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The Californian single-leaf pinyon (Pinus monophylla var. californiarum), a subspecies of the single-leaf

pinyon (the world's only 1-needled pine), inhabits semi-arid zones of the Mojave Desert in southern

Nevada and southeastern California (US) and also of northern Baja California (Mexico). This subspecies is

distributed as a relict in the geographically isolated arid Sierra La Asamblea, between 1,010 and 1,631 m,

with mean annual precipitation levels of between 184 and 288 mm. The aim of this research was i) to

establish the distribution of Pinus monophylla var. californiarum in Sierra La Asamblea, Baja California

(Mexico) using Sentinel-2 images, and ii) to test and describe the relationship between this distribution of

Pinus monophylla and five topographic and 18 climate variables. We hypothesized that i) the Sentinel-2

images can be used to accurately detect the P. monophylla distribution in the study site due to higher

resolution (x3) and increased number of bands (x2) relative to Landsat-8, and ii) the topographical

variables aspect, ruggedness and slope are particularly influential because they represent important

microhabitat factors that can affect where conifers can become established and persist.

Methods. It was used an atmospherically corrected a 12-bit Sentinel-2A MSI image with eleven spectral

bands in the visible, near infrared, and short-wave infrared light region combined with the normalized

differential vegetation index (NDVI). Supervised classification of this image was carried out using a

backpropagation-type artificial neural network algorithm. Stepwise multivariate binominal logistical

regression and Random Forest regression including cross valuation (10 fold) were used to model the

associations between presence/absence of pines and the five topographical and 18 climate variables.

Results. Probably, P. monophylla covers 4,955 hectares in the isolated in Sierra La Asamblea, Baja

California (Mexico) via supervised classification of Sentinel-2 satellite images. The NDVI was one of the

variables that contributed to the detection and clearly separated the forest cover (NDVI > 0.35) from the

other vegetation cover (NDVI < 0.20). The ruggedness was the best environmental predictor variable and

indicated that the probability of P. monophylla occurrence was higher than 50% when the degree of

ruggedness was greater than 17.5 m. When average temperature in the warmest month increased from

23.5 to 25.2 °C, the probability of occurrence of P. monophylla decreased.

Discussion. The classification accuracy (Kappa) was similar to other studies using Sentinel-2A MSI

images. Ruggedness is known to generate microclimates and provides shade that decreases

evapotranspiration from pines in desert environments. Identification of P. monophylla in Sierra La

Asamblea as the most southern populations represents an opportunity for research on climatic tolerance
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and community responses to climatic variation and change.
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16 ABSTRACT

17 Background. The Californian single-leaf pinyon (Pinus monophylla var. californiarum), a 

18 subspecies of the single-leaf pinyon (the world's only 1-needled pine), inhabits semi-arid zones 

19 of the Mojave Desert in southern Nevada and southeastern California (US) and also of northern 

20 Baja California (Mexico). This subspecies is distributed as a relict in the geographically isolated 

21 arid Sierra La Asamblea at elevations of between 1,010 and 1,631 m, with mean annual 

22 precipitation levels of between 184 and 288 mm. The aim of this research was i) to establish the 

23 distribution of P. monophylla var. californiarum in Sierra La Asamblea, Baja California 

24 (Mexico) using Sentinel-2 images, and ii) to test and describe the relationship between this 

25 distribution of P. monophylla and five topographic and 18 climate variables. We hypothesized 

26 that i) the Sentinel-2 images can be used to accurately detect the P. monophylla distribution in 
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27 the study site due to higher resolution (x3) and increased number of bands (x2) relative to 

28 Landsat-8, and ii) the topographical variables aspect, ruggedness and slope are particularly 

29 influential because they represent important microhabitat factors that can affect where conifers 

30 can become established and persist. Methods. It was used an atmospherically corrected a 12-bit 

31 Sentinel-2A MSI image with eleven spectral bands in the visible, near infrared, and short-wave 

32 infrared light region combined with the normalized differential vegetation index (NDVI). 

