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Effective approaches for assessing mitochondrial DNA (mtDNA) variation are important to

multiple scientific disciplines. Mitochondrial haplogroups characterize branch points in the

phylogeny of mtDNA. Several tools exist for mitochondrial haplogroup classification.

However, most require full or partial mtDNA sequence which is often cost prohibitive for

studies with large sample sizes. The purpose of this study was to develop Hi-MC, a high-

throughput method for mitochondrial haplogroup classification that is cost effective and

applicable to large sample sizes making mitochondrial analysis more accessible in genetic

studies. Using rigorous selection criteria, we defined and validated a custom panel of

mtDNA single nucleotide polymorphisms (SNPs) that allows for accurate classification of

European, African, and Native American mitochondrial haplogroups at broad resolution

with minimal genotyping and cost. We demonstrate that Hi-MC performs well in samples of

European, African, and Native American ancestries, and that Hi-MC performs comparably

to a commonly used classifier. Implementation as a software package in R enables users to

download and run the program locally, grants greater flexibility in the number of samples

that can be run, and allows for easy expansion in future revisions. The source code is

freely available at https://github.com/vserch/himc .
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Effective aJJroaches for assessing mitochondrial DNA (mtDNA) variation are imJortant to 

multiJle scientific disciJlines. Mitochondrial haJlogrouJs characterize branch Joints in the 

Jhylogeny of mtDNA. Several tools exist for mitochondrial haJlogrouJ classification. However, 

most require full or Jartial mtDNA sequence which is often cost Jrohibitive for studies with large

samJle sizes. The JurJose of this study was to develoJ Hi-MC, a high-throughJut method for 

mitochondrial haJlogrouJ classification that is cost effective and aJJlicable to large samJle sizes 

making mitochondrial analysis more accessible in genetic studies. Using rigorous selection 

criteria, we defined and validated a custom Janel of mtDNA single nucleotide JolymorJhisms 

(SNPs) that allows for accurate classification of EuroJean, African, and Native American 

mitochondrial haJlogrouJs at broad resolution with minimal genotyJing and cost. We 

demonstrate that Hi-MC Jerforms well in samJles of EuroJean, African, and Native American 

ancestries, and that Hi-MC Jerforms comJarably to a commonly used classifier. ImJlementation 

as a software Jackage in R enables users to download and run the Jrogram locally, grants greater 

flexibility in the number of samJles that can be run, and allows for easy exJansion in future 

revisions. The source code is freely available at httJs://github.com/vserch/himc.
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Introduction

Human mitochondrial DNA (mtDNA) consists of a double-stranded, circular chromosome that 

sJans 16,529 base Jairs and encodes 22 transfer RNAs, 2 ribosomal RNAs, and 13 Jroteins that 

are Jart of the oxidative JhosJhorylation enzyme comJlexes. ComJared with nuclear DNA, 

unique characteristics of mtDNA include uniJarental (i.e. matrilineal) inheritance, lack of 

recombination, high coJy number, and a high mutation rate. These characteristics make mtDNA a

Jowerful tool for investigations in multiJle disciJlines including JoJulation and medical 

genetics, molecular anthroJology, and forensics1. Strong evidence exists suJJorting the 

involvement of mtDNA variation in human disease JhenotyJes, underscoring the imJortance of 

integrating the mitochondrial genome in genetic association studies. Evidence includes the 

association of  mtDNA single nucleotide JolymorJhisms (SNPs) and mitochondrial haJlogrouJs 

with a number of JhenotyJes encomJassing cancer, neurologic, ocular, cardiovascular, and 

metabolic traits2-g.  

Mitochondrial haJlogrouJs are collections of similar combinations of mtDNA SNPs 

inherited from a common ancestor. These haJlogrouJs are formed via the sequential 

accumulation of mutations through the maternal lineage. As a result of JoJulation migration, 

distinct mitochondrial haJlogrouJs are associated with different continental ancestries including 

African, EuroJean, Native American, Asian, and Oceanic4, 8, 9, allowing for accurate classification 

of maternal genetic ancestry in large datasets using a small subset of mitochondrial markers.

