
QCOBJ a Python package to handle1

quantity-aware configuration files2

Roberto Vidmar1 and Nicola Creati23

1OGS - Istituto Nazionale di Oceanografia e di Geofisica Sperimentale4

2OGS - Istituto Nazionale di Oceanografia e di Geofisica Sperimentale5

Corresponding author:6

Roberto Vidmar1
7

Email address: rvidmar@inogs.it8

ABSTRACT9

Configuration files are widely used by scientists and researchers to configure the parameters and initial
settings for their computer programs.

10

11

We present here a Python package that adds physical quantities to these parameters and validates them
against user defined specifications to ensure that they are in the correct range and eventually converted
to the requested unit of measurement. The package contains also a graphical user interface class to
display, edit configuration file content, and to compare them side by side highlighting their differences.

12

13

14

15

INTRODUCTION16

Scientists often use configuration files (cfg files) to set the parameters and initial conditions for their17

computer programs or simulations. When these parameters are not limited to numbers or strings but18

represent physical quantities their unit of measure must be taken into account. Researchers are used to19

convert derived physical quantities by hand or with the help of some computer program but this operation20

slows down the process and is inherently error prone.21

We developed a package to give an answer to this problem integrating unit of measure and hence22

dimensionality into parameters. This approach ensures that programs using this package will always get23

numbers in the requested range and in the correct unit of measure independently of the units used in the24

configuration file.25

CODE DESIGN26

Scientific work implies the writing of many lines of code and researchers try to capitalize their production27

creating reusable code that is driven by cfg files. These are essentially text files in which keys are28

associated to values and these can be numeric or symbolic. Usually comments can be added to explain29

the meaning of the keywords and other useful information for the end users.30

The standard packages that allow Python programmers to take benefit of cfg files are ConfigParser31

(Langa, 2017) and ConfigObj (Foord and Larosa, 2017).32

The main difference between them is that ConfigObj has the capability to validate a cfg file against33

a specification file called configspec. The configspec defines the allowed data types and ranges for the34

keywords and can set default values. Thus the cfg file just needs to specify values that differ from defaults.35

However when programs use various physical quantities the user must take care of converting them to36

the numbers assigned in the cfg file that will be validated against the configspec specifications.37

We found this process time consuming and error prone because it needs frequent review of correctly38

developed and tested functions to search for not existing bugs. Our solution was the integration of physical39

quantities into configuration files.40

Many Python libraries exists that manage physical units manipulation but we found that Pint (Grecco,41

2017) is the most easy to read and has a clean syntax to specify units. Pint integrates unit parsing: prefixed42

and pluralized forms of units are recognized without explicitly defining them. In other words: since the43

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.3418v1 | CC BY 4.0 Open Access | rec: 17 Nov 2017, publ: 17 Nov 2017

prefix kilo and the unit meter are defined, Pint understands kilometers. Pint can also handle units provided44

as strings and this capability was the main reason of our choice.45

Figure 1. A simple application using CfgGui class.

Eventually we created a Python library, or more properly a pacakge to integrate ConfigObj and Pint46

and we called it called QCOBJ. QCOBJ is composed by three main classes.47

Q48

This is the physical quantity container class. It provides all the methods to manipulate the strings that49

define physical quantities and supports conversion to and from different units. It implements also methods50

for their representation in clear human readable form. Q instances can be added or compared only if they51

have the same dimensionality.52

QValidator53

Validation is a transparent layer to access data stored as strings. The validation checks if the data is correct54

and converts it to the expected type.55

The QValidator class is an extension of the original Validator class that understands the new syntax56

created for the physical quantities. Moreover it ensures that the values used in the cfg file are dimensionally57

2/7

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.3418v1 | CC BY 4.0 Open Access | rec: 17 Nov 2017, publ: 17 Nov 2017

correct and converts them to the units specified by configspec. If configspec defines also a minimum58

and/or a maximum value the QValidator raises errors when the user supplied values are out of range.59

QConfigObj60

It extends the ConfigObj class adding methods to integrate the QValidator. Default cfg files can be created61

when the validator instance is supplied to an empty instance of this class. QConfigObj has also methods62

for converting user defined quantities to the units used in configspec. For example a keyword defining a63

velocity in m/s in configspec can always be converted to m/s even if its value is set to knots in cfg or is set64

during program execution to any other velocity unit of measure.65

QConfigObj has a reserved keyword configFiles that allows the inclusion of a list of files. Long cfg,66

hundreds or thousands lines, can be split into smaller units thus improving readability and reuse.67

Figure 2. The expanded tree view of the comparison of two cfg files with the differences highlighted in
reverse text/background colors.

