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Background. Multiple studies have demonstrated that partitioning of molecular datasets is important in

model-based phylogenetic analyses. Commonly, partitioning is done a priori based on some known

properties of sequence evolution, e.g. differences in rate of evolution among codon positions of a protein-

coding gene. Here we propose a new method for data partitioning based on relative evolutionary rates of

the sites in the alignment of the dataset being analysed. The rates are inferred using the previously

published Tree Independent Generation of Evolutionary Rates (TIGER), and the partitioning is conducted

using our novel python script RatePartitions. We applied this method to eight published multi-locus

phylogenetic datasets, representing different taxonomic ranks within the insect order Lepidoptera

(butterflies and moths).

Methods. We used TIGER to generate relative evolutionary rates for all sites in the alignments. Then,

using RatePartitions, we partitioned the data into bins based on their relative evolutionary rate.

RatePartitions applies a simple formula that ensures a distribution of sites into partitions following the

distribution of rates of the characters from the full dataset. This ensures that the invariable sites are

placed in a partition with slowly evolving sites, avoiding the pitfalls of previously used methods, such as

k-means. Different partitioning strategies were evaluated using BIC scores as calculated by

PartitionFinder.

Results. In all eight datasets, partitioning using TIGER and RatePartitions was significantly better as

measured by the BIC scores than other partitioning strategies, such as the commonly used partitioning

by gene and codon position.

Discussion. We developed a new method of partitioning phylogenetic datasets without using any prior

knowledge (e.g. DNA sequence evolution). This method is entirely based on the properties of the data

being analysed and can be applied to DNA sequences (protein-coding, introns, ultra-conserved

elements), protein sequences, as well as morphological characters. A likely explanation for why our

method performs better than other tested partitioning strategies is that it accounts for the heterogeneity

in the data to a much greater extent than when data are simply subdivided based on prior knowledge.
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Abstract 

Background. Multiple studies have demonstrated that partitioning of molecular datasets is 

important in model-based phylogenetic analyses. Commonly, partitioning is done a priori based 

on some known properties of sequence evolution, e.g. differences in rate of evolution among 

codon positions of a protein-coding gene. Here we propose a new method for data partitioning 

based on relative evolutionary rates of the sites in the alignment of the dataset being analysed. 

The rates are inferred using the previously published Tree Independent Generation of 

Evolutionary Rates (TIGER), and the partitioning is conducted using our novel python script 

RatePartitions. We applied this method to eight published multi-locus phylogenetic datasets, 

representing different taxonomic ranks within the insect order Lepidoptera (butterflies and 

moths).

Methods. We used TIGER to generate relative evolutionary rates for all sites in the alignments. 

Then, using RatePartitions, we partitioned the data into bins based on their relative evolutionary 

rate. RatePartitions applies a simple formula that ensures a distribution of sites into partitions 

following the distribution of rates of the characters from the full dataset. This ensures that the 

invariable sites are placed in a partition with slowly evolving sites, avoiding the pitfalls of 

previously used methods, such as k-means. Different partitioning strategies were evaluated using 

BIC scores as calculated by PartitionFinder.

Results. In all eight datasets, partitioning using TIGER and RatePartitions was significantly 

better as measured by the BIC scores than other partitioning strategies, such as the commonly 

used partitioning by gene and codon position.

Discussion. We developed a new method of partitioning phylogenetic datasets without using any 

prior knowledge (e.g. DNA sequence evolution). This method is entirely based on the properties 

of the data being analysed and can be applied to DNA sequences (protein-coding, introns, ultra-

conserved elements), protein sequences, as well as morphological characters. A likely explanation
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for why our method performs better than other tested partitioning strategies is that it accounts for 

the heterogeneity in the data to a much greater extent than when data are simply subdivided based

on prior knowledge.

