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Background. Despite great progress in studies on Wolbachia infection in insects, the
knowledge about its relations with beetle species, populations and individuals, and the
effects of bacteria on these hosts is still unsatisfactory. In this review we summarize the
current state of knowledge about Wolbachia occurrence and interactions with Coleopteran
hosts. Methods. An intensive search of the available literature resulted in the selection of
57 publications that describe the relevant details about Wolbachia presence among
beetles. These publications were then examined with respect to the distribution and
taxonomy of infected hosts and diversity of Wolbachia found in beetles. Sequences of
Wolbachia genes (16S rDNA, wsp and ftsZ) were used for the phylogenetic analyses.
Results. The collected publications revealed that Wolbachia has been confirmed in 152
beetle species and that the estimated average prevalence of this bacteria across beetle
species is 36% and varies greatly across families and genera (0-88% infected members)
and is much lower (c. 13%) in geographic studies. The majority of the examined and
infected beetles were from Europe and East Asia. The most intensively studied have been
two groups of herbivorous beetles: Curculionidae and Chrysomelidae, followed by
Hydraenidae and Buprestidae. Coleoptera harbor Wolbachia belonging to three
supergroups: F found in only 3 species, and A and B found in similar numbers of beetles
(including some doubly infected); however the latter two were most prevalent in different
families. 65% of species with precise data were found to be totally infected. Single
infections were found in 69% of species and others were doubly- or multiply-infected.
Wolbachia caused numerous effects on its beetle hosts, including selective sweep with
host mtDNA (found in 4% of species), cytoplasmic incompatibility (detected in c. 7% of
beetles) and other effects related to reproduction or development (like male-killing,
parthenogenesis reinforcement, possible haplodiploidy induction, and egg development).
Phylogenetic reconstructions for Wolbachia genes rejected cospeciation between these
bacteria and Coleoptera, with minor exceptions found in some closely related Hydraenidae
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and Chrysomelidae. In contrast, horizontal transmission of bacteria has been suspected or
proven in numerous cases (e.g. among beetles sharing habitats and/or host plants).
Discussion. The present knowledge about Wolbachia infection across beetle species and
populations is very uneven. Even the basic data about infection status in species and
frequency of infected species across genera and families is very superficial, as only c.
0.12% of all beetle species have been tested and/or examined so far. Future studies on
Wolbachia in Coleoptera using next-generation sequencing technologies will be important
for uncovering Wolbachia diversity and its relations with host evolution and ecology, as
well as with other, co-occurring endosymbiotic bacteria.
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Abstract

Background. Despite great progress in studies on Wolbachia infection in insects, the knowledge
about its relations with beetle species, populations and individuals, and the effects of bacteria on
these hosts is still unsatisfactory. In this review we summarize the current state of knowledge

about Wolbachia occurrence and interactions with Coleopteran hosts.

Methods. An intensive search of the available literature resulted in the selection of 57
publications that describe the relevant details about Wolbachia presence among beetles. These
publications were then examined with respect to the distribution and taxonomy of infected hosts
and diversity of Wolbachia found in beetles. Sequences of Wolbachia genes (16S rDNA, wsp and
ftsZ) were used for the phylogenetic analyses.

Results. The collected publications revealed that Wolbachia has been confirmed in 152 beetle
species and that the estimated average prevalence of this bacteria across beetle species is 36%
and varies greatly across families and genera (0-88% infected members) and is much lower (c.
13%) in geographic studies. The majority of the examined and infected beetles were from
Europe and East Asia. The most intensively studied have been two groups of herbivorous
beetles: Curculionidae and Chrysomelidae, followed by Hydraenidae and Buprestidae.
Coleoptera harbor Wolbachia belonging to three supergroups: F found in only 3 species, and A
and B found in similar numbers of beetles (including some doubly infected); however the latter
two were most prevalent in different families. 65% of species with precise data were found to be