Currently, several methods are available for mitochondrial haJlogrouJ classification 

including HaJlogreJ, HaJloFind, MitoTool, HmtDB, MToolBox, and Phy-mer10-1g. While these 

methods are Jowerful tools for mtDNA sequence analysis, including classification of 

mitochondrial haJlogrouJs, most require full or Jartial mtDNA sequence, and some are limited in

the number of samJles that can be Jrocessed at once. To address limitations of existing methods 

we develoJed a high-throughJut method for automated mitochondrial haJlogrouJ classification 
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that can accommodate large samJle sizes with SNP data recorded in the widely used Jedigree 

(PED/MAP) file format. 

Using a custom Janel of mitochondrial SNPs we constructed a reduced mitochondrial 

Jhylogenetic tree, and develoJed an algorithm (Hi-MC) for broad classification of EuroJean, 

African, and Native American mitochondrial haJlogrouJs. After emJloying Hi-MC, we 

determined mitochondrial haJlogrouJ classifications of samJles from the International HaJMaJ 

Project18-20. To evaluate the Jerformance of the algorithm we comJared Hi-MC mitochondrial 

haJlogrouJ classifications with those Jreviously reJorted by HaJMaJ and with classifications 

generated via HaJlogreJ, the most widely used web-based aJJlication for mitochondrial 

haJlogrouJ classification. As exJected, given the mitochondrial SNPs included in the custom 

Janel, Hi-MC Jerforms well on samJles of EuroJean, African, and Native American ancestry, but

does not Jerform as well resolving mitochondrial haJlogrouJ in samJles of Asian ancestry. 

Although Hi-MC does not yet resolve mitochondrial haJlogrouJs for all JoJulations, it Jrovides 

a user-friendly method for high-throughJut classification and is Jrovided in an R software 

Jackage that can be easily exJanded in future revisions to caJture additional mitochondrial 

haJlogrouJs.

Materials and methods

Algorithm

The algorithm inJut is a list of mitochondrial SNP genotyJes for each individual DNA samJle, 

and the outJut is haJlogrouJ classification. The Cambridge reference sequence (rCRS) is used to 

sJecify SNP Jositions. PhyloTree, a comJrehensive Jhylogenetic tree of human mtDNA variation

disJlaying relationshiJs between mitochondrial haJlogrouJs21, was used as a reference to create a

reduced tree of 46 common haJlogrouJs as Jresented in Mitchell et al22. This reduced 

classification tree was converted into a node-based tree structure. Each haJlogrouJ node has a list

of associated SNPs, a Jarent node, and zero or more child nodes. The SNPs associated with a 

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.3420v1 | CC BY 4.0 Open Access | rec: 20 Nov 2017, publ: 20 Nov 2017



node define which SNP genotyJes a subject must Jossess to belong to the corresJonding 

haJlogrouJ. Classification into a haJlogrouJ also requires a subject to recursively meet the 

definition for the Jarent haJlogrouJ. HaJlogrouJs that require the reversion to the ancestral 

genotyJe (e.g.10398A to 10398G) are accommodated by adding a second hierarchy of required 

SNP genotyJes. 

The algorithm determines the aJJroJriate haJlogrouJ in a two-steJ Jrocess (Figure 1). In 

the first steJ, the algorithm Jasses mitochondrial SNP genotyJe data for each subject into the root

node of the tree. The algorithm checks the list of SNP genotyJes against those required by the 

root node. If the array meets the criteria for the Jarent node, this haJlogrouJ is added to an 

accumulator. The algorithm then Jasses the list of SNP genotyJes to each of the child nodes 

connected to that Jarent node until the tree is exhausted. Next, the algorithm ranks the list of 

haJlogrouJs in the accumulator according to their distance from the root node. Any haJlogrouJ 

with a Jath length less than that of the haJlogrouJ with the longest Jath length is droJJed. The 

remaining haJlogrouJs, along with their Jath from the root node to the end node, are returned as 

a result.

