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Normalization is the first critical step in microbiome sequencing data analysis used to

account for variable library sizes. Current RNA-Seq based normalization methods that have

been adapted for microbiome data fail to consider the unique characteristics of

microbiome data, which contain a vast number of zeros due to the physical absence or

under-sampling of the microbes. Normalization methods that specifically address the zero

inflation remain largely undeveloped. Here we propose GMPR - a simple but effective

normalization method - for zero-inflated sequencing data such as microbiome data.

Simulation studies and real datasets analyses demonstrate that the proposed method is

more robust than competing methods, leading to more powerful detection of differentially

abundant taxa and higher reproducibility of the relative abundances of taxa.
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ABSTRACT15

Normalization is the first critical step in microbiome sequencing data analysis used to account for variable

library sizes. Current RNA-Seq based normalization methods that have been adapted for microbiome

data fail to consider the unique characteristics of microbiome data, which contain a vast number of

zeros due to the physical absence or under-sampling of the microbes. Normalization methods that

specifically address the zero inflation remain largely undeveloped. Here we propose GMPR - a simple but

effective normalization method - for zero-inflated sequencing data such as microbiome data. Simulation

studies and real datasets analyses demonstrate that the proposed method is more robust than competing

methods, leading to more powerful detection of differentially abundant taxa and higher reproducibility of

the relative abundances of taxa.
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INTRODUCTION25

Hight-throughput sequencing experiments such as RNA-seq and microbiome sequencing are now routinely26

employed to interrogate the biological systems at the genome scale (Wang et al., 2009). After processing27

of the raw sequence reads, the sequencing data usually presents as a count table of detected features. The28

complex processes involved in the sequencing causes the sequencing depth (library size) to vary across29

samples, sometimes ranging several orders of magnitude. Normalization, which aims to correct or reduce30

the bias introduced by variable library sizes, is an essential preprocessing step before any downstream31

statistical analyses for high-throughput sequencing experiments (Dillies et al., 2013; Li et al., 2015). An32

inappropriate normalization method may either reduce statistical power with the introduction of unwanted33

variation, or more severely, result in falsely discovered features. Normalization is especially critical when34

the library size is a confounding factor that correlates with the variable of interest. One popular approach35

for normalizing the sequencing data involves calculating a size factor for each sample as an estimate36

of the library size. The size factors can be used to divide the read counts to produce normalized data37

(in the form of relative abundances), or to be included as offsets in count-based regression models such38

as DESeq2 (Love et al., 2014) and edgeR (Robinson et al., 2010) for differential feature analysis. One39

simple normalization method is TSS (Total Sum Scaling), which uses the total read count for each sample40

as the size factor. However, there are a couple undesirable properties for TSS. First, it is not robust to41

outlier counts. Outliers have frequently been observed in sequencing samples due to technical artifacts42

such as preferential amplification by PCR (Aird et al., 2011). Several outliers could bias the library size43

estimates significantly. Second, it creates compositional effects: non-differential features will appear to44

be differential due to the constant-sum constraint (Tsilimigras and Fodor, 2016). Compositional effects45
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are much stronger for data where there are overly abundant features and the total number of features46

is relatively small. An ideal normalization method should thus capture the invariant part of the count47

distribution and be robust to outliers and differential features. The latter property is important to reduce48

the false positives due to compositionality.49

Many normalization methods have been developed for sequencing data generally, and for RNA-Seq50

data in particular. These methods usually rely on the assumption that the majority of features do not51

change with respect to a certain condition so that a robust statistic (i.e. median or quantile), which is not52

sensitive to a small set of differential features, could be used to quantify the library size. Two popular53

normalization methods for RNA-Seq data include TMM (Trimmed Mean of M values, implemented54

in edgeR) (Robinson and Oshlack, 2010) and the DESeq normalization (equivalent to Relative Log55

Expression normalization implemented in edgeR. For simplicity, we label it as “RLE”. ) (Anders and56

Huber, 2010).57

Compared to RNA-Seq data, microbiome sequencing data are more over-dispersed and contain a vast58

number of zeros. Take the COMBO data for example (Wu et al., 2011), it contains 1,873 non-singleton59

