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Effective approaches for assessing mitochondrial DNA (mtDNA) variation are important to
multiple scientific disciplines. Mitochondrial haplogroups characterize branch points in the
phylogeny of mtDNA. Several tools exist for mitochondrial haplogroup classification.
However, most require full or partial mtDNA sequence which is often cost prohibitive for
studies with large sample sizes. The purpose of this study was to develop Hi-MC, a high-
throughput method for mitochondrial haplogroup classification that is cost effective and
applicable to large sample sizes making mitochondrial analysis more accessible in genetic
studies. Using rigorous selection criteria, we defined and validated a custom panel of
mMtDNA single nucleotide polymorphisms (SNPs) that allows for accurate classification of
European, African, and Native American mitochondrial haplogroups at broad resolution
with minimal genotyping and cost. We demonstrate that Hi-MC performs well in samples of
European, African, and Native American ancestries, and that Hi-MC performs comparably
to a commonly used classifier. Implementation as a software package in R enables users to
download and run the program locally, grants greater flexibility in the number of samples
that can be run, and allows for easy expansion in future revisions. The source code is

freely available at https://github.com/vserch/himc .
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Effective approaches for assessing mitochondrial DNA (mtDNA) variation are important to
multiple scientific disciplines. Mitochondrial haplogroups characterize branch points in the
phylogeny of mtDNA. Several tools exist for mitochondrial haplogroup classification. However,
most require full or partial mtDNA sequence which is often cost prohibitive for studies with large
sample sizes. The purpose of this study was to develop Hi-MC, a high-throughput method for
mitochondrial haplogroup classification that is cost effective and applicable to large sample sizes
making mitochondrial analysis more accessible in genetic studies. Using rigorous selection
criteria, we defined and validated a custom panel of mtDNA single nucleotide polymorphisms
(SNPs) that allows for accurate classification of European, African, and Native American
mitochondrial haplogroups at broad resolution with minimal genotyping and cost. We
demonstrate that Hi-MC performs well in samples of European, African, and Native American
ancestries, and that Hi-MC performs comparably to a commonly used classifier. Implementation
as a software package in R enables users to download and run the program locally, grants greater
flexibility in the number of samples that can be run, and allows for easy expansion in future

revisions. The source code is freely available at https://github.com/vserch/himc.
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Introduction

Human mitochondrial DNA (mtDNA) consists of a double-stranded, circular chromosome that
spans 16,529 base pairs and encodes 22 transfer RNAs, 2 ribosomal RNAs, and 13 proteins that
are part of the oxidative phosphorylation enzyme complexes. Compared with nuclear DNA,
unique characteristics of mtDNA include uniparental (i.e. matrilineal) inheritance, lack of
recombination, high copy number, and a high mutation rate. These characteristics make mtDNA a
powerful tool for investigations in multiple disciplines including population and medical
genetics, molecular anthropology, and forensics'. Strong evidence exists supporting the
involvement of mtDNA variation in human disease phenotypes, underscoring the importance of
integrating the mitochondrial genome in genetic association studies. Evidence includes the
association of mtDNA single nucleotide polymorphisms (SNPs) and mitochondrial haplogroups
with a number of phenotypes encompassing cancer, neurologic, ocular, cardiovascular, and
metabolic traits®”.

Mitochondrial haplogroups are collections of similar combinations of mtDNA SNPs
inherited from a common ancestor. These haplogroups are formed via the sequential
accumulation of mutations through the maternal lineage. As a result of population migration,
distinct mitochondrial haplogroups are associated with different continental ancestries including
African, European, Native American, Asian, and Oceanic*®°, allowing for accurate classification
of maternal genetic ancestry in large datasets using a small subset of mitochondrial markers.

Currently, several methods are available for mitochondrial haplogroup classification
including Haplogrep, HaploFind, MitoTool, HmtDB, MToolBox, and Phy-mer'*"". While these
methods are powerful tools for mtDNA sequence analysis, including classification of
mitochondrial haplogroups, most require full or partial mtDNA sequence, and some are limited in
the number of samples that can be processed at once. To address limitations of existing methods

we developed a high-throughput method for automated mitochondrial haplogroup classification
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that can accommodate large sample sizes with SNP data recorded in the widely used pedigree
(PED/MAP) file format.