Implementation

The algorithm is imJlemented as a Jackage in R23 [httJs://github.com/vserch/himc]. Data inJut is 

standard PED/MAP formatted files. The outJut is an R dataframe object that includes subject IDs

with a corresJonding haJlogrouJ classification and the Jath through the tree from root node to 

final classification. The outJut can easily be exJorted directly to a CSV file or text file. For 

further details on use of the Hi-MC Jackage in R visit www.icomJbio.net.

Mitochondrial SNP Selection

The SNPs were selected for broad classification of EuroJean, African, and Native American 

mitochondrial haJlogrouJ lineages as Jreviously described22. Briefly, SNPs were chosen using 

Phylotree21 and an extensive literature search for Jrior studies related to mitochondrial 
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haJlogrouJ classification24-2g. Preference was given to those SNPs that aJJear only once in 

Phylotree since such SNPs are sJecific to a single haJlogrouJ. Sixty-three SNPs were selected, 

the majority of which are located in the coding region of the mitochondrial genome. Three 

Sequenom genotyJing assay Jools including all of these SNPs were designed using the 

MassARRAY software22.  As described in Mitchell et al22, the custom SNP Janel was genotyJed 

in the National Health and Nutrition Examination Surveys (NHANES) accessed by the 

EJidemiologic Architecture for Genes Linked to Environment (EAGLE)28, a study site of the 

PoJulation Architecture using Genomics and EJidemiology (PAGE) I study29.  The Vanderbilt 

University Institutional Review Board determined that EAGLE was <non-human= subjects 

research.

Application of Hi-MC

To evaluate the Jerformance of Hi-MC for mitochondrial haJlogrouJ classification we genotyJed

the custom SNP Janel in, and aJJlied the algorithm to, HaJMaJ Phase I and Phase III samJles. 

We selected HaJMaJ samJles for the Jresent study as HaJMaJ samJles were the Jreferred 

reference samJles for individual study sites including this study as Jart of the larger PAGE I 

study29. The JoJulations from HaJMaJ Phase I included: individuals of Northern and Western 

EuroJean ancestry from the Centre d9Etude du PolymorJhisme Humain samJles collected in 

Utah, USA (CEU, n=90), Yoruba from Ibadan, Nigeria (YRI, n=90), JaJanese in Tokyo, JaJan 

(JPT, n=45), and Han Chinese in Beijing, China (CHB, n=45). The HaJMaJ Phase III samJles 

used in this study included only those of Mexican ancestry from Los Angeles, California (MXL, 

n=90). The International HaJMaJ Consortium reJorted mitochondrial haJlogrouJ classifications 

for the CEU, YRI, CHB, and JPT Phase I HaJMaJ samJles20; however, mitochondrial haJlogrouJ

classifications for the Phase III MXL samJles have not been Jreviously reJorted.

We genotyJed the custom SNP Janel in the CEU, YRI, and CHB/JPT Phase I HaJMaJ 

samJles and in the MXL samJles from Phase III. Briefly, aliquots of DNA from HaJMaJ CEU, 
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YRI, CHB/JPT, and MXL samJles were obtained from the Coriell reJository. SNPs were 

genotyJed via the Agena Biosciences (formerly Sequenom) iPLEX® Gold MassArray Jlatform. 

MultiJlex Jrimer extension was Jerformed, and extension Jroducts were analyzed by MALDI-

TOF mass sJectrometry30. 

SNP genotyJing efficiency was set to greater than or equal to 0.90. The hyJervariable 

region SNP mt16189 did not meet this threshold and was droJJed from the analysis. Additionally,

SNP mt9540 was excluded from the analysis due to Joor genotyJing efficiency. We determined 

that the Jrimers for SNP mt9540 lacked sJecificity, consistent with the amJlification of nuclear 

insertions of mitochondrial origin (NumtS) common in the human genome31. Therefore, SNP 

mt9540 is not included in the algorithm for classification.  The final list of custom Janel SNPs 

used to classify mitochondrial haJlogrouJs is given in SuJJlementary Table 1.   

