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ABSTRACT

This work aims for modeling and simulating the metastasis of cancer, via the analogy between the
cancer process and the board game Go. In the game of Go, black stones play first, could correspond
to metastasis of cancer. Moreover, playing white stones on the second turn would correspond to the
inhibition of cancer invasion. Mathematical modeling and algorithmic simulation of Go may, therefore,
benefit the efforts to deploy therapies to surpass cancer illness by providing insight into the cellular
growth and expansion over a tissue area. In this paper, we use the Ising Hamiltonian, an energy model
to describe the energy exchange in interacting particles, to propose the modeling of cancer dynamics.
Parameters in the energy function refer the biochemical elements that induce cancer metastasis; as well
as, the biochemical immune system process of response

INTRODUCTION
The dominant pathology and mortality today is due to diseases such as cancer, diabetes, and cardiovascular
events (Arredondo and Aviles, 2015). Common features of these diseases are to have a long latency
period and to be related to a large number of causal factors. Therefore, we might call them complex
diseases. In modern times, these diseases imply strong social and financial problems and a heavy burden
for the health systems(Curado and de Souza, 2014; Jemal et al., 2011). Of these factors, some of them are
causal (negative) factors of the disease (Parkin et al., 2011) and others preventive (positive) factors (Kushi
et al., 2012). There is no absolute dominant factor, but all of them have the same “weight”, the diseases
complexity and the need to adopt novel approaches to particularly for cancer.

In recent decades, numerous studies have identified common characteristics, so-called “hallmarks”,
that allow the survival and growth of cells to become cancerous tumors and are present across different
types of cancer (Hanahan and Weinberg, 2011). These hallmarks include sustained proliferative signaling,
growth suppressor evasion, replicative immortality, increased invasive capacity, resistance of cell death,
induction of angiogenesis, and ability to undergo metastasis. The continued research around cancer
expanded these hallmarks to include the deregulation of metabolism, immune system evasion, genomic
instability, and tumor-promoted inflammation. Altogether, these characteristics are part of the driving
program for cancer cells successfully spread and control its growth and resources.

Go is a two player, zero-sum and complete information game, played on a board of 19 x 19 grid. A
Go gaming state is a configuration given by the combination of black/white/empty board positions (Jeong
et al., 1994), senseis.xmp.net. The goal of a successful game is to gain the most territory of the board.
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At each turn, each player places one stone on an empty board cross-point position. Black plays first,
and white receives a compensation in the score known as komi, by playing the second turn. Same color
stones joined in horizontal or vertical lines become one indivisible compound stone. Hence, single or
long stones are struggling for achieving territory control. One stone’s liberty is any contiguous vacant
board cross-point in the vertical or horizontal direction. If a stone has zero liberties because is surrounded
by the adversary that stone can be removed from the board, this is referred as a capture. Placement of a
stone that would result in direct capture is suicide, which is not allowed. A stone is alive while it cannot
be captured and dead if it cannot avoid being captured. The game ends when both players pass a turn.
The score is computed based on both board territory occupied and the number of single adversary stones
captured. The winner is declared as the player having the most extensive territorial control and the highest
number of captures.

A triumph in a Go match requires complex strategies that use a range of simple tactics (Jeong et al.,
1994). For humans or computer Go players, the hardest task is to assess how to deploy stones to better
the control of the board over the adversary player at any game stage. The analysis and algorithmic
development of Go game have been in the core advances in computer science this century (Silver et al.,
2016). Still in 2016, a categorical triumph of the AlphaGo machine winning more than 60 simultaneous
games against the top Go human player is the definitive triumph of Go game computational intelligence
over Go humans competences. (Silver et al., 2016).

The Ising model as the basis for the modeling, algorithmic setting and simulation of cancer behave so
advantage its comprehension describes the interaction of the magnetic field in two materials, allowing to
observe the phase transition, sudden changes in the energy where the materials change their state. The
study of phase transitions in biological system can indicates fast changes in the metabolic or genomic
landscape(Züleyha et al., 2017; Llanos-Pérez et al., 2016). As a general descriptor of interactions, the
Ising model is an approximation to describe the interaction of the cancer cells and healthy or immune
cells and how some key event lead to the change from healthy to a metastatic cancer or its remission .
Previously related, the Ising model was used to deal with Go gaming phenomenology (Alvarado et al.,
2017), and to model the cell pass from healthy to cancer as a phase transition (Züleyha et al., 2017;
Llanos-Pérez et al., 2016).

In this work we try to model the conflict between metastatic dynamics and the action of the human
immunologic system, using as a metaphor a game of strategy, the Go game. In the struggling for board area
control in Go, the Ising model is relevant to modeling the dynamics of complex interaction, henceforth
for designing algorithms to quantify the synergy among allied stones as well as the tension against the
adversary ones. Definition of energy function stands back algorithms to compute the power of stones
patterns at the successive Go states, so account each state dominance. A phase-transition-like process
happens when after a movement the black - white force equilibrium is broken and emerges pre-eminence
of blacks over white or conversely Alvarado et al. (2017).