Key words: BIC; intron; PartitionFinder; phylogenetics; phylogenomics; RatePartitions; UCEs; 
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Introduction

Phylogenetic analysis of DNA sequences is based on models of molecular evolution that estimate

parameters such as base frequencies, substitution rates among nucleotides, as well as among-site 

rate variation. To reduce the heterogeneity in the data, datasets are often partitioned into subsets 

that are deemed to have undergone more similar molecular evolution. A number of studies have 

demonstrated that partitioning of data is important (Nylander et al., 2004; Brandley, Schmitz & 

Reeder, 2005; Brown & Lemmon, 2007; Rota, 2011; Rota & Wahlberg, 2012; Kainer & Lanfear, 

2015), especially for model-based phylogenetic analyses, which are known to be more sensitive 

to underparameterization than overparameterization (Huelsenbeck & Rannala, 2004; Lemmon & 

Moriarty, 2004; Nylander et al., 2004).

Today, in most phylogenetic studies, partitions are defined a priori by the user, commonly

by gene, gene and codon position, stems vs. loops in ribosomal RNA, or another feature of the 

sequence that the user believes to be important. In several studies, partitioning of protein-coding 

genes by gene and codon position was demonstrated to be a better option when compared to not 

partitioning or partitioning by gene (Nylander et al., 2004; Brandley, Schmitz & Reeder, 2005; 

Brown & Lemmon, 2007; Miller, Bergsten & Whiting, 2009; Rota, 2011). This approach is 

practical when a dataset consists of only a few genes. However, when data come from tens (or 

hundreds) of genes, this approach becomes unwieldy, although there are methods that allow one 

to combine many a priori established partitions into fewer, based on model testing with programs

such as PartitionFinder (Lanfear et al., 2012).

Using a method described by Cummins and McInerney (2011), it is possible to partition a

dataset  in  a more objective way, based on the properties of the data.  The method takes into

account the relative evolutionary rates of characters by comparing the patterns in character-state

distributions in homologous characters (i.e., nucleotides or amino acids in a molecular alignment

or characters in a morphological matrix). Each character thus receives a value for its evolutionary
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rate, which is based on comparisons to all other characters in the matrix. The rate values can then

be used to group characters with similar rates by dividing the range of rates into bins, which can

be user-defined so as to span equal ranges of rates. This usually leads to the first bin containing

characters that are invariable, and the last bin consisting of characters with the highest relative

rate  of  change  (Cummins & McInerney, 2011).  This  method is  implemented  in  the  program

TIGER 3 Tree Independent Generation of Evolutionary Rates (Cummins & McInerney, 2011). 

Originally,  the  method  was  developed  to  identify  and  exclude  the  fastest-evolving

characters in a dataset, but this approach has potential problems (see Simmons & Gatesy, 2016).

We have extended the TIGER method to partitioning the data by sorting characters into data

subsets with similar relative rates of evolution  (Rota & Wahlberg, 2012; Rota & Miller, 2013;

Wahlberg et al., 2014), where we arbitrarily combined neighbouring TIGER bins to form data

partitions with enough characters for analysis. A similar approach has been used in a number of

studies (Kaila et al., 2013; Rota & Miller, 2013; Heikkilä et al., 2014; Matos-Maravi et al., 2014;

Wahlberg et al., 2014; Edger et al., 2015; Kristensen et al., 2015; Rajaei et al., 2015; Ounap,

Viidalepp & Truuverk, 2016), and although this method works quite well, the downside is that it

requires the user to make a subjective decision about the final partitioning strategy.

Recently,  a  different  way  of  using  TIGER  together  with  k-means  was  described  by

Frandsen et al. (2015). They compared their new method to traditional a priori defined partitions,

as  well  as  to  site  rates  calculated  using  a  maximum  likelihood  function.  In  all  test  cases,

partitioning by both TIGER calculated rates and likelihood calculated rates performed better than

traditional methods, with likelihood rates doing much better (Frandsen et al., 2015). However, the

k-means algorithm has been found to place all invariable characters into one partition (Baca et al.,

2017), which leads to biased likelihood values.  Indeed, the  k-means algorithm has now been

disabled  for  molecular  data  in  PartitionFinder2
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(https://github.com/brettc/partitionfinder/commit/19d7fe41d2e469c131a5b0cc30184a069867b7f2

accessed 13 November 2017).