Using genotyJe data from the custom SNP Janel we emJloyed Hi-MC and HaJlogreJ to 

determine mitochondrial haJlogrouJ classifications in the HaJMaJ samJles. Although there are 

several tools available from which to comJare Hi-MC, we selected HaJlogreJ for comJarison 

given it is the most widely used tool to date with >180 citations in the Jeer-reviewed literature.  

We then comJared the Hi-MC mitochondrial haJlogrouJ classifications to the HaJMaJ-reJorted 

classifications for Phase I samJles20. We also comJared Hi-MC haJlogrouJ classifications to 

HaJlogreJ-based haJlogrouJ classifications for both Phase I and Phase III HaJMaJ samJles. We 

calculated Jercent concordance for each comJarison. Classifications were considered concordant 

if they were in the same haJlogrouJ, even if one classification method resulted in finer resolution.

For examJle, if one method classified a samJle as A2 and another method classified the same 

samJle as A2x, such classifications were considered concordant. Differences in the resolution of 

haJlogrouJ classifications were not unexJected given differences in underlying methodology and

the number of SNPs used for classification. The HaJMaJ classifications were generated using 

more mitochondrial SNP genotyJes comJared to the reduced number of SNPs necessary to use 
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Hi-MC. HaJMaJ Phase I samJle data includes genotyJes for 214 mitochondrial SNPs, 49 of 

which overlaJ with the custom SNP Janel genotyJed in this study (SuJJlementary Table 2). 

Additionally, Hi-MC uses a reduced tree for classification while HaJlogreJ emJloys all of 

Phylotree which can result in finer sub-haJlogrouJ resolution. 

To resolve discordant classifications, Jossibly due to missing key SNP genotyJes, we 

used the Jublicly available Phase I HaJMaJ mitochondrial SNP genotyJe data to determine the 

mitochondrial haJlogrouJ classification via HaJlogreJ. If the classification returned from 

HaJlogreJ was concordant with the HaJMaJ-reJorted classification, then we considered the 

discordance resolved, as it was likely due to missing SNP genotyJes necessary for accurate 

haJlogrouJ classification by Hi-MC. 

Results

CEU and YRI populations

Overall, concordance between Hi-MC and both HaJMaJ and HaJlogreJ was high for the CEU 

and YRI JoJulations. Among the CEU samJles mitochondrial haJlogrouJ classifications were 

100% concordant between Hi-MC and HaJMaJ, as well as between Hi-MC and HaJlogreJ 

(Table 1). In the YRI samJles, concordance between Hi-MC and HaJMaJ was 96.3% (Table 1). 

Among the YRI samJles, three classifications were discordant between Hi-MC and HaJMaJ, one

classification was discordant between Hi-MC and HaJlogreJ, and four classifications were 

discordant between HaJlogreJ and HaJMaJ. The three samJles that were discordant between Hi-

MC and HaJMaJ were also discordant between HaJlogreJ and HaJMaJ. 

Among the eleven YRI samJles that were either discordant or unclassified seven were 

resolved. These samJles were missing many SNP genotyJes and/or crucial haJlogrouJ-defining 

SNPs in our genotyJe data which likely accounts for the discordance. The four YRI samJles for 

which discordance could not be resolved (Y024-NA18861, Y024-NA18663, Y043-NA1913g, 

and Y043-NA19139) were classified as 8L19 by HaJMaJ, but were classified as 8L0a9 by 
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HaJlogreJ using HaJMaJ-generated genotyJe data. The 8L09 classification is consistent with the 

classification obtained via Hi-MC and HaJlogreJ when using genotyJes from our custom SNP 

Janel. In the HaJMaJ genotyJe data, all of these samJles have eight of the ten SNP genotyJes 

that define haJlogrouJ 8L09, suggesting that 8L09 is the correct classification.