totally infected. Single infections were found in 69% of species and others were doubly- or
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multiply-infected. Wolbachia caused numerous effects on its beetle hosts, including selective
sweep with host mtDNA (found in 4% of species), cytoplasmic incompatibility (detected in c.
7% of beetles) and other effects related to reproduction or development (like male-killing,
parthenogenesis reinforcement, possible haplodiploidy induction, and egg development).
Phylogenetic reconstructions for Wolbachia genes rejected cospeciation between these bacteria
and Coleoptera, with minor exceptions found in some closely related Hydraenidae and
Chrysomelidae. In contrast, horizontal transmission of bacteria has been suspected or proven in

numerous cases (e.g. among beetles sharing habitats and/or host plants).

Discussion. The present knowledge about Wolbachia infection across beetle species and
populations is very uneven. Even the basic data about infection status in species and frequency of
infected species across genera and families is very superficial, as only c¢. 0.12% of all beetle
species have been tested and/or examined so far. Future studies on Wolbachia in Coleoptera
using next-generation sequencing technologies will be important for uncovering Wolbachia
diversity and its relations with host evolution and ecology, as well as with other, co-occurring

endosymbiotic bacteria.

Key words: a-proteobacteria; beetles; evolution; ecology; endosymbiont; intracellular;

interactions

Short title ~ Wolbachia among Coleoptera: a review

Introduction

The relations between the intracellular a-proteobacterium Wolbachia pipientis Hertig
1936 (hereafter Wolbachia) and its hosts from various groups of arthropods and nematodes have
been the object of much research and numerous publications (O’Neill et al. 1992; Werren et al.
1995a). The majority of these studies have focused on verifying endosymbiotic bacteria
occurrence and diversity in various hosts at different levels: 1) among selected species sharing a

geographic area (e.g. O’Neill et al. 1992; Werren et al. 1995a, 2000), ii) among species
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inhabiting the same environment or that are ecologically-associated (e.g. Stahlhut et al. 2010),
1i1) among species from particular taxonomic groups (e.g. Czarnetzki et al. 2004, Lachowska et
al. 2010, Sontowski et al. 2015), and iv) within populations of selected taxa (e.g. Stenberg et al.
2004, Mazur et al. 2016). Another branch of research on the relations between Wolbachia and its
hosts has focused on host species phylogenetics or population genetics, which is in some cases
related to population differentiation and speciation (e.g. Kubisz et al. 2012; Montagna et al.
2014). In this research Wolbachia is sometimes treated as an additional “marker” — a source of
genetic data about the eco-evolutionary relations of its hosts. A third type of Wolbachia studies
has concerned the direct or indirect effects of the infection on host fitness, development or
survival at the individual and population levels (e.g. O’Neill 2007; Weeks 2002). Moreover, in a
separate branch of research (or in conjunction with the abovementioned types of studies),
Wolbachia is often examined directly, mainly with respect to strain diversity, distribution and
relations with other strains or different co-existing bacteria (Baldo et al. 2007). All these
branches of research have substantially extended the knowledge about the relations between the
most widespread intracellular endosymbiont — Wolbachia and its various hosts. Moreover, these
studies have been expanded to encompass other bacteria with similar biologies and effects on
hosts (like Cardinium, Spiroplasma, Rickettsia) (Duron et al. 2008; Zchori-Fein & Perlman
2004; Goto et al. 2006); however, a great majority of studies are still conducted on Wolbachia
(Zug et al. 2012). Recently, the various Wolbachia supergroups have been proposed to belong to
several “Candidatus Wolbachia” species (Ramirez-Puebla et al. 2015); however, this approach
has been criticized (Lindsey et al. 2016). Due to the uncertain species status of the “Candidatus
Wolbachia” and because all previous studies considered these presumed different species as

distant supergroups, in this review we have followed the previous Wolbachia taxonomy.