Ising model
Ising model describes magnetic properties of materials from the interactions of constituent atomic spins,
as elementary magnetic moments which possess a dichotomy behavior that points randomly in the up
or down directions, or formal dichotomy value 1 or -1. Each spin interacts with neighboring spins or
with external fields that tend to align them in the applied direction, and depending on the strength of
interactions, the whole system gets phase transitions among new spin clusters domains, percolate through
the entire system, or fill out whole regions of the material. The spins are arranged in an N-dimensional
lattice, which the Hamiltonian describes energy interaction in the following equation:

H = ∑
i j

wi jxix j −µ ∑
i

hixi (1)

wi j sets for interaction between spin i and j, µ is the magnitude of an external magnetic field, and hi
the magnetic field contribution at site i; for a homogeneous external field, hi = 1.

The Ising modeling of interaction cancer versus immune system
Recent modeling of metastasis includes the use of game theory parameters (Salimi Sartakhti et al., 2017),
and differential or partial equations (Eftimie et al., 2011) (Llanos-Pérez et al., 2016) proposals to quantify
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the impact to the cells a given element known to be present in metastatic niches (Salimi Sartakhti et al.,
2017), or the conversion of healthy cells to the cancer phenotype (Llanos-Pérez et al., 2016). These
approaches are limited in the number of features they can use or using overcomplicated models. With
the Ising model, we flexible can introduce several features related to the cancer metastasis black-white
to the immune system. The Go game outline a suggestive simulation of the interaction between two
types of cells. The combination of the Go game and our Ising model gives the advantage of controlling
the weight of the different features that are relevant for the interaction and allows to model interaction
event by event. This type of control also would allow further research concerning how big a cluster of
black-cancer stones is at a given moment and how it continues its growth or how it shrinks for the pressure
of white-immune stones. With Ising energy, as essential differences with approaches that use differential
or partial equations is the continuous follow up of the effect of the setup at the very early stages of the
simulation. The initial setup to win most of the area is analogous with the existence of the Pre metastatic
Niches (PMNs) Peinado et al. (2017), these particular sites created by the action of primary tumors give
an advantage to the invasion of CTCs. We think each simulation as a patient, our model allows us to
observe the key events that derive in a remission or worsening of the patient at the end.

METHODS
The energy function for Go gaming
The energy function uses the CFG (common fate graphs) representation of Go states (Dorffner et al., 2001).
CFG is a useful technique for grouping stones in Go game as well as for establishing the neighborhood
relationships among them during the game. It makes easy to deal with the interaction among allied stone
(cells), versus adversaries, or with liberties (healthy tissues) involved. Associated to Ising Hamiltonian in
Eq. (1) for modeling Go gaming, the energy function embraces the next parameters:

• The numbers of atomic (single) stones in a molecular (compound) stone.

• The number of eyes a stone is involved too.

• The tactic pattern the stone is making.

• The strength of ally stones that have synergy among them.

• The synergy of ally stones that counterbalance the strength of adversary stones.

To get this goal, we propose the quantitative description of stone utilizing the elements involved in Eq.
(2):

xi = ci

(
ni + rki

eye

)
(2)

ni sets the number of single stones, reye is the constant to represent the occurrence of an eye, reye > 1,
or reye = 0 if no eye; ki sets the number of eyes in stone i, and ci is the stone color, 1 for white, and -1 for
black. Hence, rki

eye quantifies the impact of the number of eyes in i, and ki = 2 says that could never be
captured. If no eye xi just indicates the i size and color. In Hamiltonian of Ising model for Go parameter,
wi j sets the ratio of union or repulsion between each pair i, j of single or compound stones. So wi j
encompasses tensions alongside paths joining stone i to j, being affected by the presence and strength of
adversary stones that may impede the i− j connection; or, as well as, by the presence of allied stones that
result in mutual strengthen. Up to rules and tactics in Go gaming, the feature interaction among stones is
assessed utilizing next Eq. (3):

wi j = ∑
s

rtxi j
s (3)

xi j
s describes each stone s lying between i and j, that makes a tactic pattern; rt sets a quantify of

a-priori known power of the pattern t eye (reye), net (rnet), ladder (rlad), invasion (rinv), reduction (rred).
Pattern parameters fit a total order > induced by a-priori knowledge of Go tactics power, by an averaging
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Go tactic Cells involved in cancer Cancer tactic Assigned
value

Eye CTCs Initial micro tumors 0.7
Invasion tumor initiating cells Primary invasion 0.4
Connection Stromal cells vicinity Metastatic microenvironment

setup
0.1

Ladder tumor cells, Stromal cells tumor secreted factors and extra-
cellular vesicles

0.5

Net tumor cells Premetastatic niche - solid tumor 0.6

Table 1. Correspondence between cancer and immune system tactics to Go tactics

procedure from real matches between top level players estimation open to analysis and precisions: we
say that an eye tactic has top power, followed by a net, a ladder, an invasion and a reduction. Thus,
reye > rnet > rlad > rinv > rred . Single liberty parameter value is rsl = 1.

