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ABSTRACT 16 

Background. The Californian single-leaf pinyon (Pinus monophylla var. californiarum), a 17 

subspecies of the single-leaf pinyon (the world's only 1-needled pine), inhabits semi-arid zones 18 

of the Mojave Desert in southern Nevada and southeastern California (US) and also of northern 19 

Baja California (Mexico). This subspecies is distributed as a relict in the geographically isolated 20 

arid Sierra La Asamblea at elevations of between 1,010 and 1,631 m, with mean annual 21 

precipitation levels of between 184 and 288 mm. The aim of this research was i) to establish the 22 

distribution of P. monophylla var. californiarum in the Sierra La Asamblea, Baja California 23 

(Mexico) using Sentinel-2 images, and ii) to test and describe the relationship between this 24 

distribution of P. monophylla and five topographic and 18 climate variables. We hypothesized 25 

that i) the Sentinel-2 images can be used to accurately detect the P. monophylla distribution in 26 
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the study site due to higher resolution (x3) and increased number of bands (x2) relative to 27 

Landsat-8, and ii) the topographical variables aspect, ruggedness and slope are particularly 28 

influential because they represent important microhabitat factors that can affect where conifers 29 

can become established and persist. Methods. It was used an atmospherically corrected a 12-bit 30 

Sentinel-2A MSI image with eleven spectral bands in the visible, near infrared, and short-wave 31 

infrared light region combined with the normalized differential vegetation index (NDVI). 32 

Supervised classification of this image was carried out using a backpropagation-type artificial 33 

neural network algorithm. Stepwise multivariate binominal logistical regression and Random 34 

Forest regression including cross valuation (10 fold) were used to model the associations 35 

between presence/absence of P. monophylla and the five topographical and 18 climate variables. 36 

Results. Probably, P. monophylla covers 4,955 hectares in the isolated Sierra La Asamblea via 37 

supervised classification of Sentinel-2 satellite images. The NDVI was one of the variables that 38 

contributed to the detection and clearly separated the forest cover (NDVI > 0.35) from the other 39 

vegetation cover (NDVI < 0.20). The ruggedness was the best environmental predictor variable 40 

and indicated that the probability of P. monophylla occurrence was higher than 50% when the 41 

degree of ruggedness was greater than 17.5 m. When average temperature in the warmest month 42 

increased from 23.5 to 25.2 °C, the probability of occurrence of P. monophylla decreased. 43 

Discussion. The classification accuracy was similar to other studies using Sentinel-2A MSI 44 

images. Ruggedness is known to generate microclimates and provides shade that decreases 45 

evapotranspiration from pines in desert environments. Identification of P. monophylla in the 46 

Sierra La Asamblea as the most southern populations represents an opportunity for research on 47 

climatic tolerance and community responses to climatic variation and change. 48 

 49 
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INTRODUCTION 50 

The Californian single-leaf pinyon (Pinus monophylla var. californiarum), a subspecies of the 51 

single-leaf pinyon (the world's only 1-needled pine), inhabits semi-arid zones of the Mojave 52 

Desert in southern Nevada and southeastern California (US) and also of northern Baja California 53 

(BC) (Mexico). It is cold-tolerant, drought resistant and is mainly differentiated from the typical 54 

subspecies Pinus monophylla var. monophylla by a larger number of leaf resin canals and longer 55 

fascicle-sheath scales (Bailey, 1987). This subspecies was first reported in BC in 1767 (Bullock 56 

et al. 2006). The southernmost record of P. monophylla var. californiarum in America was 57 

previously in BC, 26-30 miles north of Punta Prieta, at an elevation of 1,280 m (longitude -58 