Using a custom panel of mitochondrial SNPs we constructed a reduced mitochondrial
phylogenetic tree, and developed an algorithm (Hi-MC) for broad classification of European,
African, and Native American mitochondrial haplogroups. After employing Hi-MC, we
determined mitochondrial haplogroup classifications of samples from the International HapMap
Project'®*. To evaluate the performance of the algorithm we compared Hi-MC mitochondrial
haplogroup classifications with those previously reported by HapMap and with classifications
generated via Haplogrep, the most widely used web-based application for mitochondrial
haplogroup classification. As expected, given the mitochondrial SNPs included in the custom
panel, Hi-MC performs well on samples of European, African, and Native American ancestry, but
does not perform as well resolving mitochondrial haplogroup in samples of Asian ancestry.
Although Hi-MC does not yet resolve mitochondrial haplogroups for all populations, it provides
a user-friendly method for high-throughput classification and is provided in an R software
package that can be easily expanded in future revisions to capture additional mitochondrial
haplogroups.

Materials and methods

Algorithm

The algorithm input is a list of mitochondrial SNP genotypes for each individual DNA sample,
and the output is haplogroup classification. The Cambridge reference sequence (rCRS) is used to
specify SNP positions. PhyloTree, a comprehensive phylogenetic tree of human mtDNA variation
displaying relationships between mitochondrial haplogroups®, was used as a reference to create a
reduced tree of 46 common haplogroups as presented in Mitchell et al*. This reduced
classification tree was converted into a node-based tree structure. Each haplogroup node has a list

of associated SNPs, a parent node, and zero or more child nodes. The SNPs associated with a
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node define which SNP genotypes a subject must possess to belong to the corresponding
haplogroup. Classification into a haplogroup also requires a subject to recursively meet the
definition for the parent haplogroup. Haplogroups that require the reversion to the ancestral
genotype (e.g.10398A to 10398G) are accommodated by adding a second hierarchy of required
SNP genotypes.

The algorithm determines the appropriate haplogroup in a two-step process (Figure 1). In
the first step, the algorithm passes mitochondrial SNP genotype data for each subject into the root
node of the tree. The algorithm checks the list of SNP genotypes against those required by the
root node. If the array meets the criteria for the parent node, this haplogroup is added to an
accumulator. The algorithm then passes the list of SNP genotypes to each of the child nodes
connected to that parent node until the tree is exhausted. Next, the algorithm ranks the list of
haplogroups in the accumulator according to their distance from the root node. Any haplogroup
with a path length less than that of the haplogroup with the longest path length is dropped. The
remaining haplogroups, along with their path from the root node to the end node, are returned as
a result.

Implementation

The algorithm is implemented as a package in R [https:/github.com/vserch/himc]. Data input is
standard PED/MAP formatted files. The output is an R dataframe object that includes subject IDs
with a corresponding haplogroup classification and the path through the tree from root node to
final classification. The output can easily be exported directly to a CSV file or text file. For

further details on use of the Hi-MC package in R visit www.icompbio.net.

Mitochondrial SNP Selection
The SNPs were selected for broad classification of European, African, and Native American
mitochondrial haplogroup lineages as previously described®. Briefly, SNPs were chosen using