There are several reviews summarizing the state of knowledge on Wolbachia infection
among various taxonomic groups of nematodes and arthropods. Over the last years, such reviews
have been prepared for the following groups: filarial nematodes (Filarioidea) (Taylor & Hoerauf
1999; Casiraghi et al. 2001), crustaceans (Crustacea) (Cordaux et al. 2001), spiders (Araneae)
(Goodacre et al. 2006, Yun et al. 2010),springtails (Collembola) (Czarnetzki et al. 2004),
Heteropteran Bugs (Heteroptera) (Kikuchi et al. 2003), wasps (Hymenoptera: Apocrita)
(Schoemaker et al. 2002) and butterflies (Lepidoptera) (Tagami et al. 2004). Surprisingly, there

is no such review for beetles (Coleoptera), which are the most species rich and diversified group

Peer] Preprints | https://doi.org/10.7287/peerj.preprints.3412v1 | CC BY 4.0 Open Access | rec: 15 Nov 2017, publ: 15 Nov 2017




89 of organisms on Earth, which are known from most habitats, and whose members belong to all
90 major trophic guilds of animals. Some groups of beetles have been examined with respect to
91 Wolbachia infection, but usually only with a limited coverage of species (e.g. weevils,

92 Curculionidae, Lachowska et al. 2010; leaf beetles; Chrysomelidae, Clark et al. 2001, Jackel et
93 al. 2013; jewel beetles; Buprestidae, Sontowski et al. 2015 and minute moss beetles,

94 Hydraenidae, Sontowski et al. 2015).

95 In summary, Wolbachia has been detected in 10-70% of examined hosts (Jeyaprakash &
96 Hoy 2000; Hilgenboecker et al. 2008), depending on the geographical, ecological or taxonomical
97 association of the selected species. Moreover, more detailed studies, at the population level, have
98 shown that infection is not as straightforward as was assumed in the early stages of Wolbachia
99 research. More and more species have been found to be only partially infected, e.g. in only some
100 parts of their ranges or infection was associated with only some phylogenetic lineages (usually
101 correlated with the distribution of mitochondrial lineages) (Clark et al. 2001; Roehrdanz et al.
102 2006). Furthermore, examples of multiply infected species and individuals have been reported,
103  which has important consequences for the understanding of some of the effects of Wolbachia
104 infection (Malloch et al.. 2000; Gurfield 2016). Wolbachia is known to have numerous effects on
105 its hosts, among which the most interesting and important are those that disturb host
106 reproduction, such as cytoplasmic incompatibility, thelytokous parthenogenesis, feminization of
107 genetic males, male-killing, increased mating success of infected males via sperm competition
108 and the host’s complete dependence on bacteria for egg production (for reviews see Werren
109 1997; Werren & O’Neill 1997 and Stouthamer et al. 1999). Some of these effects are responsible
110 for diversification of host populations and consequently for speciation (e.g. by the selective
111 sweep of mtDNA or the whole genome of the infected host with the genome of bacteria; Keller
112 etal. 2004; Mazur et al. 2016). This could be another major factor, additional to those already

113 known, responsible for radiation of insects and particularly beetles.

114 In this review we have summarized the current state of knowledge on the relations
115 between beetles and Wolbachia by referring to all the abovementioned groups of research.
116 Moreover, we have highlighted future research directions concerning Wolbachia relationships

117  with their diverse Coleopteran hosts.

118 Survey Methodology
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We searched the scientific literature with Google Scholar database, using the following
combination of keywords linked by AND (the Boolean search term to stipulate that the record
should contain this AND the next term): “Wolbachia” AND “Coleoptera” “Wolbachia” AND
“beetles” and “Wolbachia” AND “[names of all beetle families, separately]”. Our final literature
search for this analysis was conducted on July 5, 2017. Google Scholar has an advantage over
other literature databases in that the search term may occur anywhere in the text, instead of just
in the title, abstract or keywords. By expert knowledge, we also included other sources like
unpublished, accepted articles, dissertations, conference presentations. This produced 113
results. Each result was inspected to determine whether or not it contained information on the
subject matter. Articles that had no relevance (e.g., any reports about Wolbachia-Coleoptera
relations, included only some references to either beetles or bacteria in citations) were excluded.
From the remaining articles (n = 70), 13 were excluded as they refer to data already presented in
former publications. This collection was biased for literature that had electronic full texts that
could be crawled by Google Scholar. The additional documents added through citations and by
expert knowledge only partially alleviated this bias. Each document was read critically for the
information that it contained on Wolbachia-Coleoptera relations, with special reference to
answering the study questions listed below. Supplementary Figure 1 shows a flow diagram for

the systematic review following Prisma guidelines (Moher et al., 2009).