114°.155; latitude 29°.070, catalogue number ASU 0000235), and the type specimen is held in 59 

the Arizona State University Vascular Plant Herbarium.  60 

This subspecies is distributed as a relict in the geographically isolated Sierra La Asamblea, at a 61 

distance of 196 km from the Southern end of the Sierra San Pedro Martir and at elevations of 62 

between 1,010 and 1,631 m (Moran, 1983, Table 2), with mean annual precipitation levels of 63 

between 184 and 288 mm (Roberts and Ezcurra, 2012, Table 2). The Californian single-leaf 64 

pinyon grows together with up to about 86 endemic plant species, although the number of 65 

species decreases from north to south (Bullock et al. 2008).  66 

Adaptation of P. monophylla var. californiarum to arid ecosystems enables the species to survive 67 

annual precipitation levels below 150 mm. In fact, seeds of this variety display a high survival 68 

rate under shrubs such as Quercus spp. and Arctostaphylus spp., a strategy that enables the pines 69 

to widen their distribution, as has occurred in the great basin in California (Callaway et al. 1996; 70 

Chambers, 2001) and for them to occupy desert zones such as the Sierra La Asamblea. Despite 71 
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the importance of this relict pine species, its existence is not considered in most forest 72 

inventories in Mexico, and its distribution is generalized in vegetation cover maps (CONABIO, 73 

2017).  74 

Remote sensing techniques facilitate analysis of the temporal-space dynamics of the vegetation 75 

in isolated sites, as with the piñon pine in the Sierra de la Asamblea. Tree species distribution is 76 

generally modulated by hydroclimatic variables and topographies (Elliot et al. 2005), and it is 77 

therefore possible to determine the spatial conditions that favour the presence of forests, 78 

especially by using digital terrain models (DTMs). Such models have shown, e.g., that tropical 79 

and temperate forests tend to grow faster and more densely in sites with variable elevation and 80 

slope (Decastilho et al. 2006; Spasojevic et al. 2016). Another attribute that can be analyzed 81 

using DTMs is the slope, aspect and terrain ruggedness index (Riley et al. 1999), used to express 82 

the difference in elevation of adjacent cells in a digital elevation grid. The less intense solar 83 

radiation to which northern orientations are exposed is known to promote the growth and 84 

productivity of vegetation (Osem et al. 2009).  In addition, forests in less rugged sites (flatlands 85 

and valleys) are known to be particularly susceptible to fire, while heterogeneous and highly 86 

rugged forest sites are more dispersed and less likely to be affected by fire (Ganteaume and 87 

Jappiot, 2013). Geomorphic attributes such as ruggedness and profile convexity have recently 88 

been used to classify vegetation types from satellite images (Franklin et al. 2000; Carler & 89 

Wolff, 2004; Waser et al. 2011) and have been used along with multi-temporal analysis of 90 

images to identify forest types (Zhu & Liu, 2014).  91 

Remote sensing with Landsat images has proved useful for detecting forest cover; the Landsat-8 92 

satellite has sensors (7 bands) that can be used to analyze vegetation in spatial resolutions of 30 93 
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m (Johansen and Phinn, 2006). However, the European Space Agency's Copernicus program has 94 

made Sentinel-2 satellite images available to the public free of charge. The spatial resolution (10 95 

meters per pixel) is three times higher than that of Landsat images, thus increasing their potential 96 

for detecting and differentiating between types of vegetation cover (Drush et al. 2012; Borras et 97 

al. 2017). The Sentinel-2 has 13 bands which provide high-quality radiometric images of spatial 98 

resolution 10 - 20 m in the visible and infrared regions of the electromagnetic spectrum. These 99 

images are therefore ideal for land classification (ESA, 2017). 100 

The aim of this research was i) to establish the distribution of Pinus monophylla var. 101 

californiarum in the Sierra La Asamblea, Baja California (Mexico) using Sentinel-2 images, and 102 

ii) to test and describe the relationship between this distribution of Pinus monophylla and five 103 

topographic and 18 climate variables. We hypothesized that i) the Sentinel-2 images can be used 104 

to accurately detect the P. monophylla distribution in the study site due to higher resolution (x3) 105 

and increased number of bands (x2) relative to Landsat-8, and ii) the topographical variables 106 

aspect, ruggedness and slope are particularly influential because they represent important 107 

microhabitat factors that can affect where conifers can become established and persist (Marston, 108 