33 Supervised classification of this image was carried out using a backpropagation-type artificial 

34 neural network algorithm. Stepwise multivariate binominal logistical regression and Random 

35 Forest regression including cross valuation (10 fold) were used to model the associations 

36 between presence/absence of P. monophylla and the five topographical and 18 climate variables. 

37 Results. Probably, P. monophylla covers 4,955 hectares in the isolated in Sierra La Asamblea via 

38 supervised classification of Sentinel-2 satellite images. The NDVI was one of the variables that 

39 contributed to the detection and clearly separated the forest cover (NDVI > 0.35) from the other 

40 vegetation cover (NDVI < 0.20). The ruggedness was the best environmental predictor variable 

41 and indicated that the probability of P. monophylla occurrence was higher than 50% when the 

42 degree of ruggedness was greater than 17.5 m. When average temperature in the warmest month 

43 increased from 23.5 to 25.2 °C, the probability of occurrence of P. monophylla decreased. 

44 Discussion. The classification accuracy was similar to other studies using Sentinel-2A MSI 

45 images. Ruggedness is known to generate microclimates and provides shade that decreases 

46 evapotranspiration from pines in desert environments. Identification of P. monophylla in the 

47 Sierra La Asamblea as the most southern populations represents an opportunity for research on 

48 climatic tolerance and community responses to climatic variation and change.

49
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50 INTRODUCTION

51 The Californian single-leaf pinyon (Pinus monophylla var. californiarum), a subspecies of the 

52 single-leaf pinyon (the world's only 1-needled pine), inhabits semi-arid zones of the Mojave 

53 Desert in southern Nevada and southeastern California (US) and also of northern Baja California 

54 (BC) (Mexico). It is cold-tolerant, drought resistant and is mainly differentiated from the typical 

55 subspecies Pinus monophylla var. monophylla by a larger number of leaf resin canals and longer 

56 fascicle-sheath scales (Bailey, 1987). This subspecies was first reported in BC in 1767 (Bullock 

57 et al. 2006). The southernmost record of P. monophylla var. californiarum in America was 

58 previously in BC, 26-30 miles north of Punta Prieta, at an elevation of 1,280 m (longitude -

59 114°.155; latitude 29°.070, catalogue number ASU 0000235), and the type specimen is held in 

60 the Arizona State University Vascular Plant Herbarium. 

61 This subspecies is distributed as a relict in the geographically isolated Sierra La Asamblea, at a 

62 distance of 196 km from the Southern end of the Sierra San Pedro Martir and at elevations of 

63 between 1,010 and 1,631 m (Moran, 1983, Table 2), with mean annual precipitation levels of 

64 between 184 and 288 mm (Roberts and Ezcurra, 2012, Table 2). The Californian single-leaf 

65 pinyon grows together with up to about 86 endemic plant species, although the number of 

66 species decreases from north to south (Bullock et al. 2008). 

67 Adaptation of P. monophylla var. californiarum to arid ecosystems enables the species to survive 

68 annual precipitation levels below 150 mm. In fact, seeds of this variety display a high survival 

69 rate under shrubs such as Quercus spp. and Arctostaphylus spp., a strategy that enables the pines 

70 to widen their distribution, as has occurred in the great basin in California (Callaway et al. 1996; 

71 Chambers, 2001) and for them to occupy desert zones such as Sierra de la Asamblea. Despite the 
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72 importance of this relict pine species, its existence is not considered in most forest inventories in 

73 Mexico, and its distribution is generalized in vegetation cover maps (CONABIO, 2017). 

74 Remote sensing techniques facilitate analysis of the temporal-space dynamics of the vegetation 

75 in isolated sites, as with the piñon pine in Sierra de la Asamblea. Tree species distribution is 

76 generally modulated by hydroclimatic variables and topographies (Elliot et al. 2005), and it is 