OTUs (Operational Taxonomic Units, a proxy for bacterial species) from 98 samples and more than 90%60

are zeros. The observed zeros are a mixture of “structural zeros” (due to physical absence) and “sampling61

zeros” (due to under-sampling). One popular strategy to circumvent the zero inflation problem is to add a62

pseudo-count. This practice has a Bayesian explanation and implicitly assumes that all the zeros are due63

to under-sampling (McMurdie and Holmes, 2014). However, this assumption may not be appropriate64

due to the large extent of structural zeros. Moreover, the choice of the pseudo-count is very arbitrary65

and it has been shown that the clustering results can be highly dependent upon the choice (Costea et al.,66

2014). Recently, a new normalization method CSS (Cumulative Sum Scaling) has been developed for67

microbiome sequencing data (Paulson et al., 2013). In CSS, raw counts are divided by the cumulative sum68

of counts, up to a percentile determined using a data-driven approach. The percentile is aimed to capture69

the relatively invariant count distribution for a dataset. However, the determination of the percentiles70

could fail for microbiome datasets that have high count variability. Therefore, a more robust method to71

address the zero-inflated sequencing data is still needed.72

Here we propose a novel inter-sample normalization method GMPR (Geometric Mean of Pairwise73

Ratios), developed specifically for zero-inflated sequencing data such as microbiome sequencing data. By74

comprehensive tests on simulated and real datasets, we show that GMPR outperforms the other competing75

methods for zero-inflated count data.76

METHODS77

Our method extends the idea of RLE normalization for RNA-seq data. Assume we have a count table78

of OTUs by 16S rDNA targeted microbiome sequencing. Denote the cki as the count of the kth OTU79

(k = 1, · · · ,q) in the ith (i = 1, · · · ,n) sample. The RLE method consists of two steps:80

" Step 1: Calculate the geometric means for all OTUs

µGM
k = (c1kc2k · · ·cnk)

1/n, k = 1, · · · ,q

" Step 2: For a given sample,

si = mediank{cik/µGM
k }, i = 1, · · · ,n

Since geometric mean is not defined for features with 0s, features with 0s are usually excluded for

size calculation. However, for zero-inflated data such as microbiome sequencing data, as the sample size

increases, the probability of existence of features without any 0s becomes smaller. It is not uncommon

that a large dataset does not share any common taxa. In such cases, RLE fails. As an alternative, a

pseudo-count such as 1 or 0.5 has been suggested to add to the original counts to eliminate 0s. Since the

majority of the counts may be 0s for microbiome data, adding even a small pseudo-count could have a

dramatic effect on the geometric means of most OTUs. To circumvent the problem, GMPR reverses the

order of the two steps of RLE. The first step is to calculate ri j, which is the median count ratio of nonzero

counts between sample i and j,

ri j =
n

∏
j=1

Median
k*{1,··· ,q}|cki·ck j �=0

{

cki

ck j

}

,
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Figure 1. GMPR starts with pairwise comparisons (upper). Each pairwise comparison calculates the

median abundance ratio of those common OTUs between the pair of samples (lower). The pairwise ratios

are then synthesized into a final estimate.

The second step is to calculate the size factor si for a given sample i as

si =

(

n

∏
j=1

ri j

)1/n

.

Figure 1 illustrates the procedure of GMPR. The basic strategy of GMPR is that we conduct the81

pairwise comparison first and then combine the pairwise results to obtain the final estimate. Using this82

strategy, we do not need to calculate the geometric mean for each OTU as implemented in RLE. Although83

only a small number of OTUs (or none) are shared across all samples due to severe zero inflation, for84

every pair of samples, they usually share many OTUs. Thus, for pairwise comparison, we focus on these85

common OTUs that are observed in both samples to have a reliable inference of the abundance ratio86

between samples. We then synthesize the pairwise abundance ratios using a geometric mean to obtain the87

size factor. It should be noted that GMPR is a general method, which could be applied to any type of88

sequencing data in principle.89

The R implementation of GMPR could be accessed by https://github.com/jchen1981/90

GMPR.91

RESULTS92

We compare GMPR to competing normalization methods including CSS, RLE, RLE+ (RLE with pseudo-93

count 1), TMM, TMM+ (TMM with pseudo-count 1) and TSS. The details of how to estimate the size94

factors using each normalization method are described in Box 1.95
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Box 1. Normalization methods compared in the analysis.

" GMPR (Geometric Mean of Pairwise Ratios): The size factors for all samples are calculated by

GMPR described in the Method section.