2010). 109 

MATERIALS AND METHODS 110 

Study area 111 

The Sierra La Asamblea is located in Baja California’s central desert (-114° W 29° 19´ N, range 112 

of altitude 280-1,662 m, Fig. 1). The climate is arid, with maximum temperatures of 40° C in the 113 

summer (Garcia, 1998). The Sierra is steeper on the western slopes, with an average incline of 114 

35º, and with numerous canyons with occasional springs and oases. The valleys and plateaus are 115 
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common in the proximity of the Gulf of California. Granite rocks occur south of the Sierra and 116 

meta-sedimentary rocks along the north and southeast of the slopes. The predominant types of 117 

vegetation are the xerophilous scrub, which is distributed at elevations ranging from 200 to 1,000 118 

m. Chaparral begins at an altitude of 800 m, and representative specimens of Adenostoma 119 

fasciculatum, Ambrosia ambrosioides, Dalea bicolor orcuttiana Quercus tuberculata, Juniperus 120 

california and Pinus monophylla are also present at elevations higher than 1,000 m. Populations 121 

of the endemic palm tree Brahea armata also occur in the lower parts of the canyons with 122 

superficial water flow and through the rocky granite slopes (Bullock et al. 2006). 123 

Figure 1. Map of the Sierra La Asamblea. The black circles indicate georeferenced sites 124 

occupied by Pinus monophylla. 125 

Establishing the distribution of P. monophylla var. californiarum using Sentinel-2 images 126 

Senitnel-2A multispectral instrument (MSI) L1C dataset acquired on 11 October 2016, in the 127 

trajectory of coordinates latitude 29º.814, longitude 114º.93, was downloaded from the US. 128 

Geological Survey (USGS) Gloval Visualizaton Viewer at http://glovis.usgs.gov/. The 12-bit 129 

Sentinel-2A MSI image has 13 spectral bands in the visible, NIR, and SWIR wavelength region 130 

with spatial resolutions of 10-60 m. However, the band one used for studies of coastal aerosol 131 

and the band ten applied for cirrus were not used in this study (ESA, 2017). Hence, the data 132 

preparation involved the resampling of the seven S2 bands acquired at 20 m and 60 m to obtain a 133 

layer stack of 11 spectral bands at 10 m (Table 1) using the ESA´s Sentinel-toolbox ESA 134 

Sentinel Application Platform (SNAP) and then converted to ENVI format.  135 

Because atmospherically improved images are crucial to assess spectral indices with spatial 136 

reliability and products comparison, level-1C data have been converted to level-2A (top-of-137 

canopy) taking into account the effects of aerosols and water vapor on reflectance (Radoux et al., 138 
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2016). These corrections have been realized using the Sea2Cor tool (Telespazio VEGA 139 

Deutschland GmbH, 2016) for the Sentinel-2 images. 140 

Table 1. Sentinel-2 spectral bands used to detect the Pinus monophylla forest 141 

The following equation was used to calculate the normalized difference vegetation index 142 

(NDVI): NDVI = (NIR – R) / (NIR + R), where NIR is the near infrared light (band) reflected by 143 

the vegetation, and R is the visible red light reflected by the vegetation. The NDVI is useful for 144 

discriminating the layers of temperate forest from scrub and chaparral. Areas occupied by large 145 

amounts of unstressed green vegetation will have values much higher than 0 and areas with no 146 

vegetation will have values close to 0 and, in some cases, negative values (Pettorelli, 2013). 147 

The NDVI image was combined with the previously described multi spectral bands. Supervised 148 

classification of this image was carried out using a backpropagation-type artificial neural 149 

network (ANN) algorithm. The input weights corresponded to the values of the pixels twelve of 150 

Sentinel-2 and of the NDVI image. A logistic activation function was used with a training rate of 151 

0.20 and 40 interactive processes. The network also calculates the error at each iteration (RMS) 152 