3/7

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.3418v1 | CC BY 4.0 Open Access | rec: 17 Nov 2017, publ: 17 Nov 2017

Graphical User Interface (GUI)68

While comparing long cfg files we noticed that spotting differences between them was quite difficult.69

Standard tools are available (Wikipedia, 2017a) to compare files but these highlight also difference in70

indentation and in comment lines hence we found them rather unusable. The CfgGui class included in the71

package defines a simple GUI to explore, edit and compare already defined configuration files.72

We chose a tree diagram representation for the GUI as configuration files are organized in sections73

and these can be nested to any level. In Figure 1 there is an expanded tree view of a cfg file. Values are74

coloured according their data types: quantities in red, boolean in green, strings in blue. Other data types75

in black. CfgGui can display more than one cfg file side by side as in Figure 2 and allows the expansion76

and compression of every single section as well as synchronized scrolling. Comment lines are ignored,77

values are colored according to their data types and differences between them are highlighted reverting78

background and foreground colors. Hovering with the mouse over a value pops up a help tooltip window79

with the valid range for that parameter. Comparison of more than two files (3-way comparison) is also80

supported.81

Our implementation uses the Model-View-Controller (MVC) (Wikipedia, 2017b) pattern and among82

the many GUi toolkits available from the Python literature (Alves, 2017) (Polo, 2017) we stick to83

PyQt/PySide (Riverbank Computing Limited, 2017) (The Qt Company, 2017) since they provide great84

flexibility and user control.85

PyQt and PySide are almost identical from the user point of view, PyQt being a much more mature,86

efficient and stable project. On the other side PySide provides LGPL-licensed Python bindings for the87

Qt framework and this feature can be important when deciding how to distribute the software. QCOBJ88

includes a compatibility module to leave the user free to choose the preferred library at runtime.89

USAGE90

Since configuration files use physical quantities it is mandatory to create first a configspec file that defines91

the keywords and the valid data types allowed for each of them. The keywords can be organized into92

sections and subsections in a hierarchical form.93

Cfg files can be written with any text editor but we provided a utility function makeSpec that helps94

building configspec sections with the correct syntax and indentation through a short Python script.95

1l e v e l = 1 # The h i e r a r c h i c a l l e v e l o f t h i s s e c t i o n96

2secname = ’ I n g r e d i e n t s ’97

3s u b s e c t i o n = c o l l e c t i o n s . O r d e r e d D i c t ((98

4(’ s u g a r ’ , (99

5’ Enab le s u g a r ’ ,100

6’ b o o l e a n ’ ,101

7F a l s e)) ,102

8(’ f r u i t s ’ , (103

9’A l i s t o f e x a c t l y two f r u i t s a t your c h o i c e ’ ,104

10’ s t r i n g l i s t 2 2 ’ ,105

11” app le , o r a ng e ”)) ,106

12(’ roomTemp ’ , (107

13’Room t e m p e r a t u r e ’ ,108

14’ degC , 18 , 26 ’ ,109

152 0 . 0)) ,110

16(’ f r a c t i o n ’ , (111

17’Some d e c i m a l v a l u e (f l o a t s a r e welcome , a s a lways) ’ ,112

18’ f l o a t , 0 , 1 ’ ,113

190 . 2 5)) ,114

20))115

21s u b s p e c = makeSpec (secname , s u b s e c t i o n , l e v e l)116
117

Listing 1. makeSpec.py - Python script to create a section using the makeSpec function.