" CSS (Cumulative Sum Scaling): The size factors for all samples are calculated by applying

newMRexperiment, cumNorm and normFactors in Bioconductor package metagenome-

Seq. Normalized read counts are obtained by dividing the raw read counts by the size factors.

" RLE (Relative Log Expression): The size factors for all samples are calculated by the

calcNormFactors with the parameter set as “RLE” in the edgeR Bioconductor pack-

age. The scaled size factors are obtained by multiplying the size factors with the total read

count. Normalized read counts are obtained by dividing the raw read counts by the scaled size

factors.

" RLE+ (Relative Log Expression plus pseudo-counts): The scaled size factors for all samples are

calculated in the same way as RLE, except that each data entry is added with a pseudo-count 1.

Normalized read counts are obtained by dividing the raw read counts by the scaled size factors.

" TMM (Trimmed Mean of M values): The size factors for all samples are calculated by the

calcNormFactors function with the parameter set as “TMM” in the edgeR Bioconductor

package. The scaled size factors are obtained by multiplying the size factors with the total read

count. Normalized read counts are obtained by dividing the raw read counts by the scaled size

factors.

" TMM+ (Trimmed Mean of M values plus pseudo-counts): The scaled size factors for all

sample are calculated in the same way as TMM, except that each data entry is added with a

pseudo-count 1. Normalized read counts are obtained by dividing the raw read counts by the

scaled size factors.

" TSS (Total Sum Scaling): The size factors are taken to be the total read counts. Normalized

read counts are obtained by dividing the raw read counts by the size factors.

96

We study the performance of GMPR using both simulated and real OTU datasets. In simulated97

datasets, we study its robustness to differential and outlier OTUs as well as the effect on the performance98

of differential abundance analysis of OTU data. In real datasets, since we do not know the ground99

truth, we focus on its ability to reduce the inter-sample variability as well as the ability to increase the100

reproducibility of the normalized taxa abundances.101

Simulation: GMPR is robust to differential and outlier OTUs102

We first use a perturbation-based simulation approach to evaluate the performance of normalization103

methods, focusing on their robustness to differentially abundant OTUs and sample-specific outlier OTUs.104

The idea is that we first simulate the counts from a common distribution so that the number of total105

counts is a proxy of the “true” library size. Next, we perturb the counts in different ways and apply106

different normalization methods on the perturbed counts and evaluate the performance based on the107

correlation between estimated size factor and “true” library size. Specifically, we generate zero-inflated108

count data based on a Dirichlet-multinomial model with known library sizes (Chen and Li, 2013). The109

mean and dispersion parameters of Dirichlet-multinomial distribution are estimated from the COMBO110

dataset (n=98) after filtering out rare OTUs with prevalence less than 10% (q=397) (Wu et al., 2011).111

The library sizes are also drawn from those of the COMBO data. To investigate the effect of sparsity (the112

number of zeros), OTU counts are simulated with different zero percentages (> 60%, 70% and 80%) by113

adjusting the dispersion parameter. A varying percentage of OTUs (0%, 1%, 2%, 4%, 8%, 16% and 32%)114

are perturbed in each set of simulation, with varying strength of perturbation. The counts ci j of perturbed115

OTUs are changed to
:

ci j or c2
i j for strong perturbation and 0.25ci j or 4ci j for moderate perturbation.116

Finally, size factors for all methods are estimated and the Spearman’s correlation between the estimated117

size factors and “true” library sizes is calculated. The simulation is repeated 50 times and the average118

Spearman’s correlation is reported.119

We employ two perturbation approaches where we decrease/increase the abundances of a “fixed” or120
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Before perturbation

Perturb a fixed set

Perturb a random set

Figure 2. Illustration of the simulation strategy. In the “fixed” perturbation approach, the abundances of

the same set of OTUs are decreased/increased for all samples, reflecting differentially abundant OTUs

under certain conditions such as disease state. In the “random” perturbation approach, each sample has a

random set of OTUs perturbed with a random direction, reflecting the sample-specific outliers. The

darkness of the color indicates the OTU abundance.