(Braspenning & Thuijisman, 1995). Additionally, the support vector machine algorithm (SVM) 153 

was used to classify the MSI (Mountrakis et al., 2011). 154 

The training sites corresponded to two groups of georeferenced sites (Datum WGS-84, 11N) 155 

obtained during a project entitled <Oasis evaluation in Baja California=. The coordinates of the 156 

first group of sites whose were obtained in the field in October 2014 and October 2015. Four 157 

classes were defined with the object improving the discrimination between vegetation cover. The 158 

following classes were considered: i) pines, 502 sites, ii) scrub, 563 sites, iii) chaparral, 419 site 159 
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and iv) no apparent vegetation, 419 sites. The second group comprised control sites and the 160 

coordinates were obtained by systematic sampling of the vegetation layers of the V series of land 161 

use and cover vegetation of the National Institute of Statistics and Geography (INEGI, 2015). 162 

The group included the following classes: i) pines, 596 sites, ii) scrub, 619 sites, iii) chaparral, 163 

481 sites, and iv) no apparent vegetation, 418 sites.  164 

The classification was validated using a confusion matrix, which is a table that compares the real 165 

values with the classification results. The confusion matrix was also used to determine the user 166 

accuracy, which refers to the total number of correct pixels/total number of reference pixels × 167 

100% (Congalton, 1991). The accuracy of classification was calculated using the Kappa (K) 168 

coefficient. The K coefficient is a statistic used in accuracy assessment to measure whether one 169 

error matrix is significantly different from another. This statistic takes values of between -1 and 170 

+1, where values close to one indicate a high degree of agreement between classes and 171 

observations, and a value of 0 suggests that the observed agreement is random (Abraira, 2001). 172 

Relationship between the distribution of P. monophylla and topographic and climate variables 173 

To test and model the association between presence/absence of P. monophylla in the study area 174 

and topographical or climate variables, points estimates of the topographical variables 175 

ruggedness, slope, aspect, elevation and convexity and 18 climate variables (Table 2) were 176 

obtained from a national database managed by the University of Idaho 177 

(http://forest.moscowfsl.wsu.edu/climate/) and which requires point coordinates (latitude, 178 

longitude, and elevation) as the main inputs (Rehfeldt et al. 2006;  Rehfeldt et al. 2006).  179 

Table 2. Topographical and climatic variables considered in the study 180 
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For each variable in Table 2, a Kruskal-Wallis test was used to determine the difference in the 181 

median values in relation to presence and absence of P. monophylla. All variables for which no 182 

significant difference between the medians was obtained after Bonferroni correction (α = 0.0005) 183 

were excluded from further analysis. The colinearity between the significant variables was 184 

measured using the Spearman correlation coefficient (rs). When the rs value for the difference 185 

between two significant variables was larger than 0.7, only the variable with the lowest p value 186 

in the Kruskal-Wallis test was used in the multivariate regressions. Finally, stepwise multivariate 187 

binominal logistical regression and Random Forest regression including cross valuation (10 fold) 188 

were used to model the associations between presence/absence of P. monophylla and the most 189 

important topographical and climate variables (Shirk et al., 2017). 190 

Regressions including cross valuation were carried out using the trainControl, train, glm (family 191 

= "binomial") and rf functions, as well as the <randomForest= and <caret= packages (Venables 192 

and Ripley, 2002) in R (version 3.3.2) (Development Core Team, 2017). The goodness-of-fit of 193 

the regression models was evaluated using Akaike information criterion (AIC), root-mean-square 194 

error (RMSE) and pseudo coefficient of determination (R
2
).  195 

RESULTS 196 

Our model showed a potential P. monophylla cover of 4,955 hectares in the in the Sierra de la 197 