Phylotree?' and an extensive literature search for prior studies related to mitochondrial
y p
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haplogroup classification**’. Preference was given to those SNPs that appear only once in
Phylotree since such SNPs are specific to a single haplogroup. Sixty-three SNPs were selected,
the majority of which are located in the coding region of the mitochondrial genome. Three
Sequenom genotyping assay pools including all of these SNPs were designed using the
MassARRAY software”. As described in Mitchell et al**, the custom SNP panel was genotyped
in the National Health and Nutrition Examination Surveys (NHANES) accessed by the
Epidemiologic Architecture for Genes Linked to Environment (EAGLE)*, a study site of the
Population Architecture using Genomics and Epidemiology (PAGE) I study”. The Vanderbilt
University Institutional Review Board determined that EAGLE was “non-human” subjects
research.
Application of Hi-MC
To evaluate the performance of Hi-MC for mitochondrial haplogroup classification we genotyped
the custom SNP panel in, and applied the algorithm to, HapMap Phase I and Phase III samples.
We selected HapMap samples for the present study as HapMap samples were the preferred
reference samples for individual study sites including this study as part of the larger PAGE I
study®. The populations from HapMap Phase I included: individuals of Northern and Western
European ancestry from the Centre d’Etude du Polymorphisme Humain samples collected in
Utah, USA (CEU, n=90), Yoruba from Ibadan, Nigeria (YRI, n=90), Japanese in Tokyo, Japan
(JPT, n=45), and Han Chinese in Beijing, China (CHB, n=45). The HapMap Phase III samples
used in this study included only those of Mexican ancestry from Los Angeles, California (MXL,
n=90). The International HapMap Consortium reported mitochondrial haplogroup classifications
for the CEU, YRI, CHB, and JPT Phase I HapMap samples®; however, mitochondrial haplogroup
classifications for the Phase III MXL samples have not been previously reported.

We genotyped the custom SNP panel in the CEU, YRI, and CHB/JPT Phase I HapMap

samples and in the MXL samples from Phase III. Briefly, aliquots of DNA from HapMap CEU,
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YRI, CHB/JPT, and MXL samples were obtained from the Coriell repository. SNPs were
genotyped via the Agena Biosciences (formerly Sequenom) iPLEX® Gold MassArray platform.
Multiplex primer extension was performed, and extension products were analyzed by MALDI-
TOF mass spectrometry?’.

SNP genotyping efficiency was set to greater than or equal to 0.90. The hypervariable
region SNP mt16189 did not meet this threshold and was dropped from the analysis. Additionally,
SNP mt9540 was excluded from the analysis due to poor genotyping efficiency. We determined
that the primers for SNP mt9540 lacked specificity, consistent with the amplification of nuclear
insertions of mitochondrial origin (NumtS) common in the human genome®'. Therefore, SNP
mt9540 is not included in the algorithm for classification. The final list of custom panel SNPs
used to classify mitochondrial haplogroups is given in Supplementary Table 1.

Using genotype data from the custom SNP panel we employed Hi-MC and Haplogrep to
determine mitochondrial haplogroup classifications in the HapMap samples. Although there are
several tools available from which to compare Hi-MC, we selected Haplogrep for comparison
given it is the most widely used tool to date with >180 citations in the peer-reviewed literature.
We then compared the Hi-MC mitochondrial haplogroup classifications to the HapMap-reported
classifications for Phase I samples®. We also compared Hi-MC haplogroup classifications to
Haplogrep-based haplogroup classifications for both Phase I and Phase III HapMap samples. We
calculated percent concordance for each comparison. Classifications were considered concordant
if they were in the same haplogroup, even if one classification method resulted in finer resolution.
For example, if one method classified a sample as A2 and another method classified the same
sample as A2x, such classifications were considered concordant. Differences in the resolution of
haplogroup classifications were not unexpected given differences in underlying methodology and
the number of SNPs used for classification. The HapMap classifications were generated using

more mitochondrial SNP genotypes compared to the reduced number of SNPs necessary to use
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165 Hi-MC. HapMap Phase I sample data includes genotypes for 214 mitochondrial SNPs, 49 of
166  which overlap with the custom SNP panel genotyped in this study (Supplementary Table 2).

167 Additionally, Hi-MC uses a reduced tree for classification while Haplogrep employs all of

168  Phylotree which can result in finer sub-haplogroup resolution.

169 To resolve discordant classifications, possibly due to missing key SNP genotypes, we
170 used the publicly available Phase I HapMap mitochondrial SNP genotype data to determine the
171  mitochondrial haplogroup classification via Haplogrep. If the classification returned from

172 Haplogrep was concordant with the HapMap-reported classification, then we considered the
173  discordance resolved, as it was likely due to missing SNP genotypes necessary for accurate

174  haplogroup classification by Hi-MC.