77 therefore possible to determine the spatial conditions that favour the presence of forests, 

78 especially by using digital terrain models (DTMs). Such models have shown, e.g., that tropical 

79 and temperate forests tend to grow faster and more densely in sites with variable elevation and 

80 slope (Decastilho et al. 2006; Spasojevic et al. 2016). Another attribute that can be analyzed 

81 using DTMs is the slope, aspect and terrain ruggedness index (Riley et al. 1999), used to express 

82 the difference in elevation of adjacent cells in a digital elevation grid. The less intense solar 

83 radiation to which northern orientations are exposed is known to promote the growth and 

84 productivity of vegetation (Osem et al. 2009).  In addition, forests in less rugged sites (flatlands 

85 and valleys) are known to be particularly susceptible to fire, while heterogeneous and highly 

86 rugged forest sites are more dispersed and less likely to be affected by fire (Ganteaume and 

87 Jappiot, 2013). Geomorphic attributes such as ruggedness and profile convexity have recently 

88 been used to classify vegetation types from satellite images (Franklin et al. 2000; Carler & 

89 Wolff, 2004; Waser et al. 2011) and have been used along with multi-temporal analysis of 

90 images to identify forest types (Zhu & Liu, 2014). 

91 Remote sensing with Landsat images has proved useful for detecting forest cover; the Landsat-8 

92 satellite has sensors (7 bands) that can be used to analyze vegetation in spatial resolutions of 30 

93 m (Johansen and Phinn, 2006). However, the European Space Agency's Copernicus program has 
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94 made Sentinel-2 satellite images available to the public free of charge. The spatial resolution (10 

95 meters per pixel) is three times higher than that of Landsat images, thus increasing their potential 

96 for detecting and differentiating between types of vegetation cover (Drush et al. 2012; Borras et 

97 al. 2017). The Sentinel-2 has 13 bands which provide high-quality radiometric images of spatial 

98 resolution 10 - 20 m in the visible and infrared regions of the electromagnetic spectrum. These 

99 images are therefore ideal for land classification (ESA, 2017).

100 The aim of this research was i) to establish the distribution of Pinus monophylla var. 

101 californiarum in the Sierra La Asamblea, Baja California (Mexico) using Sentinel-2 images, and 

102 ii) to test and describe the relationship between this distribution of Pinus monophylla and five 

103 topographic and 18 climate variables. We hypothesized that i) the Sentinel-2 images can be used 

104 to accurately detect the P. monophylla distribution in the study site due to higher resolution (x3) 

105 and increased number of bands (x2) relative to Landsat-8, and ii) the topographical variables 

106 aspect, ruggedness and slope are particularly influential because they represent important 

107 microhabitat factors that can affect where conifers can become established and persist (Marston, 

108 2010).

109 MATERIALS AND METHODS

110 Study area

111 Sierra La Asamblea is located in Baja California9s central desert (-114° W 29° 19´ N, range of 

112 altitude 280-1,662 m, Fig. 1). The climate is arid, with maximum temperatures of 40° C in the 

113 summer (Garcia, 1998). The Sierra is steeper on the western slopes, with an average incline of 

114 35º, and with numerous canyons with occasional springs and oases. The valleys and plateaus are 

115 common in the proximity of the Gulf of California. Granite rocks occur south of the Sierra and 
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116 meta-sedimentary rocks along the north and southeast of the slopes. The predominant types of 

117 vegetation are the xerophilous scrub, which is distributed at elevations ranging from 200 to 1,000 

118 m. Chaparral begins at an altitude of 800 m, and representative specimens of Adenostoma 

119 fasciculatum, Ambrosia ambrosioides, Dalea bicolor orcuttiana Quercus tuberculata, Juniperus 

120 california and Pinus monophylla are also present at elevations higher than 1,000 m. Populations 

121 of the endemic palm tree Brahea armata also occur in the lower parts of the canyons with 

122 superficial water flow and through the rocky granite slopes (Bullock et al. 2006).