The first term of Hamiltonian in Eq. (1) accounts the interaction of collaboration among patterns of
same color stones, or the fight against adversaries; for the second term, the particular external field hi adds
the number of liberties the stone i has. Henceforth, given any Go game state, by definitions in equation (2)
and (3) used in equation (1) we quantify the power of each color set of stone on the base of: the each stone
size and, by quantifying, positive with allies and negative with adversaries, the interaction energy within
the tactic the stones are entangled. So, the synergy with allies within each tactic of invasion, reduction,
connection, eye, ladder or net pattern; and, the negative tension under the pressure of the adversary tactics.
It assimilates the Ising-model-based algorithms to approach the growth, metastasis, and control of cancer
process.

Cancer invasion, metastasis and the immunity reaction as Go tactics
For making the analogy between the cancer metastasis and the Go gaming process, we observe that the
Go board is extensive in size to treat it as a tissue or composite organization of epithelial cells, fibrin,
and ECM. The black stones encase several types of cancer cells, like the CTCs, tumor-initiating cells,
and the solid tumor cells. On the other side, the white stones encase several types of tumor suppressor
barriers like the activation of PTEN (Abeshouse et al., 2015), the p19ARF pathway (Young and Jacks,
2010), natural killer cells, cytotoxic T cells, and treatments like chemo- or radiotherapy. Of course, in the
Go game, both the black and white stones have the same type and number of strategies, and the weight of
these strategies is also the same. In the interplay between the cancer cells and the immune system the
number of strategies naturally vary, we assume those are the same number, but a relevant difference with
the previous analysis of the Go gaming is the weight that these strategies can have. Next, we provide
more detail about the Go counterpart of the cancer processes and the proposed comparison following
(Peinado et al., 2017). The Figure 1 illustrates the scheme of cancer as Go gaming: The dynamics of
Go - cancer are CFG depicted and quantified by the Ising Hamiltonian, then we illustrate this cancer cell
spreading and the fight with therapies or immune system.

Each stone is formally described in Eq. (4), and up to if cancer (black) or immune (white) cells
(stones) these are the parameters involved in. Eq. (5) sets the formal account of interaction among cells.
In Table 1 the cells and biochemical processes participating in the cancer growth are listed, each matching
the respective Go tactic. In Table 2 the biochemical elements and processes participating in the immunity
reaction are listed, each matching the respective Go tactic.

To associate the Ising Hamiltonian in Eq. (1) to cancer modeling, the energy function should embrace
the next parameters:

1. Invasion: abnormal cells appear in the vicinity of the tissue or ”sedding”.

2. Reduction: Immune cell system or chemo-radiotherapy try to deactivate or disappear cancer cells
in the proximity.

3. Eye from black stones: micro-tumours appear in the tissue.

4. Eye from white stones: tumour suppressors barriers appear in the tissue.
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Figure 1. We illustrate the similarity of Go gaming and cancer processes: (A) Go game in an
intermediate state having black - white dominance in equilibrium; (B) Ising hamiltonian and the CFG
from the mentioned state; (C) over tissues, the cancer cells expansion versus the immune system behave.

5. Ladder from black stones: cancer cells surrounded vicinity.

6. Ladder from white stones: immune system cells surrounded vicinity.

7. Net: a vicinity surrounded by cancer or immune cells in a loosen up manner.

8. Connection: between each other group of cancer or immune cells.

9. Atari: a cancer cell group adjacently-surrounded by healthy cells.

10. Ko: force equilibrium in a region of the tissue.

We follow the metastasis process described in (Peinado et al., 2017), to correlate some of the Go
tactics into the next cancer steps:

1. tumor presence.
2. Neoangiogenesis.
3. Formation of pre-metastatic niche as a biochemical process (Peinado et al., 2017).
4. Disequilibrium between MMP and TIMP (Salimi Sartakhti et al., 2017).

In the Go board right side in Figure 1 (A), black stones make a strong net in this zone that hardly might
be reduced by white stones, so this net makes a dominance of black stones. Since the cancer perspective,
we could consider this zone as a (long) premetastatic niche thanks to a robust net by cancer cells, that
easies the eventual growth of solid tumors. This kind of net strategy, characteristic in Go gaming to board
area domination, has a direct interpretation of the cancer process: it corresponds to a PMN that induces
cancer metastasis. It is well known that cancer cells are good for invasion but weak for colonization: The
PMN provide the conditions for metastasis success.