Every section/subsection can be built filling an ordered Python dictionary in which each keyword is118

associated with a tuple. The last two elements of it are the range of valid values and the default while the119

remaining values will appear as comments in the configspec. The second last element defines also the120

type of the keyword that can be a physical quantity according to the Pint syntax. The keyword roomTemp121

4/7

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.3418v1 | CC BY 4.0 Open Access | rec: 17 Nov 2017, publ: 17 Nov 2017

of listing 1 al line 12 for example defines a temperature that can assume any value between 18 and 26122

degrees Celsius with a default value of 20 ◦C. The subsection instance of the same listing at line 3 is then123

processed by makeSpec at line 21 of listing 1 leaving in the subspec string what appears in listing 2 with124

the correct syntax and proper indentation.125

Listing 3 is an example of configspec file.126

1[Ingredients]127

2# Enable sugar128

3sugar = boolean(default=False)129

4# A list of two fruits at your choice130

5fruits = string list(default=list(apple, orange))131

6# Room temperature132

7roomTemp = quantity(units=degC, min=18, max=26, default=’20.0 degC’)133

8# Some decimal value (floats are welcome, as always)134

9fraction = float(min=0, max=1, default=0.25)135
136

Listing 2. Section created with the script of Listing 1.

1#137

2# Header of this configspec file, date, authors and version138

3#139

4description = string(default=’A meaningful descripion of this configuration file’)140

5...141

6voltage = quantity(units=V, min=0, max=100, default=’13.8 V’)142

7UG = quantity(units=N ∗ m∗∗2 / kg∗∗2, default=’6.672e−11 N ∗ m∗∗2 / kg∗∗2’)143

8# List of more configuration files blank separated144

9configFiles = string(default=’’)145

10[Ingredients]146

11...147

12roomTemp = quantity(units=degC, min=18, max=26, default=’20.0 degC’)148

13[[Regions]]149

14...150

15# More Sections like this can be added with different names151

16[[[many]]]152

17...153

18# Constant Temperature154

19T = quantity(units=degC, default=’18.0 degC’)155
156

Listing 3. my configspec.cfg - Example of configspec file.

The quantity in line 7 defines the unit of mesure for the keyword UG and hence its physical dimensions.157

The accepted quantities as well as their alias are defined in the Pint unit definitions file but the user can158

easily edit this text file to add any other unit needed.159

Lower and upper limits for each quantity can be specified like in line 6 leaving to the QValidator class160

the duty to check that the value defined in the actual configuration file is in the defined range.161

The special section many defines sub-sections to be validated using the same keywords and162

specification.163

The creation of this configspec can be speeded using a template file instead of writing it from scratch.164

Such a file can be generated form its configspec assigning to all keywords their default values with the165

following command:166

py thon −c ’ from q c o b j . q c o n f i g o b j i m p o r t QConfigObj ;167

t e m p l a t e = QConfigObj (” m y c o n f i g u r a t i o n f i l e . c f g ” , c o n f i g s p e c =”168

c o n f i g s p e c . c f g ”) ;169

t e m p l a t e . w r i t e () ’170
171

The just created my configuration file.cfg can later be tailored by the user with less effort.172

The physical quantities designated in configspec can now be assigned in any unit of measurement173

provided its value is dimensionally correct and, if converted to the units already specified in configspec, it174

is in the allowed range (if defined). For example voltage can be assigned as175

5/7

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.3418v1 | CC BY 4.0 Open Access | rec: 17 Nov 2017, publ: 17 Nov 2017

voltage = 12.6 V # or176

voltage = 12.6 volt # or177

voltage = 12.6 ohm ∗ ampere178
179

Pressure can be expressed in pascal or Pa or newton / m**2 or force kilogram / cm**2.180