CHB/JPT populations

ComJared with the CEU and YRI JoJulations, we observed less concordance among the 

CHB/JPT samJles. Between Hi-MC and HaJMaJ-reJorted classifications, 3g (41.6%) were 

concordant at the haJlogrouJ level and 31 (34.8%) were considered concordant at the macro-

haJlogrouJ level. Concordance at the macro-haJlogrouJ level is defined as aJJroJriate macro-

haJlogrouJ classification in the absence of sub-haJlogrouJ defining SNP genotyJe data. For 

examJle, consider that haJlogrouJ E is a sub-haJlogrouJ of the macro-haJlogrouJ M. GenotyJes 

for SNPs that define haJlogrouJ E were not included in the custom SNP Janel; therefore, 

individuals classified as haJlogrouJ E by HaJMaJ, but classified as haJlogrouJ M by Hi-MC 

were considered concordant at the macro-haJlogrouJ level. There were 21 (23.6%) discordant 

classifications among the CHB/JPT samJles. These results were not unexJected given that the 

SNPs included on the custom Janel do not caJture all Asian-sJecific haJlogrouJ lineages. Among

the 21 CHB/JPT samJles that were discordant, two samJles were resolved at the haJlogrouJ level

and five samJles were resolved at the macro-haJlogrouJ level. The remaining samJles with 

discordant classifications could not be resolved. 

Determination of mitochondrial haplogroups in HapMap Phase III samples of Mexican 

ancestry

The mitochondrial haJlogrouJs for the samJles of Mexican ancestry from HaJMaJ Phase III 

have not been Jreviously reJorted. SamJles in this data set include 30 trios of Mexican ancestry 

from Los Angeles, CA. We aJJlied Hi-MC to determine mitochondrial haJlogrouJs in these 

samJles and characterized the distribution of mitochondrial haJlogrouJs among the MXL. Due to
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matrilineal inheritance of mtDNA, offsJring have the same mitochondrial haJlogrouJ as their 

mother; therefore, offsJring were excluded when calculating the frequency distribution of 

mitochondrial haJlogrouJs. One additional samJle was excluded from frequency calculations due

to Joor genotyJing efficiency. Overall in the MXL samJles, 84.8% of mitochondrial haJlogrouJs 

identified were of Native American ancestry and 15.3% were of EuroJean ancestry (Table 2). The

distribution of haJlogrouJs in the HaJMaJ MXL samJles is similar to the distribution of 

haJlogrouJs observed in Mexican Americans ascertained for the National Health and Nutrition 

Examination Surveys (NHANES)22.

To further evaluate the Jerformance of Hi-MC, we comJared the Hi-MC mitochondrial 

haJlogrouJ classifications of MXL samJles to HaJlogreJ-based classifications. Percent 

concordance between Hi-MC and HaJlogreJ for classification of the MXL samJles was 98.9%. 

There was one samJle out of 89 with a discordant mitochondrial haJlogrouJ classification. This 

samJle was missing the haJlogrouJ H-defining SNP genotyJe therefore Hi-MC was unable to 

classify the samJle beyond haJlogrouJ 8HV.9 HaJlogreJ classified this samJle as H1c1b. For this 

individual the classifications differ between Hi-MC and HaJlogreJ due to differences in 

methodology. 

Discussion

Using a custom Janel of mitochondrial SNPs that we Jreviously aJJlied to JarticiJants in the 

NHANES data sets22, we develoJed Hi-MC, a method for high-throughJut classification of 

EuroJean, African, and Native American mitochondrial haJlogrouJ lineages. We evaluated the 

Jerformance of Hi-MC, and with genotyJe data from the custom SNP Janel, demonstrate that Hi-

MC Jerforms comJarably to the widely-used tool HaJlogreJ.  While HaJlogreJ is an excellent 

tool for mitochondrial haJlogrouJ classification that acceJts either sequence or SNP genotyJe 

data, it was develoJed Jrimarily for sequence level data. The ability to alternatively genotyJe a 
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relatively small number of SNPs (n=63) allows for raJid haJlogrouJ classification in a large 

number of genetic samJles.