The next paired scenarios describe the detailed interaction of immune system versus cancer tactics:
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Go tactic Cells involved in immune sys-
tem

Immune system tactic Assigned
value

Eye Anti-tumoral pathway signaling
activation, macrophages and NK
cells

tumor suppressor barriers 0.4

Reduction Chemo or radiotherapy , T and
B cells

Arrival of chemicals or immune
system cells

0.5

Connection Helper T and B cells Antigen presentation and cell
signaling

0.1

Ladder Macrophages and NK cells A set of protected tissue from the
cancer invasion

0.5

Net Cytotoxic T cells Cytotoxicity 0.7

Table 2. Correspondence between cancer and immune system tactics to Go tactics

• tumor cell seeding (invasion) engage in a confrontation with arrival immune system cells or therapies
(reduction).

• A cancer tumor (net of cancer cells) engage in confrontation with cytotoxicity (net of the immune
system and healthy cells ).

• tumor secreted factors, and extracellular vesicles (ladder of cancer factors) engage in confrontation
with A set of protected tissue from the cancer invasion (ladder of immune system and healthy cells).

• Stromal cells vicinity engage in confrontation with antigen presentation and cell signaling

Ising Hamiltonian for cancer and immune system
The quantitative description of phenomena utilizes the elements involved in Eq. (4):

xi = ci

(
ni + rki

eye

)
(4)

Where now ni sets the number of single or compound cells, ci indicates the group of the cell,1 for the
immune system, -1 for cancer. The existence of an eye reye as explained before. ki sets the number of eyes
in the group i. Thus, rki

eye gives the quantitative impact of the number of eyes each group i and if ki = 2
then that position cannot be captured. For cancer Hamiltonian, the Eq. (4) quantifies each tumor cell size
and ”power”.

In Hamiltonian of Ising model for cancer modeling, wi j sets the ratio of synergy or repulsion between
each pair i, j of single or compound cells. wi j cover tensions of the interaction paths between cells of the
same group, the presence and strength of cells of the adversary group can affect these tensions by the
obstruction of the connections between i− j. The feature interaction among stones is assessed utilizing
next Eq. (5):

wi j = ∑
s

rtxi j
s (5)

xi j
s describes each single or compound cells s interfering with a tactic pattern. rt is the resulting

quantification from the various strategies t: eye (reye), net (rnet), ladder (rlad), invasion (rinv), reduction
(rred). We followed the hierarchy of Go strategy for the three top strategies reye > rnet > rlad . However,
invasions and reductions in the context of cancer carry a different weight where a reduction from the
immune system is an important moment and has an advantage over the invasion due the effectiveness of
the molecular mechanism activated to suppress tumors, therefore: rinv < rred . The connection between the
cells of the same group was left with the same equivalent value. So, the Eq. (5) quantifies the synergy of
cells from the same type, among the tumors or the immune system elements, or the fight tension between
adversaries.

Thus, when Eq. (4) and (5) are used in the Eq. (1) expression measures the interaction strength among
all of the groups: is an expression of the contribution of each cancer ”tactic”: likely cancer eye, ladder or
net pattern; or the invasion, reduction or connection of cancer tumors.
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Scenarios and simulations
We used an in-house Ising model simulator, programmed to use four different behavior scenarios

1. Random versus Random; as a control of the system

2. Aggressive black player (GNUgo) versus passive White player (Montecarlo); Representing a
dominance of cancer cells

3. Good White player (Smart) versus Aggressive black player(GNUgo); Representing a clear state of
metastasis

4. Aggressive white player (GNUgo) versus Aggressive black player (GNUgo); Representing an
equilibrium between strong cancer and a strong immune system

We performed several games using combinations of these four players. We evaluated all saved games
using the Ising model presented previously. We displayed different scenarios according to the tactics of
cancer or the immune system. The different scenarios responded to 3 different notions:

(a) A strong player vs. a weak player that correspond representing metastatic cancer vs. the weaken
immune system or vice-versa the control of cancer cells/tumors by an immune system/therapy,

(b) Equal level players that correspond to a moment in which cancer and immune system is in a tight,
stable relationship, and

(c) A random chance simulation that corresponds to the control scenario.

We simulated 100 games between the different players and saved each game in the .sgf format. The
evaluation of the Ising model was performed by giving different weights to the tactics to reflect the
importance of an event over the other with the values describes earlier in this section.