Here, we describe a simple and objective method for partitioning using TIGER. TIGER is

again used for sorting of sites based on their relative evolutionary rates, but now we introduce an

algorithm 3 RatePartitions 3 for dividing the sites among partitions in an objective way. This

method has already been used in several published studies (Heikkilä et al., 2015; Rota, Pena &

Miller, 2016; Rota et al., 2016; Sahoo et al., 2016). We report our findings from further testing

RatePartitions performance on eight published datasets, some of which were difficult to analyse

using traditional partitioning strategies.  We use the Bayesian Information Criterion (BIC) for

comparison of partitioning strategies. We do not carry out phylogenetic analyses and compare

resulting  topologies  because  it  has  been  previously  established  that  partitioning  does  affect

topology,  branch  support,  and  branch  lengths  (see  Kainer  &  Lanfear,  2015  and  references

therein), and since true phylogenies in all of these cases are unknown, we can only select the best

partitioning strategy using statistical model evaluation metrics, such as e.g. BIC. 

Materials & Methods

RatePartitions

Although it is technically incorrect to use the word 8partition9 when referring to a data subset, we 

use 8partition9 in that sense since this is commonly done in phylogenetics. When partitioning is 

carried out using TIGER, one must take into account the general properties of the data. One of 

these properties is that with standard DNA sequence data of protein-coding genes, one to two 

thirds of the data consist of invariable characters. These tend to be binned together to the 

exclusion of other data when using the TIGER binning strategy or the k-means algorithm (Baca et

al., 2017). A partition made of only such data contains no phylogenetic information and thus it is 

advisable to include a number of slowly evolving characters to create a data partition with low 
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variation. To deal with that problem we developed RatePartitions 3 an algorithm which works in 

the following way. The dataset is first run in TIGER to calculate the relative rate of evolution for 

each site (character). These values can range from 1 (invariable sites) to 0 (no common patterns, 

i.e. the fastest-evolving sites). The sites are then combined into partitions using RatePartitions, 

which applies a simple formula that ensures a distribution of sites into partitions following the 

distribution of rates of the characters from the full dataset. This leads to larger partitions for 

characters with slower rates and, conversely, smaller partitions for those with higher rates. 

Preliminary tests using MrModeltest v2.3 (Nylander, 2004) and PartitionFinder v.1.0.0 (Lanfear 

et al., 2012) suggested that this strategy led to models with uniform rate variation within 

partitions. 

RatePartitions is a PYTHON script (Supplemental Script S1) that determines the rate-

spans for a variable number of partitions based on a user-specified division factor and the original

range of rates calculated by TIGER (with the <-rl= command), and subsequently defines character

sets for each partition. The rate-spans are calculated for the first (and slowest) partition with the 

following function:

z = x-((x-y)/d)

and for the remaining partitions:

z = x-((x-y)/(d+p*0.3))

where z is the lower limit of the rate-span, x is the upper limit of the rate-span (determined 

iteratively for each partition, i.e. z becomes x in the following iteration), y is the minimum value 

of rates for the entire dataset, d is a user defined division factor (which must be greater than 1; a 

higher number gives a greater number of partitions) and p is the partition number (when >1), 

which is multiplied by a fixed value of 0.3. The latter reduces the rate-span exponentially as 

partition number grows, which we found leads to partitions with more uniform rate variation for 

model-based analyses. Thus, for a dataset with rates ranging from 1 to 0.2 and with d set to 1.5, 
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the first partition will consist of all characters with rates between 1 and 1-((1-0.2)/1.5) = 0.4667. 