175 Results

176 CEU and YRI populations

177  Overall, concordance between Hi-MC and both HapMap and Haplogrep was high for the CEU
178 and YRI populations. Among the CEU samples mitochondrial haplogroup classifications were
179  100% concordant between Hi-MC and HapMap, as well as between Hi-MC and Haplogrep

180 (Table 1). In the YRI samples, concordance between Hi-MC and HapMap was 96.3% (Table 1).
181 Among the YRI samples, three classifications were discordant between Hi-MC and HapMap, one
182 classification was discordant between Hi-MC and Haplogrep, and four classifications were

183  discordant between Haplogrep and HapMap. The three samples that were discordant between Hi-
184 MC and HapMap were also discordant between Haplogrep and HapMap.

185 Among the eleven YRI samples that were either discordant or unclassified seven were
186 resolved. These samples were missing many SNP genotypes and/or crucial haplogroup-defining
187  SNPs in our genotype data which likely accounts for the discordance. The four YRI samples for
188  which discordance could not be resolved (Y024-NA18861, Y024-NA 18663, Y043-NA19137,

189 and Y043-NA19139) were classified as ‘L1’ by HapMap, but were classified as ‘L0a’ by
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Haplogrep using HapMap-generated genotype data. The ‘L0’ classification is consistent with the
classification obtained via Hi-MC and Haplogrep when using genotypes from our custom SNP
panel. In the HapMap genotype data, all of these samples have eight of the ten SNP genotypes
that define haplogroup ‘L0’, suggesting that ‘L0’ is the correct classification.

CHB/JPT populations

Compared with the CEU and YRI populations, we observed less concordance among the
CHB/JPT samples. Between Hi-MC and HapMap-reported classifications, 37 (41.6%) were
concordant at the haplogroup level and 31 (34.8%) were considered concordant at the macro-
haplogroup level. Concordance at the macro-haplogroup level is defined as appropriate macro-
haplogroup classification in the absence of sub-haplogroup defining SNP genotype data. For
example, consider that haplogroup E is a sub-haplogroup of the macro-haplogroup M. Genotypes
for SNPs that define haplogroup E were not included in the custom SNP panel; therefore,
individuals classified as haplogroup E by HapMap, but classified as haplogroup M by Hi-MC
were considered concordant at the macro-haplogroup level. There were 21 (23.6%) discordant
classifications among the CHB/JPT samples. These results were not unexpected given that the
SNPs included on the custom panel do not capture all Asian-specific haplogroup lineages. Among
the 21 CHB/JPT samples that were discordant, two samples were resolved at the haplogroup level
and five samples were resolved at the macro-haplogroup level. The remaining samples with
discordant classifications could not be resolved.

Determination of mitochondrial haplogroups in HapMap Phase 111 samples of Mexican
ancestry

The mitochondrial haplogroups for the samples of Mexican ancestry from HapMap Phase 111
have not been previously reported. Samples in this data set include 30 trios of Mexican ancestry
from Los Angeles, CA. We applied Hi-MC to determine mitochondrial haplogroups in these

samples and characterized the distribution of mitochondrial haplogroups among the MXL. Due to
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matrilineal inheritance of mtDNA, offspring have the same mitochondrial haplogroup as their
mother; therefore, offspring were excluded when calculating the frequency distribution of
mitochondrial haplogroups. One additional sample was excluded from frequency calculations due
to poor genotyping efficiency. Overall in the MXL samples, 84.8% of mitochondrial haplogroups
identified were of Native American ancestry and 15.3% were of European ancestry (Table 2). The
distribution of haplogroups in the HapMap MXL samples is similar to the distribution of
haplogroups observed in Mexican Americans ascertained for the National Health and Nutrition
Examination Surveys (NHANES)*.

To further evaluate the performance of Hi-MC, we compared the Hi-MC mitochondrial
haplogroup classifications of MXL samples to Haplogrep-based classifications. Percent
concordance between Hi-MC and Haplogrep for classification of the MXL samples was 98.9%.
There was one sample out of 89 with a discordant mitochondrial haplogroup classification. This
sample was missing the haplogroup H-defining SNP genotype therefore Hi-MC was unable to
classify the sample beyond haplogroup ‘HV.” Haplogrep classified this sample as Hlc1b. For this
individual the classifications differ between Hi-MC and Haplogrep due to differences in
methodology.