123 Figure 1. Map of Sierra La Asamblea. The black circles indicate georeferenced sites occupied by 

124 Pinus monophylla.

125 Establishing the distribution of P. monophylla var. californiarum using Sentinel-2 images

126 Senitnel-2A multispectral instrument (MSI) L1C dataset acquired on 11 October 2016, in the 

127 trajectory of coordinates latitude 29º.814, longitude 114º.93, was downloaded from the US. 

128 Geological Survey (USGS) Gloval Visualizaton Viewer at http://glovis.usgs.gov/. The 12-bit 

129 Sentinel-2A MSI image has 13 spectral bands in the visible, NIR, and SWIR wavelength region 

130 with spatial resolutions of 10-60 m. However, the band one used for studies of coastal aerosol 

131 and the band ten applied for cirrus were not used in this study (ESA, 2017). Hence, the data 

132 preparation involved the resampling of the seven S2 bands acquired at 20 m and 60 m to obtain a 

133 layer stack of 11 spectral bands at 10 m (Table 1) using the ESA´s Sentinel-toolbox ESA 

134 Sentinel Application Platform (SNAP) and then converted to ENVI format. 

135 Because atmospherically improved images are crucial to assess spectral indices with spatial 

136 reliability and products comparison, level-1C data have been converted to level-2A (top-of-

137 canopy) taking into account the effects of aerosols and water vapor on reflectance (Radoux et al., 
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138 2016). These corrections have been realized using the Sea2Cor tool (Telespazio VEGA 

139 Deutschland GmbH, 2016) for the Sentinel-2 images.

140 Table 1. Sentinel-2 spectral bands used to detect the Pinus monophylla forest

141 The following equation was used to calculate the normalized difference vegetation index 

142 (NDVI): NDVI = (NIR 3 R) / (NIR + R), where NIR is the near infrared light (band) reflected by 

143 the vegetation, and R is the visible red light reflected by the vegetation. The NDVI is useful for 

144 discriminating the layers of temperate forest from scrub and chaparral. Areas occupied by large 

145 amounts of unstressed green vegetation will have values much higher than 0 and areas with no 

146 vegetation will have values close to 0 and, in some cases, negative values (Pettorelli, 2013).

147 The NDVI image was combined with the previously described multi spectral bands. Supervised 

148 classification of this image was carried out using a backpropagation-type artificial neural 

149 network (ANN) algorithm. The input weights corresponded to the values of the pixels twelve of 

150 Sentinel-2 and of the NDVI image. A logistic activation function was used with a training rate of 

151 0.20 and 40 interactive processes. The network also calculates the error at each iteration (RMS) 

152 (Braspenning & Thuijisman, 1995). Additionally, the support vector machine algorithm (SVM) 

153 was used to classify the MSI (Mountrakis et al., 2011).

154 The training sites corresponded to two groups of georeferenced sites (Datum WGS-84, 11N) 

155 obtained during a project entitled <Oasis evaluation in Baja California=. The coordinates of the 

156 first group of sites whose were obtained in the field in October 2014 and October 2015. Four 

157 classes were defined with the object improving the discrimination between vegetation cover. The 

158 following classes were considered: i) pines, 502 sites, ii) scrub, 563 sites, iii) chaparral, 419 site 
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159 and iv) no apparent vegetation, 419 sites. The second group comprised control sites and the 

160 coordinates were obtained by systematic sampling of the vegetation layers of the V series of land 

161 use and cover vegetation of the National Institute of Statistics and Geography (INEGI, 2015). 

162 The group included the following classes: i) pines, 596 sites, ii) scrub, 619 sites, iii) chaparral, 

163 481 sites, and iv) no apparent vegetation, 418 sites. 