5/14

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.3417v2 | CC BY 4.0 Open Access | rec: 20 Nov 2017, publ: 20 Nov 2017



~80% zeros ~70% zeros ~60% zeros

ïïï ï ï ï ï

ïïï ï ï ï ï

ïïï ï ï ï ï

ïïï ï ï ï ï

ïïï ï ï ï ï

ïïï ï ï ï ï

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

S
tro

n
g
 p

e
rtu

rb
a
tio

n
M

o
d
e
ra

te
 p

e
rtu

rb
a
tio

n

0.0 0.1 0.2 0.3 0.0 0.1 0.2 0.3 0.0 0.1 0.2 0.3

Proportion of perturbed OTUs

C
o
rr

e
la

ti
o
n

Method

ï GMPR

CSS

RLE

RLE+

TMM

TMM+

TSS

Figure 3. Spearman’s correlation between the estimated size factors and the simulated “true” library

sizes when a fixed set of OTUs are perturbed. The performance of different normalization methods are

compared under different level of zero inflation, percentage of perturbed OTUs and strength of

perturbation.

“random” set of OTUs. As shown in Figure 2, in the “fixed” perturbation approach, the same set of OTUs121

are decreased/increased in the same direction for all samples, reflecting differentially abundant OTUs122

under a certain condition such as disease state. In the “random” perturbation approach, each sample has a123

random set of OTUs perturbed with a random direction, mimicking the sample-specific outliers.124

In the simulation of “fixed” perturbation (Figure 3), the performance of all methods trends to decrease125

with the increased zero percentage of counts and strength of perturbation. TSS has excellent performance126

under moderate perturbation but performs poorly under strong perturbation. GMPR, followed by CSS,127

consistently outperforms the other methods when the perturbation is strong. When the perturbation is128

moderate, GMPR is only secondary to TSS when the percentage of zeros is high (80%) and on par with129

TSS when the percentage of zeros is moderate (70%) or low (60%). For RNA-Seq based methods, TMM130

performs better than RLE in either strong or moderate perturbation. Though the performance of RLE+131

improves by adding pseudo-counts to the OTU data, the size factor estimated by TMM+ merely correlates132

with true library size when the zero percentage is high (70% and 80%). In contrast, GMPR, together with133

CSS, performs stable in all cases and GMPR yields better size factor estimate than CSS.134

In the “random” perturbation scenario (Figure 4), performance of all methods trends to decrease with135

the increased zero percentage and strength of perturbation as expected. The performance also decreases136

with the increased number of perturbed OTUs. Similar to the performance in “fixed” perturbation scenario,137

TSS has excellent performance under moderate perturbation but performs poorly under strong perturbation.138

When the perturbation is strong, GMPR, followed by CSS, still outperforms the other methods. RNA-Seq139

based methods including TMM, TMM+, RLE and RLE+ have similar trend as in “fixed” perturbation.140

However, different from “fixed” perturbation, the performance of TMM and RLE decreases significantly as141

the number of perturbed OTUs increases. In contrast, GMPR and CSS are more robust to sample-specific142

outlier OTUs in all cases and GMPR results in better size factor estimate than CSS.143
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Figure 4. Spearman’s correlation between the estimated size factors and the simulated “true” library

sizes when a random set of OTUs are perturbed. The performance of different normalization methods are

compared under different level of zero inflation, percentage of perturbed OTUs and strength of

perturbation.
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Simulation: GMPR improves the performance of differential abundance analysis144

In the previous section, we demonstrate that GMPR could better recover the “true” library size in145

presence of differentially abundant OTUs or sample-specific outlier OTUs. In this section, with a different146

perspective, we show that the robustness of GMPR method translates to a better false positive control and147

higher statistical power in the context of differential abundance analysis (DAA), where the aim is to detect148

differentially abundant OTUs between two sample groups. To achieve this end, we use DESeq2 and edgeR149

to perform DAA on the OTU table (McMurdie and Holmes, 2014) and we compare the performance of150

these two methods using their native normalization methods (RLE for DESeq2 and TMM for edgeR) to151

that using the GMPR method. We evaluate the performance based on the actual false discovery rate (FDR)152

control after the Benjamini-Hochberg FDR control procedure is applied (Benjamini and Hochberg, 1995)153

and ROC analysis, where the true positive rate is plotted against false positive rate at different P-value154

cutoffs.155

We use Zero-inflated Negative Binomial distribution (ZINB) to simulate the microbiome data as more156

detailedly described in Chen et al. (2017). Let ci j be the number of reads from taxon j in the ith sample,157

the ZINB has the following probability distribution function158

fzinb(ci j|pi j,µi j,φi j) = pi j · I0(ci j)+(12 pi j) · fnb(ci j|µi j,φi j), (1)

which is a mixture of a point mass at zero (I0) and a negative binomial ( fnb) distribution of the form159

fnb(ci j|µi j,φi j) =
Γ(ci j +

1
φi j
)