For partition 2, x = 0.4667 and this partition will include characters with rates between 0.4667 

and 0.4667-((0.4667-0.2)/(1.5+2*0.3) = 0.3397, and so on until less than 10% of all characters 

are remaining. At this point the iterations are stopped and the remaining characters are placed into

their own partition (which becomes the last and fastest-evolving partition). 

Data partitioninm and analyses

We analysed eight previously published lepidopteran datasets (Kodandaramaiah et al., 2010; 

Sihvonen et al., 2011; Penz, Devries & Wahlberg, 2012; Rota & Wahlberg, 2012; Zahiri et al., 

2013; Matos-Maravi et al., 2014; Wahlberg et al., 2014; Rönkä et al., 2016) (Table 1). From the 

published datasets we excluded sites from the alignment that had more than 80% of missing data 

unless they had 1% or fewer of such sites (Table 2). These were the following datasets: Arctiina, 

Geometridae, Morpho, and Pieridae. All datasets are provided as Supplemental Information (Data

S1). The datasets varied in base pair length from 4435 to 6372 and in number of taxa from 31 to 

164 (Table 1). All datasets included one mitochondrial gene (COI) and four to seven nuclear 

genes that are commonly used in lepidopteran phylogenetics (CAD, EF-1α, GAPDH, IDH, 

MDH, RpS5, wingless) (Wahlberg & Wheat, 2008). We compared 14 partitioning strategies 

(Table 2), including user-defined ones such as partitioning by gene and by gene and codon 

position, and a number of different strategies devised based on the relative evolutionary rates 

assigned by TIGER and division of sites into partitions using the RatePartitions algorithm. We 

varied the parameter d in the RatePartitions algorithm between 1.5 and 4.5 in increments of 0.5. 

For comparison of the partitioning strategies we used the BIC score as calculated by 

PartitionFinder 1.1 (Lanfear et al., 2012). We did two types of searches with PartitionFinder. The 

first was a user-defined search for direct evaluation of the partitioning strategy obtained with 
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TIGER and RatePartitions. The second was a greedy search, which searches for partitions with 

similar parameter estimates and combines them so as to reduce the final number of partitions. For

example, for a dataset with eight genes that are a priori partitioned by gene and codon position 

(24 partitions), a greedy search may result in a total of nine partitions because some of the 

original partitions were combined into a larger subset of data with similar parameter values. BIC 

was chosen as a statistical model evaluation metric because it has been shown to perform well in 

model selection for phylogenetic analysis (Abdo et al., 2005). We refer to analyses with different 

values of d as TIG1.5, TIG2.0, etc. The greedy search was not performed on TIG1.5, TIG2.0, 

TIG2.5, and TIG3.0 partitioning strategies because these were shown to have inferior BIC values 

in preliminary analyses.

Results

The eight datasets analysed covered a range of taxonomic ranks within Lepidoptera, from genus 

level (Morpho and Calisto), subtribes (Arctiina and Coenonymphina), two small to medium-sized

families (Choreutidae and Pieridae, with about 400 and 1100 species, respectively), to two very 

large families (Geometridae and Noctuidae, with over 23,000 and 11,000 species, respectively)

(van Nieukerken et al., 2011). They varied in sequence length from 4423 to 6716 base pairs 

(Table 1). The amount of missing data was quite variable. The most complete dataset, 

Coenonymphina, had more than 90% of sites with less than 20% of missing data, while the least 

complete dataset, Arctiina, had only 21% of sites with less than 20% of missing data (Table 3).

TIGER partitioning resulted in a different number of partitions for each dataset, with 

Geometridae and Pieridae being split into many more partitions than the other datasets (Table 4). 