164 The classification was validated using a confusion matrix, which is a table that compares the real 

165 values with the classification results. The confusion matrix was also used to determine the user 

166 accuracy, which refers to the total number of correct pixels/total number of reference pixels × 

167 100% (Congalton, 1991). The accuracy of classification was calculated using the Kappa (K) 

168 coefficient. The K coefficient is a statistic used in accuracy assessment to measure whether one 

169 error matrix is significantly different from another. This statistic takes values of between -1 and 

170 +1, where values close to one indicate a high degree of agreement between classes and 

171 observations, and a value of 0 suggests that the observed agreement is random (Abraira, 2001).

172 Relationship between the distribution of P. monophylla and topographic and climate variables

173 To test and model the association between presence/absence of P. monophylla in the study area 

174 and topographical or climate variables, points estimates of the topographical variables 

175 ruggedness, slope, aspect, elevation and convexity and 18 climate variables (Table 2) were 

176 obtained from a national database managed by the University of Idaho 

177 (http://forest.moscowfsl.wsu.edu/climate/) and which requires point coordinates (latitude, 

178 longitude, and elevation) as the main inputs (Rehfeldt et al. 2006;  Rehfeldt et al. 2006). 

179 Table 2. Topographical and climatic variables considered in the study
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180 For each variable in Table 2, a Kruskal-Wallis test was used to determine the difference in the 

181 median values in relation to presence and absence of P. monophylla. All variables for which no 

182 significant difference between the medians was obtained after Bonferroni correction (³ = 0.0005) 

183 were excluded from further analysis. The colinearity between the significant variables was 

184 measured using the Spearman correlation coefficient (rs). When the rs value for the difference 

185 between two significant variables was larger than 0.7, only the variable with the lowest p value 

186 in the Kruskal-Wallis test was used in the multivariate regressions. Finally, stepwise multivariate 

187 binominal logistical regression and Random Forest regression including cross valuation (10 fold) 

188 were used to model the associations between presence/absence of P. monophylla and the most 

189 important topographical and climate variables (Shirk et al., 2017).

190 Regressions including cross valuation were carried out using the trainControl, train, glm (family 

191 = "binomial") and rf functions, as well as the <randomForest= and <caret= packages (Venables 

192 and Ripley, 2002) in R (version 3.3.2) (Development Core Team, 2017). The goodness-of-fit of 

193 the regression models was evaluated using Akaike information criterion (AIC), root-mean-square 

194 error (RMSE) and pseudo coefficient of determination (R2). 

195 RESULTS

196 Our model showed a potential P. monophylla cover of 4,955 hectares in the in Sierra de la 

197 Asamblea, Baja California, Mexico. The supervised classification with ANN indicated an overall 

198 accuracy of identification 89.78%. This level of accuracy was obtained in the 32 interactions 

199 with 0.04 RMS training. The proportion of omission errors in the pine class was only 12.42%, 

200 i.e. 87.58% of the pixels were correctly classified. The chaparral class had the highest proportion 

201 of omission errors (27.65%) (Table 3, Fig. 2; Fig. 3). The value of NDVI in the pine forest 
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202 fluctuated between 0.30 - 0.41, and in chaparral between 0.24 - 0.28. The lowest values of NDVI 

203 occurred in the scrub vegetation with values between 0.10 - 0.15. The analysis using the SVM 

204 classifier only showed overall accuracy of 72%.

205 Table 3. Results of the classification monitored by neural network. The overall accuracy of 

206 classification was 89.78%.