RESULTS
The energy of a random system
We made the energetic description of the events of the multiple invasions in our simulation with the Ising
model. The winner of the simulation is the group (cancer cells or immune system) with most negative
value for the Ising energy. We performed and analyzed 100 simulations for all given scenarios described
in the method section. Figure 2 presents a staked plot of all the simulation for the random versus random
scenario. Supplementary material 1 provides the individual resulting plots for the 100 simulations for
each scenario. The control scenario of random invasions/reductions showed that each of the simulations
would find have phase transitions between the 200 and 300 events. Between the 300 and the 400 event
several sudden steep energy changes happened in a very short span of time, the changes indicate that
several phase transitions occur as a result of the irregular distribution of the stone/cells in the board. In
the random scenario no simulation ended before the 300 events, in total 55 out of 100 of the simulations
resulted in the cancer cell winning through random invasion, however, there is no trend in their energy
landscape. The energy distribution reflects the movement on the board in a stochastic way, variating in the
number of events it takes to end the simulation (Figure 2A). The normalized values of the Ising energy
allow the contrast of each of the simulations, but more importantly, it let us locate the phase transition
points in this kind of staked plot.

The Ising energy values of the cancer cells or the immune system are close to zero for the most of the
simulation, and usually, this is a draw between the strategies of the two players. The draw indicates that
the system maintains equilibrium approximately up to the 200 events. However, this long equilibrium in
the random scenario is due to the lack of strategies (Figure 2B). Additionally, we extracted the simulations
won by cancer cells or the immune system (Figure 2C and D). The idea behind the isolation of the
corresponding simulation was to observe the energy landscape of the winners and features shared among
both winners. With this separation, we can see that the most prominent positive value corresponds to one
simulation in the immune system player, although some events later it rapidly decreases and won the
match. This sudden change indicates that the immune system cells are in apparent disarray allowing the
cancer cells (black player) to take advantage in this stage then turning the tables and winning the match.
Many simulations reached high Ising energy values, but only a handful of the simulation reach Ising
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energy beyond 10 000 units (Figure 2C). Using the normalized values of the energy shows only some
of the winner’s simulation present sharp Ising energy variations within the first 200 events (Figure 2D).
Further, for most of the simulations, the changes start near to the 200th event, and the most prominent
changes happened just before the 300th event, but still, no trend could be established from isolating the
winners of these simulations.

Figure 2. Comparison of the Random vs. Random scenario. A) A plot of the Ising energy of all the
simulations put together. B) Normalized Ising Energy of all the simulations show in A. C) The upper
panels show only the simulations won by the cancer cells and the lower panel show only the simulation
won by the immune system. D) Normalized Ising energy of the simulation displayed in C in the same
order upper panel corresponds to simulation won by the cancer cells, and the lower panel simulation won
by the immune system.

Being a random scenario the Ising energy takes any value according to the state of the system. This
show that the Ising model describes what is happening in the interplay of all cells in a random cancer cell
seeding scenario. The simulations demonstrate that only seeding events do not have enough energy drive
in all simulation to favor the cancer cells. Also, we can apply the same criteria for the immune system,
where it shows that an uncoordinated immune system is unable to defend the invasion of cancer cells.

Aggressive player as template for the metastasis or a strong immune system
In the following scenarios, GNUGo simulator represents the aggressive player. As expected the aggressive
player won most of the simulations against a good or a passive player. First, we consider the scenario
of the aggressive player versus the passive one (Figure 3). When the aggressive player was against the
passive player, that is represented by a Monte-Carlo based simulator; we notice the trend where most
occasions the aggressive player dominates the board before the 100 events (Figure 3A). We also notice
that any of the simulations acquired greater Ising energy values than the random scenario. Using the
normalized value of the Ising energy, we can see that is really after the 200th event that all the simulation
have a steep rise in their values almost in an exponential shape (Figure 3B). The aggressive player
won these simulations 98.5% of the time. We observed the same trend in the complementary scenario
where the aggressive player represents the cancer cell invasion and metastasis. Here, in this scenario, the
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cancer cells won 97 of the simulation hence causing metastasis, and the immune system won only 3 of
these simulations. In this scenario where few events quickly result in favor to the aggressive player, the
energy landscape of the system always produces very high values. The big energy values indicate that the
previous setup (the first 100 events) the aggressive player prepares the board for the next moves in its
favor, like the presence of PMN for cancer cells or an immune system primed with anti-cancer vaccines.

Figure 3. Comparison of the Aggressive player vs Passive player scenario. A) Plot of the Isign energy
for all the simulations between GNUGo and MonteCarlo, upper panel correspond to cancer ells energy
lower panel correspond to immune system energy. B) Normalized values of the simulations in the same
order as A.