For example, at d equalling 4.5, Morpho, the dataset with fewest taxa was split into only seven 

partitions, Pieridae into 20, Geometridae into 24, while all the other datasets ranged 10314 in 

their number of partitions. 
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In all cases partitioning by gene region was clearly the worst way to subdivide the data, as

determined by BIC scores, and applying the greedy search made little improvement (Fig. 1, Table

S2). In all datasets, partitioning using TIGER and RatePartitions was the best strategy. However, 

in two datasets (Geometridae and Pieridae), partitioning by gene and codon position with a 

greedy search came close to the best TIGER strategy, although the BIC scores were still 

significantly higher for the TIGER strategy (Table S1). In all datasets, the improvement in the 

BIC score from TIG1.5 to TIG3.0 was quite steep, but further differences between TIG3.5, 

TIG4.0, and TIG4.5, with and without greedy search were relatively small, although the analyses 

with the greedy search always received a significantly better BIC score. TIG4.5Gr was the best 

strategy in Calisto, Choreutidae, Noctuidae, and Pieridae, whereas TIG4.0Gr was the best 

strategy in Arctiina, Coenonymphina, Geometridae, and Morpho (Fig. 1, Table S1). 

An examination of the plots of the relative evolutionary rates estimated by TIGER for 

each gene fragment and codon position reveal differences among gene fragments, as well as sites 

belonging to the same codon position in the same gene fragment (Figs 2, S1). As expected, in 

general, first and second codon positions receive a much higher rate (i.e. implying slower change)

than third codon positions, but in some genes there is a large proportion of third codon positions 

that also receive a rate of one, e.g. in the Morpho dataset for CAD, EF-1α, and RpS5 (Fig. S1). 

Conversely, there are genes that tend to have some fast-changing first and second codon 

positions, which then receive a relatively low rate. This is usually the case in COI, the 

mitochondrial gene, but also in several nuclear genes (wingless in all datasets, but also CAD, 

MDH, and RpS5 in some of the datasets; Figs 2, S1). 

Discussion
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Many studies have shown that partitioning of DNA sequence data for phylogenetic analysis is 

important because it affects the resulting tree topology, branch support, as well as branch lengths

(see Kainer & Lanfear, 2015 and references therein). A common approach is to define partitions a

priori based on some feature(s) of the DNA sequences such as genes, codon positions, stems, 

loops, introns, exons, etc., but this can be problematic because the properties of the sequence data

are not fully known to the user to begin with. To avoid a priori partitioning, we developed a 

method of partitioning based on relative evolutionary rates of sites in an alignment. In our 

analyses, we demonstrated that this method outperforms other commonly used partitioning 

strategies, such as partitioning by gene and codon position, in all datasets that we tested. This 

method is entirely based on the alignment 3 not on trees or some features of the data deemed 

important by the user. It can be applied to any kind of categorical data (nucleotides, amino acids, 

morphological characters), to protein-coding genes, RNA, introns, exons, as well as ultra-

conserved elements (UCEs). It can be especially useful for sequences derived from introns or 

UCEs, where a priori partitioning is difficult, as one does not need to provide user-defined 

partitions. 

A possible explanation for why TIGER partitioning performed better than partitioning by 

codon position is that there are significant differences among sites belonging to the same codon 

position of the same gene in their relative evolutionary rate (Figs 2, S1), and this leads to high 

heterogeneity in the data when they are simply grouped by codon position. Since our method 

groups sites based on the pattern present in the alignment, the models of molecular evolution 

have to account for less variation within each partition.

In all of our analyses, partitioning by gene was much worse than the other strategies. A 

protein-coding gene, with its first, second, and third codon positions, each of which evolve 

differently, is highly heterogeneous, and applying the same model to such a sequence most likely 

leads to an underparameterized model. It has been demonstrated that underpartitioning can result 
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in in a more severe error in most datasets than overpartitioning (Brown & Lemmon, 2007; Ward 

et al., 2010; Kainer & Lanfear, 2015), and our recommendation is to take this into account when 

devising a partitioning strategy.