Γ(ci j +1)Γ( 1
φi j
)
·
(

φi jµi j

1+φi jµi j

)ci j

·
(

1

1+φi jµi j

)
1

φi j

(2)

There are three parameters prevalence(pi j), abundance(µi j) and dispersion(φi j), which fully captures

the zero-inflated and dispersed count data. We generate the simulated datasets based on the estimated

parameters from the COMBO dataset after filtering out rare OTUs (n=98,q=397). We simulate two

sample groups of size 49 each and randomly select 5% of OTUs as differential OTUs by either multiplying

or dividing a factor of 4 in one group. We then apply DESeq2 and edgeR on the simulated datasets with

either their native normalization or GMPR normalization. We denote DESeq2-GMPR, DESeq2-RLE,

edgeR-GMPR and edgeR-TMM as the four method-normalization combinations. For each approach, the

P-values are calculated for each OTU and corrected for multiple testing using the BH procedure. The

observed FDR is calculated as
FP

max(1,FP+T P)
,

where FP and T P are the number of false and true positives respectively.160

As shown in Figure 5A, although all approaches have slightly elevated FDRs relative to the nominal161

levels, the observed FDRs of DAA methods using GMPR normalization are closer to the nominal levels162

than those of DAA methods with their native normalization. In terms of the power of different methods163

based ROC analysis (Figure 5B), DESeq2-GMPR achieves a higher AUC (Area Under the Curve) than164

DESeq2-RLE and edgeR-GMPR has a higher AUC than edgeR-TMM. Overall, GMPR has better FDR165

control and higher power invariant to the DAA method used.166

Real data: GMPR reduces the inter-sample variability of normalized abundances167

We next evaluate various normalization methods using 38 gut microbiome datasets from16S rDNA168

sequencing of the stool samples (Table 1). These real datasets are retrieved from qiita database169

(https://qiita.ucsd.edu/) with a sample size larger than 50. The 38 datasets come from different species170

of both invertebrates and vertebrates as well as a wide range of biological conditions. We choose stool171

samples because the stool microbiota is more studied than that from other body sites.172

For the real data, it is not feasible to calculate the correlation between estimated size factors and173

“true” library sizes as done for simulations. As an alternative, we use the inter-sample variability as174

a performance measure since an appropriate normalization method will reduce the variability of the175

normalized OTU abundances (raw counts divided by the size factor) due to different library sizes. A176

similar measure has been used in the evaluation of normalization performance for microarray data (Fortin177

et al., 2014). We use the traditional variance as the metric to assess inter-sample variability. For each178

method, the variance of the normalized abundance of each OTU across all samples is calculated and the179

median of the variances of all OTUs or stratified OTUs (based on their prevalence) is reported for each180
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Figure 5. Comparison of the performance of different normalization methods in differential abundance

analysis. A. Ability to control the FDR. The observed FDR is plotted against the nominal FDR level. B.

ROC curves when 5% random OTUs are differentially abundant between two groups.

study. For each study, all methods are ranked based on these median variances. The distributions of their181

ranks across these 38 studies for each method are depicted in Figure 6. A higher ranking (lower values in182

the box plot) indicates a better performance in terms of minimizing inter-sample variability.183

In Figure 6, we could see that GMPR achieves the best performance with top ranks in 22 out of 38184

datasets, followed by CSS, which tops in 7 datasets (Table 2). This result is consistent with the simulation185

studies, where GMPR and CSS are overall more robust to perturbations than other methods. Moreover,186

GMPR consistently performs the best for reducing the variability of OTUs at different prevalence level. It187

is also noticeable that the inter-sample variability is the largest without normalization (RAW) and TSS188

does not perform well for a large number of studies. As expected, RLE only works for 8 out of 38 datasets189

due to a large percentage of zero read counts. By adding pseudo-counts, RLE+ improves the performance190

significantly compared to RLE. However, there is not much improvement of TMM+ compared to TMM.191