Configuration file content is accessible to Python scripts in this way:181

from q c o b j import q c o n f i g o b j182

q c o b j = q c o n f i g o b j . QConfigObj (” m y c o n f i g u r a t i o n f i l e . c f g ” ,183

c o n f i g s p e c =” m y c o n f i g s p e c . c f g ”)184
185

Once the QCOBJ object has been instantiated, physical quantities in it can be accessed with the186

standard ConfigObj syntax:187

s e c t i o n = q c o b j [’ I n g r e d i e n t s ’]188

roomTempera ture = s e c t i o n [’ roomTemp ’]189

Being a v a l i d a t e d q u a n t i t y , roomTemperature can be c o n v e r t e d by190

t h e s c r i p t t o any o t h e r u n i t s and e v e n t u a l l y i t s v a l u e i s191

a v a i l a b l e f o r c o m p u t a t i o n192

abso lu t eRoomTempera tu re = roomTempera ture . t o (’K’) . magn i tude193

I n c r e a s e t e m p e r a t u r e194

abso lu t eRoomTempera tu re += 5 . 2195

Conver t now t h i s ∗∗number∗∗ back t o i t s p h y s i c a l q u a n t i t y196

as i n c o n f i g s p e c : i n t h i s case degC ∗∗ r e g a r d l e s s ∗∗ o f t h e u n i t s used i n197

m y c o n f i g u r a t i o n f i l e . c f g198

newTempQuanti ty = q c o n f i g o b j . qLike (199

abso lu teRoomTempera tu re , s e c t i o n , ’ roomTemp ’)200
201

More utility functions are available in the qconfigobj package to simplify the use of quantities from202

Python scripts. Full documentation of the package and of all the classes and functions in it is available203

both in HTML and pdf format. A few examples are also available to learn the basic usage.204

FINAL REMARKS205

QCOBJ has been evaluated and tuned during the developemnt of a geodynamic parallel numerical206

simulation suite (Nicola Creati et al., 2015). We found it of great help in managing the hundreds of207

physical quantities (parameters) needed for the computation and its use solved the troublesome process of208

units conversions leaving more time available for the research. CfgGui was necessitous for comparing cfg209

files that drove models with hundreds of parameters.210

ACKNOWLEDGMENTS211

We thank Hernán Grecco for the time and effort he spent in helping us to achieve this result.212

REFERENCES213

Alves, M. (2017). GuiProgramming - Python Wiki. https://wiki.python.org/moin/214

GuiProgramming [Accessed: 20 September”].215

Foord, M. and Larosa, N. (2017). Reading and Writing Config Files. http://www.voidspace.216

org.uk/python/configobj.html [Accessed: 20 September”].217

Grecco, H. E. (2017). Pint: makes units easy. https://pint.readthedocs.io/ [Accessed: 20218

September”].219

Langa, Ł. (2017). 14.2. configparser - Configuratin file parser. https://docs.python.org/3/220

library/configparser.html# [Accessed: 20 September”].221

Nicola Creati, Roberto Vidmar, and Paolo Sterzai (2015). Geodynamic simulations in HPC with Python.222

In Kathryn Huff and James Bergstra, editors, Proceedings of the 14th Python in Science Conference,223

pages 158 – 163.224

Polo, G. (2017). PyGTK, PyQT, Tkinter and wxPython comparison. http://ojs.pythonpapers.225

org/index.php/tpp/article/download/61/57 [Accessed: 20 September”].226

6/7

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.3418v1 | CC BY 4.0 Open Access | rec: 17 Nov 2017, publ: 17 Nov 2017

Riverbank Computing Limited (2017). Riverbank — Software — PyQt — What is PyQt? https:227

//riverbankcomputing.com/software/pyqt/ [Accessed: 20 September”].228

The Qt Company (2017). PySide - Qt Wiki. https://wiki.qt.io/PySide [Accessed: 26 Octo-229

ber”].230

Wikipedia (2017a). Comparison of file comparison tools - Wikipedia. https://en.wikipedia.231

org/wiki/Comparison_of_file_comparison_tools [Accessed: 20 September”].232

Wikipedia (2017b). Model-view-controller - Wikipedia. https://en.wikipedia.org/wiki/233

Model-view-controller [Accessed: 20 September”].234

7/7

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.3418v1 | CC BY 4.0 Open Access | rec: 17 Nov 2017, publ: 17 Nov 2017