207 Figure 2. (A) Detection of Pinus monophylla by neural network classification. The light yellow 

208 shading polygon represents pine forest published in the V series of INEGI (2013). (B) 

209 Distribution of pines in the rugged sites in the Sierra La Asamblea (Photograph by Jonathan 

210 Escobar).

211 Figure 3. Spectral signatures of cover vegetation in the Sierra La Asamblea, Baja California.

212 The Kruskal-Wallis test indicated that the median values for ruggedness (p < 2.1e-16), slope (p < 

213 2.2e-16), MTWM (p = 0.000014), MMAX (p = 0.000048) and SPRP (p = 0.00037) were most 

214 different between sites with presence and absence of P. monophylla. The variable slope was 

215 closely correlated with ruggedness as well as with MMAX and MTWM (rs > 0.7). The pslope of 

216 the Kruskal-Wallis test was larger than pruggedness and pMMAX larger than pMTWM. Slope and 

217 MMAX were therefore excluded from the multivariate regression analysis. The stepwise 

218 multivariate binominal logistical and Random Forest regression showed that the best <presence 

219 of pines= model included the independent variables ruggedness and average temperature in the 

220 warmest month (MTWM) (Table 4). 

221 Table 4. Results obtained with the best multivariate binomial logistic regression model (AIC = 

222 611.96). 
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223 The ruggedness factor was the best predictor variable and indicated that the probability of P. 

224 monophylla occurrence was higher than 50% when the degree of ruggedness was greater than 

225 17.5 m (Fig. 4). When MTWM increased from 23.5 to 25.2 °C, the probability of occurrence of 

226 Pinus monophylla decreased (Fig. 5). After cross validation (tenfold), the Random Forest model 

227 revealed that the variables ruggedness and MTWM explained the variation in the presence of P. 

228 monophylla, with R2
 = 0.371 and RMSE = 0.403.

229 Figure 4. The relationship between the probability (P) of occurrence of Pinus monophylla and 

230 the ruggedness (m) of the terrain in Sierra La Asamblea, Baja California, Mexico.

231 Figure 5. The relationship between the probability (P) of occurrence of Pinus monophylla and 

232 the average temperature in the warmest month (MTWM) in Sierra La Asamblea, Baja California, 

233 Mexico.

234 DISCUSSION

235 Detection of pine forest by using ANN proved efficient. The NDVI was one of the variables that 

236 contributed to the detection and clearly separated the forest cover (NDVI > 0.35) from the other 

237 vegetation cover (NDVI < 0.20). The presence of the blue palm Brahea armata and fan palm 

238 Washingtonia filifera, which grow in the canyons and had values of NDVI greater than 0.30, 

239 may have confused the classification. However, these species are restricted to an elevation of less 

240 than 1,000 m, and were therefore excluded from the classification (Bullock et al. 2008).

241 The overall classification accuracy in this study (K = 0.90) was similar to other studies using 

242 Sentinel-2A MSI images. Immitzer et al. (2016) reported a K of 0.85 in tree detection in Europa 

243 using five classes and random forest classifier in Europa. Vieira et al. (2003) found a K = 0.77 in 
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244 eastern Amazonia using seven classes and 1999 Landsat 7 ETM imagery. However, Sothe et al. 

245 (2017) reported a K = 0.98 and K = 0.90, respectively evaluating three successional forest stages 

246 and field in a subtropical forest in Southern Brazil by Sentinel-2 and Landsat-8 Data associated 

247 with the support vector machine algorithm. Kun et al. (2014) showed a K of 0.70 to 0.85 in land-

248 use type detection including forests in China using the support vector machine algorithm 

249 classifier and Landsat-8 images providing lower spatial resolution than Sentinel. The cause of 

250 this very good accuracy of Kun et al. was probably the large-scale and clearly differentiated 

251 land-use types used as classes. 

252 Ruggedness of the terrain was the most important topographic variable, significantly explaining 

253 the presence of pines in Sierra La Asamblea (Table 3). Ruggedness, which is strongly positively 

254 correlated with slope, may reduce solar radiation, air temperature and evapotranspiration due to 

255 increased shading (Di Castri et al. 1981; Tsujino et al. 2006; Bullock et al. 2008).