To see if the difference is significant, we performed paired Wilcoxon signed-rank tests between the ranks192

of the 38 datasets obtained by GMPR and by any other methods. GMPR achieves significantly better193

ranking than other methods (P-value<0.05 for all OTUs or stratified OTUs). Overall, GMPR achieves the194

best performance in terms of minimizing inter-sample variability.195

Real data: GMPR improves the reproducibility of normalized abundances196

When replicates are available, we could evaluate the performance of normalization based on its ability to197

reduce between-replicate variability. Normalization will increase the reproducibility of the normalized198

OTU abundances. In this section, we compare the performance of different normalization methods199

based on a reproducibility analysis of a dataset from the fecal stability study, which aims to compare200

the temporal stability of different stool collection methods (Sinha et al., 2016). In this study, 20 healthy201

volunteers provided the stool samples and these samples were subject to different treatment methods.202

The stool samples were then frozen immediately or after storage in ambient temperature for one or four203

days for the study of the stability of the microbiota. Each sample had two to three replicates for each204

condition and thus we could perform reproducibility analysis based on the replicate samples. We evaluate205

the reproducibility for the “no additive” treatment method, where the stool samples are left untreated.206
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Figure 6. Comparison of normalization methods in reducing inter-sample variability of normalized

OTU abundances based on 38 real stool microbiome datasets. Distribution of the ranks for the medians of

the variances over the 38 datasets. The median is calculated over all OTUs or OTUs of different

prevalence level (Top, middle and bottom)
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Table 1. 38 gut microbiome datasets (stool samples) from qiita (n g 50)

study.object study.ID sample.size
1 infant gut fecal samples 101 63
2 infant fecal samples 10293 144
3 human and canine fecal samples 10394 1535
4 mice fecal sample 10469 391
5 human fecal samples 1561 52
6 human(HIV) fecal samples 1700 58
7 Cape Buffalo fecal samples 1736 642
8 Skin, oral and fecal samples 1841 3735
9 stool New-Onset Crohns Disease 1998 284

10 TwinsUK population fecal samples 2014 1081
11 Saliva, skin and fecal samples from ICU patients 2136 554
12 human fecal samples 455 92
13 human fecal samples 457 91
14 mice fecal microbiota 654 212
15 pregnant women fecal samples 867 1007
16 human infant gut 10297 85
17 monkey gut 10315 199
18 Grant gazelle gut 10323 768
19 human gut western Oklahoma 10342 58
20 human gastrointestinal gut 1070 118
21 human gut 1189 436
22 zebrafish gut 1192 50
23 Asian primates gut 1453 318
24 cow hindgut 1621 192
25 mice gut 1634 294
26 monkey gut 1696 172
27 bat gut 1734 96
28 colobine primates gut 2182 167
29 human gut and salivary 2202 820
30 bat gut 2338 192
31 human gut and mouthand skin 449 602
32 humann gut microbiome (mouse samples) 452 160
33 humann gut microbiome (mouse samples) 456 158
34 human gastrointestinal 492 77
35 human gut (obese and lean twins) 77 281
36 human gut 850 528
37 freshwater fish slime and gut 940 288
38 Iguanas gut 963 100

Under this condition, certain bacteria will grow in the ambient temperature and we thus expect a low207

agreement between replicates after four-day ambient temperature storage.208

We conduct the reproducibility analysis on the core genera, which are present in more than 75%

samples (a total of 26 genera are assessed). We first estimate the size factors based on the OTU-level

data and the genus-level counts are divided by the size factors to produce normalized genus-level

abundances. Intraclass correlation coefficients (ICC) is used to quantify the reproducibility for the

genus-level normalized abundances. The ICC is defined as,

ρ =
σ2

b

σ2
b +σ2

ε

where σ2
b represents the biological variability, i.e., sample-to-sample variability and σ2

ε represents the209

replicate-to-replicate variability. We calculate the ICC for 26 core genera for “day 0” (immediately frozen)210

and “day 4” (frozen after four-day storage) respectively. The ICCs are estimated using the R package211

“ICC” based on the mixed effects model. An ICC closer to one indicates excellent reproducibility.212

Figure 7 shows that the reproducibility of the genera in “day 0” has higher reproducibility than “day 4”213

regardless of the normalization method used since reproducibility decreases as certain bacteria grow as214

time elapses. While all the methods have resulted in comparable ICCs for “day 0”, GMPR has achieved215
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Table 2. The frequency of 1st rank in the 38 real stool microbiome datasets.