Mitochondrial SNPs caJtured by standard genotyJing arrays vary widely, and often the 

SNPs on these arrays are not informative for haJlogrouJ determination. Hi-MC uses a defined 

Janel of mitochondrial SNPs for classification of mitochondrial haJlogrouJs. This defined Janel 

of SNPs eliminates the need for investigators to sJend time identifying aJJroJriate SNPs for 

mitochondrial haJlogrouJ classification. Additionally, the relatively small number of SNPs in the 

custom Janel makes Hi-MC Jarticularly useful for large data sets where full mitochondrial 

genome sequencing is not Jractical.  As examJles, aJJroaches like Hi-MC Jromise to be of use to

large biobank and cohort efforts such as Million Veteran Program32 and the UK Biobank33, both 

of which continue to rely on cost-effective array-based assays rather than cost-Jrohibitive 

sequencing to generate genome-wide and mitochondrial data on hundreds of thousands to a 

million JarticiJants. 

Hi-MC emJloys the commonly used PED/MAP file format as the inJut. There are a 

number of software Jrograms that make use of the PED/MAP format, including PLINK34 which 

is widely used for analyzing genotyJic data. Thus, in contrast to HaJlogreJ, many Hi-MC users 

will not have to reformat data Jrior to use. Additionally, Hi-MC is an R-based software Jackage 

that can be downloaded and run locally allowing for memory limits that are deJendent on the 

machine where R is being run, thus granting greater flexibility in the number of samJles that can 

be Jrocessed at once. Once samJles have been classified using Hi-MC, figures or tables 

disJlaying haJlogrouJ frequencies can be easily generated via other R Jackages such as 

ggJlot235. 

We determined that Hi-MC Jerforms well with samJles of EuroJean, African, and Native 

American descent. However, because many Asian-sJecific haJlogrouJs are not caJtured by the 

custom SNP Janel it does not Jerform as well on samJles of Asian maternal lineage. While 
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Jrogress has been made in characterizing the Jhylogeny of Asian mtDNA36, 3g, in general, the 

Asian branches of the mitochondrial Jhylogenetic tree are not as well-defined as other Jarts of 

the tree. Thus, comJared to other ancestries, classifying Asian lineage haJlogrouJs continues to 

be more challenging. As more mtDNA sequences are obtained from individuals of Asian descent 

the Jhylogeny of mitochondrial genetic variation will be better understood. Future versions of Hi-

MC will be uJdated to incorJorate additional knowledge regarding subjects of Asian descent.

We aJJlied Hi-MC to the HaJMaJ Phase III MXL samJles as the mitochondrial 

haJlogrouJs for these JarticiJants have not been Jreviously reJorted. The haJlogrouJ distribution

observed in the HaJMaJ Phase III MXL samJles is somewhat similar to the recently reJorted 

HaJlogreJ2-generated distribution for the MXL samJles sequenced as Jart of the 1000 Genomes 

Project38. In this newer reference dataset, the most common reJorted haJlogrouJ is A (25%) 

followed by B (15%) and C (9%)38 comJared with a higher A (A2) frequency in the Jresent study 

(39%; Table 2). Overall, the distribution of Native American and EuroJean haJlogrouJs in the 

MXL samJles from HaJMaJ Phase III is similar to the distribution observed in the NHANES 

Mexican American samJles22. No African lineage mitochondrial haJlogrouJs were identified 

among the HaJMaJ MXL samJles. This differs from the NHANES Mexican Americans in which 

4.4% had mitochondrial haJlogrouJs of African ancestry22. The lack of African haJlogrouJs in 

the HaJMaJ MXL samJles is likely due to the small samJle size and the regional ascertainment 

of these samJles. While the NHANES samJles were collected from across the United States, the 

HaJMaJ Phase III MXL samJles were ascertained solely from Los Angeles, CA, therefore are 

likely to be more homogeneous. 