We examined the collected data on various aspects of Wolbachia infection in Coleoptera
with respect to the following: the 1) characteristics of the publications (to determine the scope
and progress of studies on Wolbachia) (n=57), ii) geographic distribution of infected beetle
species and populations (n=55), iii) sampling design (how many sites and individuals were
examined) (n=47), iv) characteristics of the markers (genes) used for genotyping the bacteria
(n=55) and their hosts (n=26), v) numbers and frequencies of species found to be infected in
particular beetle families and genera (n=48), vi) supergroup prevalence in examined taxonomic
groups (n=35), vii) strain distribution and diversity in populations and individuals (n=21), vii)
effects of Wolbachia on its beetle hosts (n=29). Statistical analyses were done in Statistica 11

(Statsoft).

Finally, we downloaded from GenBank (https://www.ncbi.nlm.nih.gov/genbank/) and the

Wolbachia MLST database (https://pubmlst.org/wolbachia/) all available sequences of
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149  Wolbachia genes found in any species of beetle. We restricted further analyses to the most

150 widely used bacteria genes, i.e. 16S ¥rDNA, Wolbachia surface protein gene wsp and cell division
151 protein gene fisZ. Because of the different lengths and spans of available sequences, the long

152 parts of the 3’ and 5’ ends of each gene were trimmed, which resulted in alignments of length
153 663 bp for 16S rDNA, 355 bp for wsp and 250 bp for fisZ. The length of the fisZ alignment was
154  particularly short as two different sets of primers have been used for its amplification, and its
155 amplicons only overlapped across a relatively short part of the gene. Phylogenetic trees were

156 only reconstructed for unique gene variants found in particular host taxa. Maximum Likelihood
157 trees were inferred using Maximum Likelihood (ML) implemented in IQ-TREE web serwer

158  http://www.igtree.org/ (Trifinopoulos et al. 2016) under the following settings Auto selection of

159 substation model, ultrafast bootstrap approximation (UFBoot) (Minh et al. 2013) with 10000
160 iterations, maximum correlation coefficient = 0.99, single branch test with use of the

161 approximate Likelihood-Ratio Test (SH-aLRT) (Anisimova and Gascuel 2006, Guindon et al.
162 2010) and other default options.

163 The nomenclature of host taxa and their systematic positions throughout the paper follow

164 the articles from which the data was derived.
165 Characterization of Wolbachia infection among Coleoptera
166  Publications

167 The final list of publications concerning data about Wolbachia infection in Coleoptera
168 comprised 57 papers (Supplementary Table 1). The oldest articles with relevant information

169 about Wolbachia infection in beetles were published in 1992 (Campbell et al. 1992, O’Neill et al.
170 1992), and the number of articles since then has increased significantly year by year (Spearman
171  correlation = 0.655; Fig. 1). The majority of these articles (69%) concerned infection in only

172  single beetle species, whereas 15% discussed infection in multiple species belonging to the same
173 genus, 7% — multiple species from the same family, 2% — various species of Coleoptera (only
174  Sontowski et al. 2015) and a further 7% — studies on geographic groups of insects that included
175 some, usually random species of beetles (O’Neill et al. 1992, Werren et al. 1995, 2000).