GMPR CSS RLE RLE+ TMM TMM+ TSS RAW

OTU(All) 22 7 0 0 0 0 8 1

OTUs(Top) 23 3 1 1 3 0 7 0

OTUs(Middle) 20 8 0 0 1 0 9 0

OTUs(Bottom) 20 8 0 0 2 2 6 0
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Figure 7. ICC as a measurement for reproducibility is calculated for 26 core genera normalized by

different methods for “day 0” and “day 4” respectively.
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higher ICCs for “day 4” than the rest methods. Sinha et al. (2016) showed that most taxa were relatively216

stable over 4 days and only a small group of taxa (mostly Gammaproteabacteria) displayed a pronounced217

growth at ambient temperature. This suggests that most of the genera are temporally stable and their “day218

4” ICCs should be close to the “day 0” ICCs. However, due to the compositional effect, if the data are219

not properly normalized, a few fast-growing bacteria will skew the relative abundances of other bacteria,220

leading to apparently lower ICCs for those stable genera. In contrast, the GMPR method is more robust to221

differential or outlier taxa as demonstrated by the simulation study, which explains higher ICCs for “day222

4” samples.223

CONCLUSION AND DISCUSSION224

Normalization is a critical step in processing microbiome data, rendering multiple samples comparable by225

removing the bias caused by variable sequencing depths. Normalization paves the way for the downstream226

analysis, especially for differential abundance analysis of microbiome data, where proper normalization227

could reduce the false positive rates due to compositional effects. However, the characteristics of228

microbiome sequencing data, including over-dispersion and zero inflation, make the normalization a229

non-trivial task.230

In this study, we propose the GMPR method for normalizing microbiome sequencing data by address-231

ing the zero inflation. In one simulation study, we demonstrate GMPR’s effectiveness by showing its232

better performance than other normalization methods in recovering the original library sizes when a subset233

of OTUs are differentially abundant or when random outlier OTUs exist. In another simulation study,234

GMPR yields better FDR control and higher power in detecting differentially abundant OTUs. In real data235

analysis, we show GMPR reduces the inter-sample variability and increases inter-replicate reproducibility236

of normalized taxa abundances. Overall, GMPR outperforms RNA-Seq normalization methods including237

TMM and RLE and modified TMM+ and RLE+. It also yields better performance than CSS, which is a238

normalization method specifically designed for microbiome data. As a general normalization method for239

zero-inflated sequencing data, GMPR could also be applied to other sequencing data with excessive zeros240

such as single-cell RNA-Seq data (Vallejos et al., 2017).241

Although we demonstrate the use of GMPR method in the context of differentially abundant analysis242

and reproducibility analysis of taxa abundances, its use may not be limited to these applications. Other243

applications of GMPR normalization include distance-based statistical methods such as ordination,244

clustering and PERMANOVA (Caporaso et al., 2010; Chen et al., 2012), where the distance is calculated245

using the GMPR-normalized data. We note that this strategy only works with weighted distance measures,246

such as weighted UniFrac distance (Chen et al., 2012), where the taxa abundances are used in the247

calculation. For unweighted distance measures based on presence/absence information, rarefaction is still248

recommended to remove/reduce the effect of differing probabilities of being sampled as 0s due to uneven249

sequencing depths (Thorsen et al., 2016; Weiss et al., 2017).250

GMPR is an inter-sample normalization method and has a computational complexity of O(n2q), where251

n and q are the number of samples and features respectively. While GMPR calculates the size factors252

for a typical microbiome dataset (n< 1000) in seconds, it does not scale linearly with the sample size.253

Large samples sizes are increasingly popular for epidemiological study and genetic association study of254

the microbiome (Robinson et al., 2016; Hall et al., 2017), where tens or hundreds of thousands of samples255

will be collected to detect weak association signals. For such large sample sizes, GMPR may take a much256

longer time. A potential strategy for efficient computation under ultra-large sample sizes is to divide the257

dataset into overlapping blocks, calculate GMPR size factors on these blocks and unify the size factors258

through the overlapping samples between blocks. To increase the computational efficiency of GMPR for259

ultra-large sample sizes will be the focus of our future research.260
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