Our partitioning method has been applied in analyses of several other lepidopteran 

datasets: 1) the subfamily Acronictinae (Noctuidae) (Rota et al., 2016) analyzed in MrBayes

(Ronquist et al., 2012) and RAxML (Stamatakis, 2014); 2) an expanded dataset for the family 

Choreutidae (Rota, Pena & Miller, 2016) in MrBayes, RAxML, and BEAST (Drummond et al., 

2012); 3) the family Hesperiidae (skippers) (Sahoo et al., 2017) in BEAST; and 4) for inferring 

relationships among Ditrysian superfamilies and families using molecular and morphological 

characters (Heikkilä et al., 2015) in RAxML. In the Heikkilä et al. study (2015), in addition to 

applying our partitioning method, the authors also explored the effect of exclusion of fastest 

evolving characters from the analyses. They found that phylogenetic signal was lost especially 

when the fastest evolving morphological characters were excluded, and that branch support was 

lowered with the exclusion of fastest evolving molecular characters, which also resulted in a 

spurious placement of some groups, and therefore is not at all recommended (see Simmons & 

Gatesy, 2016 for a detailed exploration of this topic).

An issue we would like to stress with our approach, however, is that it should only be 

applied to studies where concatenation of data is justified, i.e. where gene tree/species tree 

problems are minimized. This is because our approach of partitioning by specific properties of 

each character removes any connections between characters belonging to the same gene region. 

This reshuffling of characters based on relative rates of evolution does have a biological basis to 

it (sites evolving at a similar rate are modelled together), but at the risk of losing other 

biologically relevant information (such as differential evolutionary histories of gene regions). We 

do feel that for studies looking at deeper relationships, such as among genera, tribes, families, and

orders, our approach is very useful and overcomes problems of overpartitioning for large 
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multigene datasets that might be partitioned by codon position, as well as underpartitioning when 

users might be inclined to analyse their data unpartitioned because they are uncertain of how to 

partition a priori.

Conclusions

Here we present a way of partitioning data based on relative rates of evolution as calculated by 

TIGER (Cummins & McInerney, 2011). We find that this approach works better than the 

traditional approaches to partitioning in all of our test cases. Further utility of TIGER calculated 

rates and RatePartitions needs to be ascertained on other datasets. The program could certainly be

used on amino acid (or any other categorical) data in the same way as done here for nucleotides. 

However, to establish how useful partitioning based on TIGER calculated rates is for 

phylogenomic data containing sequences from hundreds or thousands of genes, additional testing 

needs to be conducted. 
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Tables

Table 1. Datasets analysed. List of analysed datasets providing the reference, the number of 

sampled taxa and gene regions in the dataset, and the length of the dataset in base pairs (bp).

Table 2. The amount of missing data in each of the eight datasets analysed. All alignment 

columns were pulled into one of the ten categories based on the range of missing data being 03

10%, 10320%, etc. to more than 90% missing. The Cumulative missing data refers to summing 

percentage of missing data from one range category to the next. All datasets had 1% or less of 

columns in the alignment with missing more than 80% of data, and overall all datasets had 50% 

or more columns with less than 40% of missing data.

Table 3. List of partitioning strategies evaluated for each of the analysed datasets. TIGER refers 

to the program that assigns each site in the alignment a relative evolutionary rate, and d is the 

division factor in the RatePartitions script used to group sites into subsets based on their relative 

evolutionary rates. See text for more details.

Table 4. The number of partitions for each dataset and partitioning strategy. Gene refers to 

partitioning by gene fragment, Codon to partitioning by codon position, and TIG to partitioning 

by relative evolutionary rate as estimated with the program TIGER with different values for the d,

division factor in the RatePartitions script. See Table 3 and text for more details.