Asamblea, Baja California, Mexico. The supervised classification with ANN indicated an overall 198 

accuracy of identification 89.78%. This level of accuracy was obtained in the 32 interactions 199 

with 0.04 RMS training. The proportion of omission errors in the pine class was only 12.42%, 200 

i.e. 87.58% of the pixels were correctly classified. The chaparral class had the highest proportion 201 

of omission errors (27.65%) (Table 3, Fig. 2; Fig. 3). The value of NDVI in the pine forest 202 
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fluctuated between 0.30 - 0.41, and in chaparral between 0.24 - 0.28. The lowest values of NDVI 203 

occurred in the scrub vegetation with values between 0.10 - 0.15. The analysis using the SVM 204 

classifier only showed overall accuracy of 72%. 205 

Table 3. Results of the classification monitored by neural network. The overall accuracy of 206 

classification was 89.78%. 207 

Figure 2. (A) Detection of Pinus monophylla by neural network classification. The light yellow 208 

shading polygon represents pine forest published in the V series of INEGI (2013). (B) 209 

Distribution of pines in the rugged sites in the Sierra La Asamblea (Photograph by Jonathan 210 

Escobar). 211 

Figure 3. Spectral signatures of cover vegetation in the Sierra La Asamblea, Baja California. 212 

The Kruskal-Wallis test indicated that the median values for ruggedness (p < 2.1e-16), slope (p < 213 

2.2e-16), MTWM (p = 0.000014), MMAX (p = 0.000048) and SPRP (p = 0.00037) were most 214 

different between sites with presence and absence of P. monophylla. The variable slope was 215 

closely correlated with ruggedness as well as with MMAX and MTWM (rs > 0.7). The pslope of 216 

the Kruskal-Wallis test was larger than pruggedness and pMMAX larger than pMTWM. Slope and 217 

MMAX were therefore excluded from the multivariate regression analysis. The stepwise 218 

multivariate binominal logistical and Random Forest regression showed that the best <presence 219 

of pines= model included the independent variables ruggedness and average temperature in the 220 

warmest month (MTWM) (Table 4).  221 

Table 4. Results obtained with the best multivariate binomial logistic regression model (AIC = 222 

611.96).  223 
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The ruggedness factor was the best predictor variable and indicated that the probability of P. 224 

monophylla occurrence was higher than 50% when the degree of ruggedness was greater than 225 

17.5 m (Fig. 4). When MTWM increased from 23.5 to 25.2 °C, the probability of occurrence of 226 

Pinus monophylla decreased (Fig. 5). After cross validation (tenfold), the Random Forest model 227 

revealed that the variables ruggedness and MTWM explained the variation in the presence of P. 228 

monophylla, with R
2

 = 0.371 and RMSE = 0.403. 229 

Figure 4. The relationship between the probability (P) of occurrence of Pinus monophylla and 230 

the ruggedness (m) of the terrain in the Sierra La Asamblea, Baja California, Mexico. 231 

Figure 5. The relationship between the probability (P) of occurrence of Pinus monophylla and 232 

the average temperature in the warmest month (MTWM) in the Sierra La Asamblea, Baja 233 

California, Mexico. 234 

DISCUSSION 235 

Detection of pine forest by using ANN proved efficient. The NDVI was one of the variables that 236 

contributed to the detection and clearly separated the forest cover (NDVI > 0.35) from the other 237 

vegetation cover (NDVI < 0.20). The presence of the blue palm Brahea armata and fan palm 238 

Washingtonia filifera, which grow in the canyons and had values of NDVI greater than 0.30, 239 

may have confused the classification. However, these species are restricted to an elevation of less 240 

than 1,000 m, and were therefore excluded from the classification (Bullock et al. 2008). 241 

The overall classification accuracy in this study (K = 0.90) was similar to other studies using 242 

Sentinel-2A MSI images. Immitzer et al. (2016) reported a K of 0.85 in tree detection in Europa 243 

using five classes and random forest classifier in Europa. Vieira et al. (2003) found a K = 0.77 in 244 

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.3439v2 | CC BY 4.0 Open Access | rec: 1 Dec 2017, publ: 1 Dec 2017



12 

 

eastern Amazonia using seven classes and 1999 Landsat 7 ETM imagery. However, Sothe et al. 245 