176 Most studies were done on Curculionidae (22) and Chrysomelidae (20), following
177  Coccinellidae (6) and Tenebrionidae (6) (Supplementary Table 1). The members of all other
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families were investigated in only single studies. Consequently, 2.1 and 2.8 Curculionidae and
Chrysomelidae species were respectively examined per article. All species of Hydraenidae and
Buprestidae were included in only single articles (Sontowski et al. 2015), whereas limited
numbers of species of Coccinellidae and Tenebrionidae were examined in several articles
(Majerus et al. 2000, Hurst et al. 1999, Elnagdy et al. 2013, Dudek et al. 2017,Li et al. 2016,
Ming et al. 2015, Fialho & Stevens 1996, 1997, 2000). Wolbachia infection was only studied

more than once in 17 species.
Sampling design

The majority of species investigated with respect to Wolbachia infection were from
Europe, and a relatively high number of species were from Asia and both Americas, whereas
only single articles dealt with African (Callosobruchus chinensis, Kondo et al. 2011; Coccinella
undecimpunctata, Elnagdy et al. 2013; Hypothenemus hampei,Vega et al. 2002; Sitophilus
oryzae and Sitophilus zaemais, Heddi et al. 1999) and Australian (Sitophilus oryzae and
Sitophilus zaemais, Heddi et al. 1999) species (Fig. 2). A number of publications describing

Wolbachia infection in Coleoptera had similar geographic coverages (Fig. 2).

Studies were done on samples collected from an average of 5 sites and concerned on
average 54 specimens (Fig. 3). Considering the most widely studied families: Curculionidae and
Chrysomelidae, these numbers were on average 7 and 4 sites, respectively, and 77 and 32
individuals, respectively (Fig. 3). The numbers of sites and individuals examined in particular
groups were insignificantly different, with the exception of the numbers of examined individuals

in Curculionidae and Chrysomelidae (Fig. 3).
Examined genetic markers

The most often used Wolbachia gene for studies on Coleoptera was fisZ, followed by
hcpA, wsp and 16S rDNA (Fig. 4). Most studies using hcpA also used other MLST genes,
including fzsZ. On the other hand, many species were only investigated with either /6S rDNA or
wsp or fisZ alone. Single studies used groEL (Monochamus alternatus, Aikawa et al. 2009;
Tribolium madens,Fialho & Stevens 2000) or /7S genes (Tribolium madens, Fialho & Stevens
2000). So far, only three studies have used next-generation sequencing technology (Illumina) to

detect Wolbachia; two used 16S rDNA for metabarcoding of microbiota (Longitarsus spp.,
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207  Gurfield 2016; Harmonia axyridis, Dudek et al. 2017) and one used shotgun genomic

208 sequencing (Amara alpine, Heintzman et al. 2014). For genotyping of hosts, 54.3% of studies
209 utilized fragments of COI from mtDNA (usually a barcode fragment of this gene). Fewer studies
210 (25.3%) analyzed rDNA (usually /7S and/or ITS2 spacers),, and only 12.9% and 7.5% of studies
211 used EF'la or microsatellites, respectively. In Wolbachia-related studies, host genes have been
212 used for several purposes like 1) using host DNA as a control for genetic material quality, ii)

213 barcoding for host species identification, iii) phylogenetics, phylogeography and population

214  genetics, 1v) estimating co-evolutionary relations between the bacteria and host, and v) detecting
215 some of the effects of Wolbachia on its hosts (like linkage disequilibrium, selective sweep,

216 cytoplasmic incompatibility).
217  Taxonomic coverage

218 The beetles examined with respect to Wolbachia infection belong to 19 families

219 (Gyrinidae, Haliplidae, Noteridae, Dytiscidae, Carabidae, Staphyllinidae, Hydrophilidae,

220 Hydraenidae, Scarabaeidae, Buprestidae, Byturidae, Cleridae, Lampyridae, Coccinellidae,

221  Tenebrionidae, Meloidae, Sylvanidae, Cerambycidae, Chrysomelidae, Curculionidae). In total
222 152 beetle species were found to harbor Wolbachia infection; however the distribution of

223 infected species among families varied markedly. The highest numbers of infected beetle species
224  were found for the Curculionidae (62 species), Chrysomelidae (42 species), Hydraenidae (14
225 species) and Buprestidae (13 species) (Fig. 5). In all other families only 1-3 species were

226  reported to harbor Wolbachia (Supplementary Table 1). However, these numbers are biased by
227  the low number of articles (studies) dealing with members of particular beetle families (see

228 above).