Figures

Figure 1. A comparison of BIC values for the 14 partitioning strategies tested in all eight 

datasets. The partitioning strategies are plotted on the horizontal axis, and the BIC values are 

plotted on the vertical axis. The lower the BIC value, the better the partitioning strategy. Gene 
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refers to partitioning by gene fragment, Codon to partitioning by codon position, and TIG to 

partitioning by relative evolutionary rate as estimated with the program TIGER with different 

values for the d, division factor in the RatePartitions script. See text and Table 3 for more details.

Figure 2. Relative evolutionary rate estimates for codon positions in the Noctuidae dataset. Plots 

are showing the assigned TIGER relative evolutionary rates for codon positions of each of the 

eight genes in the Noctuidae dataset. TIGER rates are shown on the horizontal axis, and the 

number of codon positions that were assigned the rate between 0.030.1, 0.130.2, etc. is shown on 

the vertical axis. The lower the number, the higher the rate of evolution, with rate of 1 being 

assigned to invariable sites in the alignment. As expected, most of the first and second codon 

positions received the rate of 1, but there are exceptions, with some first and/or second codon 

positions receiving a relatively low rate (especially in e.g. COI, and wgl). Likewise, most of the 

third codon positions received lower rates, but in some genes (e.g. EF-1α), the number of third 

positions that received the TIGER rate of 1 is relatively high. Such plots for the other seven 

datasets are in supplemental information files Fig. S1.

Supplemental Information

Supplemental Data File S1. Datasets analysed in this study. The datasets are provided in the 

PHYLIP format, together with the RAxML style partition definitions for the best partitioning 

strategy. 

Supplemental Script S1. RatePartitions script. Python script for grouping sites in the alignment 

based on the relative evolutionary rate assigned by the program TIGER.
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Supplemental Table S1. Comparison of BIC values. A BIC value is provided for each 

partitioning strategy for each of the eight datasets analysed.

Supplemental Figure S1. Relative evolutionary rate estimates for codon positions of all gene 

fragments. Plots showing the assigned TIGER relative evolutionary rates for codon positions of 

each of the gene fragments analysed: Arctiina (a), Calisto (b), Choreutidae (c), Coenonymphina 

(d), Geometridae (e), Morpho (f), and Pieridae (g).
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Figure 1(on next page)

A comparison of BIC values for the 14 partitioning strategies tested in all eight datasets
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Figure 2(on next page)

Relative evolutionary rate estimates for codon positions in the Noctuidae dataset
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Table 1(on next page)

Datasets analysed.

List of analysed datasets providing the reference, the number of sampled taxa and gene

regions in the dataset, and the length of the dataset in base pairs (bp).
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Table 1. 

Taxon Study No. taxa No. genes base pairs

Arctiina Rönkä et al. 2016 113 8 5809

Calisto Matos-Maravi et al. 2014 90 6 5297

Choreutidae Rota & Wahlberg 2012 41 8 6293

Coenonymphina Kodandaramaiah et al. 2010 69 5 4435

Geometridae Sihvonen et al. 2011 164 8 5998

Morpho Penz et al. 2012 31 8 6372

Noctuidae Zahiri et al. 2013 78 8 6365

Pieridae Wahlberg et al. 2014 110 8 6247
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Table 2(on next page)

The amount of missing data in each of the eight datasets analysed.

All alignment columns were pulled into one of the ten categories based on the range of

missing data being 0310%, 10320%, etc. to more than 90% missing. The Cumulative missing

data refers to summing percentage of missing data from one range category to the next. All

datasets had 1% or less of columns in the alignment with missing more than 80% of data,

and overall all datasets had 50% or more columns with less than 40% of missing data.
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Table 2. 