Discussion

Using a custom panel of mitochondrial SNPs that we previously applied to participants in the
NHANES data sets*, we developed Hi-MC, a method for high-throughput classification of
European, African, and Native American mitochondrial haplogroup lineages. We evaluated the
performance of Hi-MC, and with genotype data from the custom SNP panel, demonstrate that Hi-
MC performs comparably to the widely-used tool Haplogrep. While Haplogrep is an excellent
tool for mitochondrial haplogroup classification that accepts either sequence or SNP genotype

data, it was developed primarily for sequence level data. The ability to alternatively genotype a
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relatively small number of SNPs (n=63) allows for rapid haplogroup classification in a large
number of genetic samples.

Mitochondrial SNPs captured by standard genotyping arrays vary widely, and often the
SNPs on these arrays are not informative for haplogroup determination. Hi-MC uses a defined
panel of mitochondrial SNPs for classification of mitochondrial haplogroups. This defined panel
of SNPs eliminates the need for investigators to spend time identifying appropriate SNPs for
mitochondrial haplogroup classification. Additionally, the relatively small number of SNPs in the
custom panel makes Hi-MC particularly useful for large data sets where full mitochondrial
genome sequencing is not practical. As examples, approaches like Hi-MC promise to be of use to
large biobank and cohort efforts such as Million Veteran Program®® and the UK Biobank™, both
of which continue to rely on cost-effective array-based assays rather than cost-prohibitive
sequencing to generate genome-wide and mitochondrial data on hundreds of thousands to a
million participants.

Hi-MC employs the commonly used PED/MAP file format as the input. There are a
number of software programs that make use of the PED/MAP format, including PLINK?** which
is widely used for analyzing genotypic data. Thus, in contrast to Haplogrep, many Hi-MC users
will not have to reformat data prior to use. Additionally, Hi-MC is an R-based software package
that can be downloaded and run locally allowing for memory limits that are dependent on the
machine where R is being run, thus granting greater flexibility in the number of samples that can
be processed at once. Once samples have been classified using Hi-MC, figures or tables
displaying haplogroup frequencies can be easily generated via other R packages such as
ggplot2®,

We determined that Hi-MC performs well with samples of European, African, and Native
American descent. However, because many Asian-specific haplogroups are not captured by the

custom SNP panel it does not perform as well on samples of Asian maternal lineage. While
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progress has been made in characterizing the phylogeny of Asian mtDNA’*?7 in general, the
Asian branches of the mitochondrial phylogenetic tree are not as well-defined as other parts of
the tree. Thus, compared to other ancestries, classifying Asian lineage haplogroups continues to
be more challenging. As more mtDNA sequences are obtained from individuals of Asian descent
the phylogeny of mitochondrial genetic variation will be better understood. Future versions of Hi-
MC will be updated to incorporate additional knowledge regarding subjects of Asian descent.

We applied Hi-MC to the HapMap Phase III MXL samples as the mitochondrial
haplogroups for these participants have not been previously reported. The haplogroup distribution
observed in the HapMap Phase III MXL samples is somewhat similar to the recently reported
Haplogrep2-generated distribution for the MXL samples sequenced as part of the 1000 Genomes
Project™. In this newer reference dataset, the most common reported haplogroup is A (25%)
followed by B (15%) and C (9%)* compared with a higher A (A2) frequency in the present study
(39%; Table 2). Overall, the distribution of Native American and European haplogroups in the
MXL samples from HapMap Phase III is similar to the distribution observed in the NHANES
Mexican American samples®. No African lineage mitochondrial haplogroups were identified
among the HapMap MXL samples. This differs from the NHANES Mexican Americans in which
4.4% had mitochondrial haplogroups of African ancestry**. The lack of African haplogroups in
the HapMap MXL samples is likely due to the small sample size and the regional ascertainment
of these samples. While the NHANES samples were collected from across the United States, the
HapMap Phase III MXL samples were ascertained solely from Los Angeles, CA, therefore are
likely to be more homogeneous.