256 The pines were expected to colonize north facing slopes, which are exposed to less solar 

257 radiation than slopes facing other directions. However, the topographical variable aspect was not 

258 important in determining the presence of P. monophylla var. californiarum in the study site, 

259 possibly because of physiological adaptations regarding water-use efficiency and photosynthetic 

260 nitrogen-use efficiency (DeLucia and Schlesinger, 1991),  as reported for the Pinus monophylla, 

261 P. halepensis, P. edulis, P. remota, in arid zones (Lanner & Van Devender, 2000; Helman et al. 

262 2017). The Mediterranean climate, with wet winters and dry summers, is another characteristic 

263 factor in this mountain range. In the winter in this part of the northern hemisphere, the lower 

264 position of the sun, which normally affects stronger the southern aspect by radiation could not 

265 show to advantage due to clouds, rainfall and occasional snowfall (León-Portilla, 1988). During 
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266 the summer, the level of solar radiation is high, but similar in all directions because the sun is 

267 closest to its highest point (Stage and Salas, 2007).

268 The above-mentioned finding contrasts with those of other studies reporting that north-eastern 

269 facing slopes in the northern hemisphere receive less direct solar radiation, thus providing more 

270 favourable microclimatic conditions (air temperature, soil temperature, soil moisture) for forest 

271 development, permanence and productivity than southwest-facing sites (Astrom et al. 2007; 

272 Stage & Salas, 2007; Hang et al 2009; Marston et al. 2010; Klein et al. 2014).  DeLucia & 

273 Schleinger (1991) reported for the P. monophylla populations in the Great Basin California 

274 desert with summer rainfall (monsoon) that this tree species preferred an east-southeast aspect 

275 with lower solar radiation and evapotranspiration (DeLucia & Schleinger, 1991).

276 The probability of occurrence of P. monophylla was also related to the climatic variable MTWM. 

277 In the Sierra La Asamblea, this pine species was found in a narrow range of MTWM of between 

278 23.5° and 25.2° (Table 1), which, however, is a wider temperature range than reported for the 

279 other pine species (Tapias et al., 2004; Roberts & Ezcurra, 2012). Therefore, this species should 

280 adapt well to high temperatures in the summer (Lanner et al., 1998), which is usually a very dry 

281 period in the study site (León-Portilla, 1988). However, the probability of occurrence was the 

282 highest for an MTWM of 23.5°C (Fig. 5, which occurred at the top of the Sierra La Asamblea, at 

283 an elevation of about 1,660 m). We therefore conclude that this species can also grow well when 

284 the MTWM is below 23.5°C. On the other hand, considering MTWM as factor yielded a 

285 probability of occurrence of 25-80%. The spatial resolution of the climatic data by the national 

286 database run by the University of Idaho is probably not adequate to describe the microhabitat of 

287 P. monophylla (Rehfeldt et al., 2006; Marston et al., 2010). 
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288 Identification of P. monophylla in the Sierra La Asamblea as the most southern populations 

289 represents an opportunity for research on climatic tolerance and community responses to climatic 

290 variation and change.

291
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Figure 1(on next page)

Map of Sierra La Asamblea.

The black circles indicate georeferenced sites occupied by Pinus monophylla
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Figure 2(on next page)

Detection of Pinus monophylla

(A) Detection of Pinus monophylla by neural network classification. The light yellow shading

polygon represents pine forest published in the V series of INEGI (2013). (B) Distribution of

pines in the rugged sites in the Sierra La Asamblea (Photograph by Jonathan Escobar)

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.3439v1 | CC BY 4.0 Open Access | rec: 29 Nov 2017, publ: 29 Nov 2017



 

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.3439v1 | CC BY 4.0 Open Access | rec: 29 Nov 2017, publ: 29 Nov 2017



Figure 3(on next page)

Spectral signatures

Spectral signatures of cover vegetation in the Sierra La Asamblea, Baja California
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Figure 4(on next page)

The relationship between the probability (P) of occurrence of Pinus monophylla and the

ruggedness

The relationship between the probability (P) of occurrence of Pinus monophylla and the

ruggedness (m) of the terrain in Sierra La Asamblea, Baja California, Mexico
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Figure 5(on next page)

