to that reported in other studies using Sentinel-2A MSI images; for example, 281 

Immitzer et al., (2016) reported a K of 0.85 for tree prediction in Europe by using five classes and 282 

a random forest classifier. Vieira et al. (2003) reported a K = 0.77 in eastern Amazon using seven 283 

classes and 1999 Landsat 7 ETM imagery. However, Sothe et al. (2017) reported K values of 0.98 284 

and 0.90 for respectively three successional forest stages and field in a subtropical forest in 285 

Southern Brazil by using Sentinel-2 and Landsat-8 data associated with the support vector machine 286 

algorithm. Kun et al. (2014) estimated K values of 0.70 to 0.85 for land-use type prediction 287 

(including forest) in China by using the support vector machine algorithm classifier and Landsat-288 

8 images of rougher spatial resolution than Sentinel images. The very high accuracy of predictions 289 

by Kun et al. (2014) was probably due to the large-scale of the study and the clearly differentiated 290 

types of land considered.  291 
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Relationship between presence of P. monophylla and environmental variables  292 

Ruggedness of the terrain was the most important topographic variable, significantly explaining 293 

the presence of pines in Sierra La Asamblea (Table 3). Ruggedness, which is strongly positively 294 

correlated with slope, may reduce solar radiation, air temperature and evapotranspiration due to 295 

increased shading (Tsujino et al., 2006; Bullock et al., 2008). The ruggedness indicated by the TRI 296 

index explains the presence of the pines because Sierra La Asamblea is heterogeneous in terms of 297 

elevation. The VRM index was less important partly because the index is strongly dependent on 298 

the vector aspect (Gisbert & Martí, 2010) and in the case of Sierra Asamblea the aspect is very 299 

homogeneous and the index values therefore tend to be very low (Table 4), as also reported by Wu 300 

et al. (2018). The pines were expected to colonize north facing slopes, which are exposed to less 301 

solar radiation than slopes facing other directions. However, the topographical variable aspect was 302 

not important in determining the presence of P. monophylla var. californiarum in the study site, 303 

possibly because of physiological adaptations regarding water-use efficiency and photosynthetic 304 

nitrogen-use efficiency (DeLucia & Schlesinger, 1991), as reported for the Pinus monophylla, P. 305 

halepensis, P. edulis and P. remota in arid zones (Lanner & Van Devender, 2000; Helman  et al., 306 

2017). The Mediterranean climate, with wet winters and dry summers, is another characteristic 307 

factor in this mountain range. In the winter in this part of the northern hemisphere, the sun (which 308 

is in a lower position and usually affects the southern aspect by radiation) is masked by clouds, 309 

rainfall and occasional snowfall (León-Portilla, 1988). During the summer, the solar radiation is 310 

more intense, but similar in all directions because the sun is closest to its highest point (Stage & 311 

Salas, 2007). 312 

The above-mentioned finding contrasts with those of other studies reporting that north-eastern 313 

facing slopes in the northern hemisphere receive less direct solar radiation, thus providing more 314 
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favourable microclimatic conditions (air temperature, soil temperature, soil moisture) for forest 315 

development, permanence and productivity than southwest-facing sites (Astrom et al., 2007; Stage 316 

& Salas, 2007; Hang et al 2009; Marston et al., 2010; Klein et al., 2014). DeLucia & Schleinger 317 

(1991) reported that P. monophylla populations in the Great Basin California desert with summer 318 

rainfall (monsoon) preferred an east-southeast aspect with less intense solar radiation and 319 

evapotranspiration. 320 

The probability of occurrence of P. monophylla was also related to the climatic variable MTWM. 321 

In Sierra La Asamblea, this pine species was found in a narrow range of MTWM of between 23.5° 322 

and 25.2° (Table 1), which, however, is a smaller range than reported for the other pine species 323 

(Tapias et al., 2004; Roberts & Ezcurra, 2012). Therefore, this species should adapt well to high 324 

temperatures in the summer (Lanner et al., 2000), which is usually a very dry period in the study 325 

site (León-Portilla, 1988). However, the probability of occurrence was greatest for an MTWM of 326 

23.5°C (Table 4), which occurred at the top of Sierra La Asamblea, at an elevation of about 1,660 327 

m). We therefore conclude that this species can also grow well when the MTWM is below 23.5°C. 328 

On the other hand, considering MTWM as factor yielded a probability of occurrence of 25-80%. 329 

The spatial resolution of the climatic data by the national database run by the University of Idaho 330 

is probably not adequate for describing the microhabitat of P. monophylla (Rehfeldt et al., 2006; 331 

Marston et al., 2010). 332 

Identification of the P. monophylla stands in Sierra La Asamblea as the most southern populations 333 

represents an opportunity for research on climatic tolerance and community responses to climatic 334 

variation and change. 335 
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