Missing 
data range Arctiina Calisto Choreutidae Coenonymphina Geometridae Morpho Noctuidae Pieridae

0-10% 11% 10% 37% 47% 10% 16% 45% 23%

10-20% 10% 1% 26% 46% 26% 26% 22% 16%

20-30% 14% 5% 1% 5% 29% 20% 12% 35%

30-40% 22% 33% 27% 1% 15% 3% 4% 3%

40-50% 12% 24% 2% 0% 5% 15% 9% 3%

50-60% 17% 22% 3% 0% 3% 3% 5% 5%

60-70% 2% 2% 4% 0% 13% 6% 1% 2%

70-30% 13% 2% 0% 0% 1% 6% 1% 2%

30-90% 0% 0% 0% 1% 0% 0% 0% 0%

90-100% 0% 0% 0% 0% 0% 0% 1% 0%

Cumulative 
missing data

0-10% 11% 10% 37% 47% 10% 16% 45% 23%

0-20% 21% 11% 62% 93% 36% 42% 67% 44%

0-30% 34% 16% 63% 97% 64% 62% 79% 79%

0-40% 56% 50% 90% 99% 79% 70% 34% 33%

0-50% 63% 74% 93% 99% 34% 35% 92% 91%

0-60% 35% 96% 96% 99% 37% 33% 97% 96%

0-70% 37% 93% 100% 99% 99% 94% 93% 93%

0-30% 100% 100% 100% 99% 100% 100% 99% 100%

0-90% 100% 100% 100% 100% 100% 100% 99% 100%

100% 100% 100% 100% 100% 100% 100% 100% 100%
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Table 3(on next page)

List of partitioning strategies evaluated for each of the analysed datasets.

TIGER refers to the program that assigns each site in the alignment a relative evolutionary

rate, and d is the division factor in the RatePartitions script used to group sites into subsets

based on their relative evolutionary rates. See text for more details.
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Table 3.

Partitioning 
strategy Description

Gene each gene fragment as separate subset

GeneGr as above but with PF greedy algorithm combined into similar subsets

Codon each codon position of each gene as separate subset

CodonGr as above but with PF greedy algorithm combined into similar subsets

TIG1.5 TIGER partitioning strategy with d=1.5

TIG2.0 TIGER partitioning strategy with d=2.0

TIG2.5 TIGER partitioning strategy with d=2.5

TIG3.0 TIGER partitioning strategy with d=3.0

TIG3.5 TIGER partitioning strategy with d=3.5

TIG3.5Gr as above but with PF greedy algorithm combined into similar subsets

TIG4.0 TIGER partitioning strategy with d=4.0

TIG4.0Gr as above but with PF greedy algorithm combined into similar subsets

TIG4.5 TIGER partitioning strategy with d=4.5

TIG4.5Gr as above but with PF greedy algorithm combined into similar subsets
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Table 4(on next page)

The number of partitions for each dataset and partitioning strategy.

Gene refers to partitioning by gene fragment, Codon to partitioning by codon position, and

TIG to partitioning by relative evolutionary rate as estimated with the program TIGER with

different values for the d, division factor in the RatePartitions script. See Table 3 and text for

more details.

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.3414v1 | CC BY 4.0 Open Access | rec: 15 Nov 2017, publ: 15 Nov 2017



Table 4.

Partitioning 
strategy Arctiina Calisto Choreutidae Coenonymphina Geometridae Morpho Noctuidae Pieridae

Gene 8 6 8 5 8 8 8 8

GeneGr 3 4 4 4 6 4 6 5

Codon 24 18 24 15 24 24 24 24

CodonGr 9 7 10 9 15 7 12 12

TIG1.5 4 4 3 4 7 2 4 6

TIG2.0 5 6 5 5 10 3 6 8

TIG2.5 7 7 6 7 13 4 8 11

TIG3.0 8 9 7 8 15 5 9 13

TIG3.5 10 10 8 9 18 5 11 16

TIG3.5Gr 6 5 6 6 12 4 7 10

TIG4.0 11 12 9 11 21 6 13 18

TIG4.0Gr 5 6 6 7 12 4 6 9

TIG4.5 12 13 10 12 24 7 14 20

TIG4.5Gr 5 7 6 7 16 4 6 8
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