Aggressive and good player resemble the remission or spike in metastasis
In another scenario where we have a good player, represented by a SMART simulator, the Ising energy
landscape is very different. Here the aggressive player won 97% of all the simulations, and the Ising
energy shows the good player holding a more extended stalemate with the aggressive player than the
passive player but shorter than the random player. In general terms, the Ising energy of this scenario is
close to the random scenario limits, except for one simulation that ends up with the highest and lowest
value of all simulation. The Ising energy indicates that the draw between the aggressive and the good
player is maintained close to the 150th event (Figure 4A). After the 200th event, the energy values of the
simulation are separated favoring the aggressive player. However, in many of the simulations after the
200th event, the good player was able to hold the aggressive player into a stalemate. With the normalized
values of Ising energy, we noted several abrupt changes in the energy in very short time span for the
aggressive player, indicated in figure 4B lower panel as the immune system. Comparing the upper and
lower panel of figure 4B shows the presence of two groups of simulation in the aggressive player. The
first group starts with some advantage, and before the 150th event, there are several of these changes
mention before, after this stage the simulation comes to an end. The second group of simulation is at
equilibrium with their counterparts, in this group those changes in the energy happen after the 250th event
and then there is an exponential decrease in Ising energy. On the other hand, the upper panel the passive
player displays a similar energy landscape to the passive player. We noted that for the good player there is
an inflection point for most of the simulation between the 100 and 150 events, after this part, it appears to
be an exponential rise in the normalized Ising energy.

Energetic landscape of the aggressive player as immune system and metastatic cancer
So far, we used the aggressive player acting only as cancer cell spreading or as the response of the
immune system. Now, we used the aggressive player to represent both categories in the same match. In
these scenarios which portrait a strong immune system fighting off an aggressive cancer metastasis, the
energetic description of the simulations showed a behavior different to the random seeding (Figure 5).
In total cancer cells won 55 out of the 100 simulations and the immune system 44 out the 100. In this
scenario we normalized the Ising energy (Figure 5B and D) and again, isolated the simulation won by
each player (Figure 5C and D). Again, the major differences in the energy landscape started after the
100th event, until that point the immune system and the cancer cells were in a stalemate similar to the
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Figure 4. Comparison of the Aggressive player vs. Good player scenario A) Plot of the Ising energy for
all the simulations between GNUGo and SMART, upper panel corresponds to cancer cells energy lower
panel correspond to immune system energy. B) Normalized values of the simulations in the same order as
A.

IS vs C - Time simulation 100 150 200 250 300 350 400 450 500
Random IS vs random C: 0 0 0 0 2 0 60 0 38
Weak IS vs aggressive C: 0 0 15 0 6 0 54 0 25
Medium IS vs aggressive C: 0 0 7 0 59 0 34 0 0
Strong IS vs aggressive C: 0 0 18 0 80 0 2 0 0
Strong IS vs weak C: 0 0 0 0 7 0 21 0 72
Strong IS vs medium C: 0 0 3 0 65 0 32 0 0

Table 3. This table shows the percentage of simulations ended in before a given number of events. The
label meaning is as follows: Strong corresponds to the GnuGo simulator, Medium correspond to the
SMART simulator and the Weak correspond to the MonteCarlo simulator. IS correspond to immune
system and C correspond to Cancer.

scenario of the passive player. Regardless the winner of the simulation, due to the change in the number
of cancer or immune cells, there are several shifts in the overall energy of the system leading to lower
values of energy compared with the other scenarios (Figure5A and C). These shifts are mostly present
after the 150th event and appear even until the end of the simulation. This fluctuation in the energy makes
difficult predict a clear winner during the simulation. The normalized value shows that between the
150th and 250th event there is a big number of rapid changes in the Ising energy landscape. These big
number of changes indicates the importance of the initial setup in the first 100-150 events since after this
number of events the final competition for space depends on the positions of the allied cells (Figure 5B).
The sudden changes in energy can be better appreciated in the normalized energy values of the isolated
winners (Figure 5D). Here, like in the random scenario, there is no trend in the energy landscape, the only
apparent difference is that between the 150-250 events the simulations won by the immune system are
sparser than the simulation won by cancer. That indicates that cancer did not have a better initial setup
than the immune system, forcing a close interchange in the energetic advantage with its opponent, the
immune system.

A comparative summary of the time events spend by the cancer damage versus the immune system
capacity of reaction is in Table 3. The trade-off between cancer and the immune system determines the
time events spent in each of the simulated scenarios.

DISCUSSION
We tangle with the idea that some events in cancer are similar to plays in Go game. Spreading of cancer
starts by invading another space quite far from the point of origin, that is metastasis. Similarly, in Go the
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Figure 5. Comparison of the Aggressive player vs Aggressive player scenario.

black stones’ player, usually, fix next stones very far from previously placed. The Ising model allows us to
describe the phenomena of the interplay of cancer cells and immune system using a theoretical approach
on how such binary system behave regarding an energy landscape. In Physics, forces in conflict, in
quasistationary equilibrium, are frequently associated with processes in the critical zone where qualitative
transitions take place. Perhaps, we might consider critical zone dynamics in further complex diseases
modelling.