The relationship between the probability (P) of occurrence of Pinus monophylla and the

average temperature

The relationship between the probability (P) of occurrence of Pinus monophylla and the

average temperature in the warmest month (MTWM) in Sierra La Asamblea, Baja California,

Mexico
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Table 1(on next page)

Sentinel-2 spectral bands

Sentinel-2 spectral bands used to detect the Pinus monophylla forest
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Bands Central wave length (µm) Resolution (m)

Band 23Blue 0.490 10

Band 3 3Green 0.560 10

Band 4 3 Red 0.665 10

Band 5- Vegetation red edge 0.705 20

Band 63 Vegetation red edge 0.740 20

Band 73 Vegetation red edge 0.783 20

Band 8- NIR 0.842 10

Band 8A3 Vegetation red edge 0.865 20

Band 9 3  Water vapour 0.945 60

Band 11 3SWIR 1.610 20

Band 12 3SWIR 2.190 20

1
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Table 2(on next page)

Topographical and climatic variables

Topographical and climatic variables considered in the study
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Variable Abbreviation Units Mean SD Max Min

Ruggedness IRT m 20.33 6.66 35.90 4.69

Slope S º 28.38 8.92 48.34 3.42

Aspect A º 190.51 68.72 350.44 20.55

Elevation E m 1302.41 124.96 1631 1010

Convexity C º -0.012 0.65 2.49 -2.44

Mean annual temperature MAT °C 16.57 0.38 17.4 15.5

Mean annual precipitation MAP mm 229.56 19.95 288 184

Growing season precipitation, April-

September

GSP mm 79.08 9.60 108 57

Mean temperature in the coldest month MTCM °C 10.85 0.37 11.7 9.8

Minimum temperature in the coldest 

month

MMIN °C 3.42 0.41 4.3 2.3

Mean temperature in the warmest 

month

MTWM °C 24.52 0.31 25.2 23.5

Maximum temperature in the warmest 

month

MMAX °C 34.10 0.31 34.7 33.1

Julian date of the last freezing data of 

spring

SDAY Days 82.57 7.86 106 60

Julian date of the first freezing data of 

autumn

FDAY Days 331.28 2.62 339 324

Length of the frost-free period FFP Days 259.22 8.36 285 240

Degree days Ã 5°C DD5 Days 4245.26 137.52 4550 3852

Degree days Ã 5°C accumulating 

within the frost-free period

GSDD5 Days 3491.82 164.76 3944 2995

Julian date when the sum degree days 

Ã 5°C reaches 100

D100 Days 17.07 1.10 20 15

Degree days Â 0 °C DD0 Days 0 0 0 0

Minimum degree days Â 0 °C MMINDD0 Days 8.07 20.29 145 45

Spring precipitation Sprp mm 7.54 0.71 10 6

Summer precipitation Smrp mm 43.74 6.29 62 29

Winter precipitation Winp mm 110.93 7.93 133 93

1
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Table 3(on next page)

Results of the classification

Results of the classification monitored by neural network. The value of the Kappa coefficient

was 0.862. The accuracy of classification of pine forest was 89.78%
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Training set data (Known Cover Types) * 

Classification 

data

P S C WV Total User accuracy (%)

P 522 0 14 0 536 87.58

S 24 619 119 2 764 100

C 50 0 348 7 405 72.35

WV 0 0 20 418 409 97.85

Total 596 619 481 418 2,114

1
* P = piñon pine; S = shrub; C = chaparral; WV= without vegetation

2
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Table 4(on next page)

Results obtained with the best multivariate binomial

Results obtained with the best multivariate binomial logistic regression model (AIC = 611.96)
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Factor Estimate RMSE Z value Pr(>|z|)    

Intercept 26.38568    8.81813   2.992 0.00277

Ruggedness  0.18183 0.01579   11.519 <2e-16

MTWM  -1.19683 0.35920    -3.332 0.00086
1
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