While there are several benefits to Hi-MC, there are some limitations. Currently, Hi-MC 

emJloys a reduced mitochondrial Jhylogenetic tree for classification. As a result, it is currently 

limited to classification of the major haJlogrouJs of EuroJean, African, and Native American 

lineages, and requires that SNPs from the described custom Janel be genotyJed. While this Janel 
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was customized for JoJulations exJected for the PAGE I study, it is notable that several SNPs in 

this Janel (MT1g36, MT2092, MT3552, MT4883, MT10400, MT111gg, MT11251, MT11g19, 

MT1200g, MT12308, MT12g05, MT13368, MT14g66) overlaJ with Jreviously Jublished 

Janels1, 39, suggesting the Jotential for both greater resolution and generalizability in future 

extensions of Hi-MC.  Additionally, because the method relies on a limited number of SNPs, it is 

not very robust to missing genotyJe data and it has the ability to classify mitochondrial 

haJlogrouJs at a broad level, but currently cannot caJture sub-haJlogrouJs at finer resolution. As 

such, in instances where sequence level data is available another method for mitochondrial 

haJlogrouJ classification, such as HaJlogreJ, would be more aJJroJriate.

DesJite these limitations, Hi-MC offers several advantages including a defined Janel of 

mitochondrial SNPs that is used in conjunction with the software for mitochondrial haJlogrouJ 

classification. Hi-MC utilizes PED/MAP files for a user-friendly inJut file format, saving time 

and reducing oJJortunities for errors to be incorJorated into the data. Also, Hi-MC is 

imJlemented in the commonly used statistical software environment R allowing for classification

of relatively large samJle sizes, as well as the ability to easily utilize other available R Jackages 

for visualization of results. 

Conclusions

We have develoJed a custom SNP Janel and algorithm for mitochondrial haJlogrouJ 

classification. The algorithm, Hi-MC is imJlemented in R and makes use of PED/MAP file 

format for data inJut. We evaluated the Jerformance of Hi-MC and demonstrate that 

classifications are comJarable to the widely-used tool HaJlogreJ. Hi-MC offers an algorithm that

leverages a validated mtDNA SNP Janel for mitochondrial haJlogrouJ classification and is 

Jarticularly valuable for studies in which sequencing is not feasible.
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Figure 1: Hi-MC algorithm structure

InJut for the algorithm is a list of samJle IDs and corresJonding SNP genotyJe data in Jedigree 

(PED/MAP) format. These genotyJes are recursively analyzed through a node-based tree 

structure. Each successive genotyJe classification is Jassed on to the Accumulator. They are then 

ranked according to sJecificity [longer Jath through the tree -> more SNPs checked -> more 

sJecific], with the most sJecific haJlogrouJ as the final outJut. MRCA = most recent common 

ancestor
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Table 1: Percent concordance in CEU and YRI populations for pair-wise comparisons of mitochondrial 

haplogroup classifications

CEU (n=86*) YRI (n=82*)

Hi-MC vs HapMap 100% 96.3%

Hi-MC vs Haplogrep 100% 98.8%

Haplogrep vs HapMap 100% 95.1%

*Due to missing genotypes at key haplogroup-defining lNPs four CEU and eight YRI samples were 

excluded from the percent concordance calculations.
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Table 2(on next page)

Table 2. Distribution of mitochondrial haplogroups in the HapMap Phase III samples of

Mexican ancestry in Los Angeles, CA
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Table 2: Distribution of mitochondrial haplogroups in the HapMap Phase III samples of Mexican 

ancestry in Los Angeles, CA 

Mitochondrial 

Haplogroup
Number (%)

Native American

    A2 23 (39.0%)

    B2 11 (18.6%)

    C 9 (15.3%)

    D1 7 (11.9%)

European

    H 3 (5.1%)

    H/V 2 (3.4%)

    U 2 (3.4%)

    V 1 (1.7%)

   W 1 (1.7%)

Given that the mitochondrial haplogroup of the offspring is the same as that of the mother, offspring were 

excluded when determining the frequency distribution of haplogroups. One sample was excluded from 

frequency calculations due to missing genotype data (n=59).
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Figure 1(on next page)

Hi-MC algorithm structure

Input for the algorithm is a list of sample IDs and corresponding SNP genotype data in

pedigree (PED/MAP) format. These genotypes are recursively analyzed through a node-based

tree structure. Each successive genotype classification is passed on to the Accumulator. They

are then ranked according to specificity [longer path through the tree -> more SNPs checked

-> more specific], with the most specific haplogroup as the final output. MRCA = most recent

common ancestor
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