We think each simulation as a patient our model allows us to observe the key events that derive in
a remission or worsening of the patient at the end. The use of Ising model allows giving attention to
the difference between scenarios where the cancer is so aggressive that -in our simulations- it takes less
than 150 (time) events to take control of the board, therefore, winning the simulation. The Ising energy
landscape of the random scenario can be compared to the scenario when the aggressive player is both the
immune system and the cancer cells. In both scenarios we were unable to find a trend in the Ising, there is
one common characteristic: during about 100 events there is a substantial exchange of energy between
the immune system and the cancer cells. However, the aggressive player has lower limits of the Ising
energy and shorter span of time (number of events).

In contrast, the other two scenarios with a good and a pas sive player have similar characteristics. In
both scenarios the Ising energy landscape adopts large values, especially in the passive player scenario,
adding to that both show a trend in the energy landscape of an exponential increase of the Ising energy
after the 100-150th events.

Also, we can make the analogy that the case of a more passive immune system, one that is not primed
or boosted to fight cancer, we observed it takes a shorter time (number of events) for aggressive cancer to
gain on the board area making metastasis and winning the match/simulation. This characteristic might be
well a reflex of the initial conditions set by the aggressive cancer nursing a beneficial environment for the
next invasion. Here the energies of the simulation won by aggressive cancer takes considerable negative
values, indicating that the preceding steps give a distinct advantage in the system to cancer spreading. Still,
the very few simulations won by the passive player acting as the immune system takes positive values,
ending the simulation with a value near to zero. This difference tells us there are particular configurations
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of the spreading of cancer that allows openings to change its zone of influence and can be neutralized by
the immune system, modifying the energy landscape from a very disadvantageous to something more
favorable in a very short span of time.

One of the most interesting scenarios is the aggressive player versus itself taking the role of cancer
and immune system. This scenario is analogous to the cancer is aggressive enough in a person with a
strong immune system. It is already mentioned that the Ising energy has many sharp changes in short
periods of time or number of events, this in can be interpreted as the emergence of mutations in the cancer
cells or the boost of the immune system.

While we have used the concept of seeding, the exact number of seeding events for aggressive
cancer cannot be determined experimentally. However, studies in vitro of metastatic melanoma showed
the appearance of probable melanoma cell colonies that later cannot be found in the tissue after some
days possibility invading tissue underneath (Haridas et al., 2017). In fact, our simulations are in 2D
and resemble a lot the spreading of the cancer cell in a monolayer tissue, the introduction of the new
dimension to make the model 3D would enhance our simulation by allowing us to study the vertical
invasion of cancer cells. In the metastatic process, we might have metastasis in more than one place. In
such a case, one might need to model no a binary process but an n-ary one with n greater or equal to 3.
There exists a generalization of the Ising model, the Potts model (Wu, 1982) where a general number, n,
of states is considered. Ising model corresponds to n equal to 2. Including the 3D component in further
modelling is a significant step to refine our description of the cancer metastasis.

CONCLUSIONS
Go game, and the Ising model provides the elements to advance the characterization of cancer invasion,
reduction, and metastasis in various scenarios. This hybrid approach, focused on the interaction of the
tumor cells versus the healthy tissues, has the flexibility to add the diverse elements participating in the
cancer process and the reaction of the immune system. So, it goes beyond from the use of differential or
partial equations. Using the Ising model, the updates in the energy function for cancer, the progression of
the invasion following is explicit. As well, it gives insight into different scenarios where cancer can spread
in less than 100-time events, overwhelming the immune system of a person. This is closely related to
cancer that makes metastases in very sensible organs like the squamous cell cancer of lungs. Furthermore,
we lay out scenarios where the immune system can hold the cancer progression at the same speed or
numbers of events in the simulation. Next work should include statistical analysis with a step by step
description of the events, as well to increase the number of the parameters used in the Ising model with
a smaller system. This manner we could explore the minimum number of events that end up with the
aggressive player winning, and expanding the modeling from 2D to 3D.

ACKNOWLEDGMENTS
The authors thank the warm and enthusiastic support from professor Isidoro Glitler, director of ABACUS
supercomputer center. As well, thank to professor Arthur Lander, for his time to listen our research:
high valuable feedback we got from. This work was partially supported by ABACUS, CONACyT grant
EDOMEX-2011-C01-165873. M.A. is a recipient of a Raine Priming Grant, Operational Research
Support from the Curtin Institute for Computation, and a Curtin Research Fellowship

REFERENCES
Abeshouse, A., Ahn, J., Akbani, R., Ally, A., Amin, S., Andry, C. D., Annala, M., Aprikian, A., Armenia,