While there are several benefits to Hi-MC, there are some limitations. Currently, Hi-MC
employs a reduced mitochondrial phylogenetic tree for classification. As a result, it is currently
limited to classification of the major haplogroups of European, African, and Native American

lineages, and requires that SNPs from the described custom panel be genotyped. While this panel
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was customized for populations expected for the PAGE I study, it is notable that several SNPs in
this panel (MT1736, MT2092, MT3552, MT4883, MT10400, MT11177, MT11251, MT11719,
MT12007, MT12308, MT12705, MT13368, MT14766) overlap with previously published

panels"*’

, suggesting the potential for both greater resolution and generalizability in future
extensions of Hi-MC. Additionally, because the method relies on a limited number of SNPs, it is
not very robust to missing genotype data and it has the ability to classify mitochondrial
haplogroups at a broad level, but currently cannot capture sub-haplogroups at finer resolution. As
such, in instances where sequence level data is available another method for mitochondrial
haplogroup classification, such as Haplogrep, would be more appropriate.

Despite these limitations, Hi-MC offers several advantages including a defined panel of
mitochondrial SNPs that is used in conjunction with the software for mitochondrial haplogroup
classification. Hi-MC utilizes PED/MAP files for a user-friendly input file format, saving time
and reducing opportunities for errors to be incorporated into the data. Also, Hi-MC is
implemented in the commonly used statistical software environment R allowing for classification
of relatively large sample sizes, as well as the ability to easily utilize other available R packages
for visualization of results.

Conclusions

We have developed a custom SNP panel and algorithm for mitochondrial haplogroup
classification. The algorithm, Hi-MC is implemented in R and makes use of PED/MAP file
format for data input. We evaluated the performance of Hi-MC and demonstrate that
classifications are comparable to the widely-used tool Haplogrep. Hi-MC offers an algorithm that
leverages a validated mtDNA SNP panel for mitochondrial haplogroup classification and is
particularly valuable for studies in which sequencing is not feasible.
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319 Figure 1: Hi-MC algorithm structure

320 Input for the algorithm is a list of sample IDs and corresponding SNP genotype data in pedigree
321 (PED/MAP) format. These genotypes are recursively analyzed through a node-based tree

322 structure. Each successive genotype classification is passed on to the Accumulator. They are then
323 ranked according to specificity [longer path through the tree -> more SNPs checked -> more
324 specific], with the most specific haplogroup as the final output. MRCA = most recent common

325 ancestor
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Table 1.

Percent concordance in CEU and YRI populations for pair-wise comparisons of mitochondrial

haplogroup classifications
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Table 1: Percent concordance in CEU and YRI populations for pair-wise comparisons of mitochondrial
haplogroup classifications

CEU (n=86%) YRI (n=82%)

Hi-MC vs HapMap 100% 96.3%
Hi-MC vs Haplogrep 100% 98.8%
Haplogrep vs HapMap 100% 95.1%

*Due to missing genotypes at key haplogroup-defining SNPs four CEU and eight YRI samples were
excluded from the percent concordance calculations.
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Table 2(on next page)

Table 2. Distribution of mitochondrial haplogroups in the HapMap Phase lll samples of
Mexican ancestry in Los Angeles, CA
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Table 2: Distribution of mitochondrial haplogroups in the HapMap Phase III samples of Mexican
ancestry in Los Angeles, CA

g;;ﬁ;?gg:al Number (%)
Native American
A2 23 (39.0%)
B2 11 (18.6%)
C 9 (15.3%)
D1 7 (11.9%)
European
H 3(5.1%)
H/V 2 (3.4%)
U 2 (3.4%)
\% 1(1.7%)
\%% 1 (1.7%)

Given that the mitochondrial haplogroup of the offspring is the same as that of the mother, offspring were
excluded when determining the frequency distribution of haplogroups. One sample was excluded from
frequency calculations due to missing genotype data (n=59).
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Figure 1(on next page)
Hi-MC algorithm structure

Input for the algorithm is a list of sample IDs and corresponding SNP genotype data in

pedigree (PED/MAP) format. These genotypes are recursively analyzed through a node-based
tree structure. Each successive genotype classification is passed on to the Accumulator. They
are then ranked according to specificity [longer path through the tree -> more SNPs checked
-> more specific], with the most specific haplogroup as the final output. MRCA = most recent

common ancestor
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