229 Considering infection across beetle genera, the most richly infected genera were Altica
230 (Chrysomelidae, 14 species), Naupactus (Curculionidae, 11 species), Hydraena (Hydraenidae, 8
231 species) and Agrilus (Buprestidae, 6 species) (Supplementary Table 1). In total, 24 genera were
232 found to have infected members (Fig. 6). The infection in Coleoptera was estimated at 36% of
233 examined species; however, the share of infected species varied greatly between families and
234  genera. At the family level the infection frequency was from 14.3% (Dytiscidae) to 100%

235 (Noteridae) (Sontowski et al. 2015); however when considering only families for which more

236 than 30 species were verified (e.g. Clark et al. 2001, Lachowska-Cierlik et al. 2010, Rodriguer et
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al. 2010a, Kondo et al. 2011, Jackel et al. 2013, Sontowski et al. 2015, Kawasaki et al. 2016),
infection was found in up to 63% of species (Hydraenidae) (Table 1). At lower taxonomic levels,
Wolbachia was found in 25% of Diabroticite (Chrysomelidae; Clark et al. 2001), 14.3-16.7% of
Bruchina (Chrysomelidae;Kondo et al. 2011) and 34.8% of Scolytinae (Curculionidae, Kawasaki
et al. 2016). Among 47 genera in which Wolbachia infection was examined for at least 2 species,
12 genera were completely uninfected, while 6 genera were completely infected (Table 1). If
considering only genera with at least 5 verified species, Wolbachia was found in 0%
(Acmaeodera; Buprestidae; Sontowski et al. 2015) to 88% members (Altica, Chrysomelidae;
Jackel et al. 2013). There was only a marginally negative and insignificant correlation between
the number of examined and number of infected species (R=-0.040). If considering only the most
widely examined families: Chrysomelidae and Curculionidae, the difference in infection
frequency between these two groups was insignificant (Z=-1.656, P=0.098). Geographic studies
on Wolbachia prevalence in insects have found much lower frequencies of infection in
Coleoptera species: the bacterium was found in only 10.5% of beetles from Panama and 13.5%

of beetles from North America (Werren et al. 1995a, 2000).
Wolbachia diversity

Among the various beetle species, Wolbachia strains belonged to three supergroups (A, B
and F). However, they occurred at very different proportions in different groups of beetles, and
these differences were significant (Chi>=98.78, P=0.000). Overall, the proportion of beetle
species found to be infected with Wolbachia strains belonging to A or B supergroups was
similar, with approx. 18% of all species harboring either supergroup (either as single infections
in different species or populations or as multiple infections within individuals) (Fig. 7), whereas
F supergroup was found in only 3 beetle species: Agrilus araxenus and Lamprodila mirifica
(both Buprestidae; Sontowski et al. 2015) and Rhinocyllus conicus (Curculionidae; Campbell et
al. 1992). In the three groups of beetles with the highest numbers of examined and infected
species, the distributions of supergroups varied: in Buprestidae, a similar numbers of species
were infected by supergroups A and B (all singly infected), with a relatively high share of F
infected species (Sontowski et al. 2015). In contrast, in Hydraenida, supergroup A dominated
over supergroup B (Sontowski et al. 2015). This was also the case in Chrysomelidae, with some