(2017) reported a K = 0.98 and K = 0.90, respectively evaluating three successional forest stages 246 

and field in a subtropical forest in Southern Brazil by Sentinel-2 and Landsat-8 Data associated 247 

with the support vector machine algorithm. Kun et al. (2014) showed a K of 0.70 to 0.85 in land-248 

use type detection including forests in China using the support vector machine algorithm 249 

classifier and Landsat-8 images providing lower spatial resolution than Sentinel. The cause of 250 

this very good accuracy of Kun et al. was probably the large-scale and clearly differentiated 251 

land-use types used as classes.  252 

Ruggedness of the terrain was the most important topographic variable, significantly explaining 253 

the presence of pines in the Sierra La Asamblea (Table 3). Ruggedness, which is strongly 254 

positively correlated with slope, may reduce solar radiation, air temperature and 255 

evapotranspiration due to increased shading (Di Castri et al. 1981; Tsujino et al. 2006; Bullock et 256 

al. 2008). 257 

The pines were expected to colonize north facing slopes, which are exposed to less solar 258 

radiation than slopes facing other directions. However, the topographical variable aspect was not 259 

important in determining the presence of P. monophylla var. californiarum in the study site, 260 

possibly because of physiological adaptations regarding water-use efficiency and photosynthetic 261 

nitrogen-use efficiency (DeLucia and Schlesinger, 1991),  as reported for the Pinus monophylla, 262 

P. halepensis, P. edulis, P. remota, in arid zones (Lanner & Van Devender, 2000; Helman et al. 263 

2017). The Mediterranean climate, with wet winters and dry summers, is another characteristic 264 

factor in this mountain range. In the winter in this part of the northern hemisphere, the lower 265 

position of the sun, which normally affects stronger the southern aspect by radiation could not 266 
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show to advantage due to clouds, rainfall and occasional snowfall (León-Portilla, 1988). During 267 

the summer, the level of solar radiation is high, but similar in all directions because the sun is 268 

closest to its highest point (Stage and Salas, 2007). 269 

The above-mentioned finding contrasts with those of other studies reporting that north-eastern 270 

facing slopes in the northern hemisphere receive less direct solar radiation, thus providing more 271 

favourable microclimatic conditions (air temperature, soil temperature, soil moisture) for forest 272 

development, permanence and productivity than southwest-facing sites (Astrom et al. 2007; 273 

Stage & Salas, 2007; Hang et al 2009; Marston et al. 2010; Klein et al. 2014).  DeLucia & 274 

Schleinger (1991) reported for the P. monophylla populations in the Great Basin California 275 

desert with summer rainfall (monsoon) that this tree species preferred an east-southeast aspect 276 

with lower solar radiation and evapotranspiration (DeLucia & Schleinger, 1991). 277 

The probability of occurrence of P. monophylla was also related to the climatic variable MTWM. 278 

In the Sierra La Asamblea, this pine species was found in a narrow range of MTWM of between 279 

23.5° and 25.2° (Table 1), which, however, is a wider temperature range than reported for the 280 

other pine species (Tapias et al., 2004; Roberts & Ezcurra, 2012). Therefore, this species should 281 

adapt well to high temperatures in the summer (Lanner et al., 1998), which is usually a very dry 282 

period in the study site (León-Portilla, 1988). However, the probability of occurrence was the 283 

highest for an MTWM of 23.5°C (Fig. 5, which occurred at the top of the Sierra La Asamblea, at 284 

an elevation of about 1,660 m). We therefore conclude that this species can also grow well when 285 

the MTWM is below 23.5°C. On the other hand, considering MTWM as factor yielded a 286 

probability of occurrence of 25-80%. The spatial resolution of the climatic data by the national 287 
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database run by the University of Idaho is probably not adequate to describe the microhabitat of 288 

P. monophylla (Rehfeldt et al., 2006; Marston et al., 2010).  289 

Identification of P. monophylla in the Sierra La Asamblea as the most southern populations 290 

represents an opportunity for research on climatic tolerance and community responses to climatic 291 

variation and change. 292 

 293 
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