J., Arora, A., Auman, J. T., Balasundaram, M., Balu, S., Barbieri, C. E., Bauer, T., Benz, C. C.,
Bergeron, A., Beroukhim, R., Berrios, M., Bivol, A., Bodenheimer, T., Boice, L., Bootwalla, M. S.,
Borges dos Reis, R., Boutros, P. C., Bowen, J., Bowlby, R., Boyd, J., Bradley, R. K., Breggia, A., Brimo,
F., Bristow, C. A., Brooks, D., Broom, B. M., Bryce, A. H., Bubley, G., Burks, E., Butterfield, Y. S.,
Button, M., Canes, D., Carlotti, C. G., Carlsen, R., Carmel, M., Carroll, P. R., Carter, S. L., Cartun, R.,
Carver, B. S., Chan, J. M., Chang, M. T., Chen, Y., Cherniack, A. D., Chevalier, S., Chin, L., Cho, J.,
Chu, A., Chuah, E., Chudamani, S., Cibulskis, K., Ciriello, G., Clarke, A., Cooperberg, M. R., Corcoran,
N. M., Costello, A. J., Cowan, J., Crain, D., Curley, E., David, K., Demchok, J. A., Demichelis, F.,
Dhalla, N., Dhir, R., Doueik, A., Drake, B., Dvinge, H., Dyakova, N., Felau, I., Ferguson, M. L., Frazer,

12/14

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.3434v1 | CC BY 4.0 Open Access | rec: 27 Nov 2017, publ: 27 Nov 2017



S., Freedland, S., Fu, Y., Gabriel, S. B., Gao, J., Gardner, J., Gastier-Foster, J. M., Gehlenborg, N.,
Gerken, M., Gerstein, M. B., Getz, G., Godwin, A. K., Gopalan, A., Graefen, M., Graim, K., Gribbin,
T., Guin, R., Gupta, M., Hadjipanayis, A., Haider, S., Hamel, L., Hayes, D. N., Heiman, D. I., Hess, J.,
Hoadley, K. A., Holbrook, A. H., Holt, R. A., Holway, A., Hovens, C. M., Hoyle, A. P., Huang, M.,
Hutter, C. M., Ittmann, M., Iype, L., Jefferys, S. R., Jones, C. D., Jones, S. J., Juhl, H., Kahles, A.,
Kane, C. J., Kasaian, K., Kerger, M., Khurana, E., Kim, J., Klein, R. J., Kucherlapati, R., Lacombe, L.,
Ladanyi, M., Lai, P. H., Laird, P. W., Lander, E. S., Latour, M., Lawrence, M. S., Lau, K., LeBien, T.,
Lee, D., Lee, S., Lehmann, K.-V., Leraas, K. M., Leshchiner, I., Leung, R., Libertino, J. A., Lichtenberg,
T. M., Lin, P., Linehan, W. M., Ling, S., Lippman, S. M., Liu, J., Liu, W., Lochovsky, L., Loda, M.,
Logothetis, C., Lolla, L., Longacre, T., Lu, Y., Luo, J., Ma, Y., Mahadeshwar, H. S., Mallery, D.,
Mariamidze, A., Marra, M. A., Mayo, M., McCall, S., McKercher, G., Meng, S., Mes-Masson, A.-M.,
Merino, M. J., Meyerson, M., Mieczkowski, P. A., Mills, G. B., Shaw, K. R. M., Minner, S., Moinzadeh,
A., Moore, R. A., Morris, S., Morrison, C., Mose, L. E., Mungall, A. J., Murray, B. A., Myers, J. B.,
Naresh, R., Nelson, J., Nelson, M. A., Nelson, P. S., Newton, Y., Noble, M. S., Noushmehr, H., Nykter,
M., Pantazi, A., Parfenov, M., Park, P. J., Parker, J. S., Paulauskis, J., Penny, R., Perou, C. M., Piché,
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Jeong, S.-h., Kim, J., and Han’guk Kiwŏn (1994). The Korean Go Association’s Learn to play go: a
master’s guide to the ultimate game. Good Move Press, New York, NY. OCLC: 34346729.

Kushi, L. H., Doyle, C., McCullough, M., Rock, C. L., Demark-Wahnefried, W., Bandera, E. V., Gapstur,
S., Patel, A. V., Andrews, K., Gansler, T., and The American Cancer Society 2010 Nutrition and
Physical Activity Guidelines Advisory Committee (2012). American Cancer Society guidelines on

13/14

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.3434v1 | CC BY 4.0 Open Access | rec: 27 Nov 2017, publ: 27 Nov 2017



nutrition and physical activity for cancer prevention: Reducing the risk of cancer with healthy food
choices and physical activity. CA: A Cancer Journal for Clinicians, 62(1):30–67.
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SUPPLEMENTARY MATERIAL
• Videos and Smart Game files: http://delta.cs.cinvestav.mx/˜matias/CancerModelingSimulation/principal.html
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