species infected by both strains (Kondo et al. 2011, Jackel et al. 2013, Kolasa et al. 2017). The
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most varied infections were observed in Curculionidae, with supergroup B dominating, a
presence of taxa infected by both A and B supergroups, and a single species infected by F
supergroup (Lachowska-Cierlik et al. 2010,Rodriguer et al. 2010a,Kawasaki et al. 2016) (Fig.
7). Considering the frequency of infected specimens in the examined beetle species within the
available data (N=75), 49 species were reported to be totally infected (all individuals possessed
Wolbachia), whereas 26 species had this bacterium in only some individuals (Fig. 8). The same
calculated for Chrysomelidae resulted in 12 and 9 species, respectively, and for Curculionidae in
33 and 11 species, respectively (Fig. 8). These differences between these values (between these
groups of species) was significant (Chi>=131.89, P=0.000). A single Wolbachia strain was
observed in 39 species (species with available data N = 56), whereas two strains were reported in
8 species (Byturus tomentosus,Malloch et al.. 2000; Altica quercetorum, Jackel et al. 2013;
Callosobruchus chinensis, Okayama et al. 2016; Chelymorpha alternans, Keller et al. 2004;
Crioceris quaterdecimpunctata and Crioceris quinquepunctata, Kolasa et al. 2017;
Adalia bipunctata,Majerus et al. 2000; Polydrusus inustus,Kajtoch et al. 2012) and multiple
infection in a further 9 species (Callosobruchus chinensis,Kondo et al. 2002; Diabrotica barberi,
Roehrdanz & Levine 2007; Longitarsus spp., Gurfield 2016;Conotrachelus nenuphar Zhang et
al. 2010; Pityogenes chalcographus, Arthofer et al. 2009; Xyleborus dispar andXylosandrus
germanus, Kawasaki et al. 2016) (Fig. 8). In Chrysomelidae (N=19) these numbers were 9, 5 and
5, respectively and in Curculionidae (N=34), 29, 1 and 4, respectively (Fig. 8). The numbers of
single, double and multiple infected individuals in these groups of beetles differed insignificantly

(Chi? ANOVA=0.667, P=0.717).
Effects on hosts

Wolbachia affected beetle hosts in several ways. Linkage disequilibrium and/or selective
sweep between bacteria and host genomes (usually with host mtDNA) were detected in 6 species
(4%): 2 (5%) Chrysomelidae (Altica lythri, Jackel et al. 2013; Aphthona nigriscutis, Roehrdanz
et al. 2006) and 4 (6%) Curculionidae (Eusomus ovulum, Mazur et al. 2016; Naupactus cervinus,
Rodriguero et al. 2010b, Polydrusus inustus, Polydrusus pilifer, Kajtoch et al. 2012).
Cytoplasmic incompatibility was detected in 10 (7%) Coleoptera: 4 (10%) Chrysomelidae
(Altica lythri, Jackel et al. 2013; Aphthona nigriscutis, Roehrdanz et al. 2006, Chelymorpha
alternans, Keller et al. 2004, Diabrotica barberi, Roehrdanz & Levine 2007, Diabrotica
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virgifera virgifera, Clark et al. 2001), 3 (5 %) of Curculionidae (Cossomus sp., Zhang et al.
2010, Hypothenemus hampei,Marifio et al. 2017, Xylosandrus germanus, Kawasaki et al. 2016),
1 of Scarabaeidae (Popillia japonica, Jensen 2011), 1 of Sylvanidae (Oryzaephilus surinamensis,
Sharaf et al. 2010) and 1 of Tenebrionidae (7ribolium confusum, Li et al. 2016, Ming et al.
2015). Horizontal transfer of Wolbachia was detected or suspected in 28 species of Coleoptera
(19%) — 16 (39%) species of Chrysomelidae (several species of Altica, Jickel et al. 2013,
Crioceris quaterdecimpunctata and Crioceris quinquepunctata, Kolasa et al. 2017) and 12 (19%)
species of Curculionidae(members of Euwallacea,Xyleborus, Xylosandrus, Xyleborinus
schaufussi and Taphrorychus bicolor Kawasaki et al. 2016, Polydrusus and Parafoucartia
squamulata, Kajtoch et al. 2012). Other effects of Wolbachia on beetles included the following:
1) transfer of bacteria genes to the autosomes of the host (so far detected only for Monochamus
alternatus, Cerambycidae, Aikawa et al. 2009 and Callosobruchus chinensis, Chrysomelidae,
Nikoh et al. 2008); i1) coexistence of Wolbachia with Rickettsia (Longitarsus, Chrysomelidae,
Gurfield 2016) in the host or with Rickettsia and Spiroplasma (Adalia bipunctata, Majerus et al.
2000, Harmonia axyridis, Dudek et al. 2017; both Chrysomelidae); iii) induction and
reinforcement of parthenogenesis (numerous species of Naupactini, Rodriguer et al. 2010a and
Eusomus ovulum, Mazur et al. 2016; all Curculionidae); iv) possible induction of haplodiploidy
(Euwallacea interjectus, Euwallacea validus, Curculionidae, Kawasaki et al. 2016); v) male-
killing (Tribolium madens, Tenebrionidae, Fialho & Stevens 2000); vi) necessity of infection for
egg development (Otiorhynchus sulcatus, Curculionidae, Son et al. 2008); vii) populations
evolving towards endosymbiont loss and repeated intraspecific horizontal transfer of Wolbachia

(Pityogenes chalcographus, Curculionidae, Arthofer et al. 2009).
Phylogenetic relations

The tree reconstructed for /65 rDNA included 43 sequences from bacteria found in 36
host beetle species. This tree included three major lineages, with separate clusters of Wolbachia
sequences belonging to A, B and F supergroups (Supplementary Fig. 2). F supergroup was
represented by a single sequence from Rhinocyllus conicus (Curculionidae) (Supplementary Fig.
2). Sequences assigned to supergroup A (based on information available in the articles) were
found to be polyphyletic. Some /6S sequences from Xylosandrus germanus (Curculionidae) and

Oreina cacaliae (Chrysomelidae) clustered as a sister lineage to all other A and B sequences, and
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appeared as an intermediate between supergroup F and other supergroups (Supplementary Fig.
2). Overall, the diversity of /6S sequences assigned to supergroup B was much greater than those

assigned to supergroup A (Supplementary Fig. 2).

The tree reconstructed for fzsZ included 121 sequences found in 104 host beetle species.
The ftsZ phylogenetic tree resulted in a topology similar to that of /65 rDNA — it included groups
of sequences belonging to A, B and F supergroups (Supplementary Fig. 3). Supergroup F was
represented by Agrilus araxenus and Sphaerobothris aghababiani (both Buprestidae). Moreover,
the supergroup B clade was divided into two clusters, among which one included a small group
of sequences found in four beetle hosts: Chelymorpha alternans (Chrysomelidae), Eurymetopus
fallax, Sitophilus oryzae and Conotrachelus nenuphar (all three Curculionidae) (Supplementary
Fig. 3). Also in this gene, the genetic variation of sequences belonging to supergroup A was
much lower, and only a few sequences were highly diverged (e.g. strains of Callosobruchus
chinensis, Chrysomelidae; Tribolium confusum, Tenebrionidae or Polydrosus pilosus,
Curculionidae) (Supplementary Fig. 3). There was also one slightly distinct clade that mainly
consisted of bacteria sequences found in some Hydraenidae, Curculionidae and Chrysomelidae

(Fig. 10).

The Wsp tree was built for 83 sequences found in 63 hosts. This network resulted in two
clusters representing supergroups A and B; among the available sequences there were no
representatives of supergroup F (Supplementary Fig. 4). Wsp was found to be more diverse than
16S and fisZ, as it had multiple distant lineages in both supergroups. Within supergroup B the
most distant lineage originated from the only wsp sequence found in Callosobruchus analis
(Chrysomelidae) (Supplementary Fig. 4). In this supergroup, two distinct clades could also be
delineated: one consisting of Wolbachia sequences found in a variety of beetle hosts and the
second mainly consisting of hosts from Curculionidae (Otiorhynchus singularis, Sitophilus spp.),
Chrysomelidae (Callosobruchus spp., Acromis sparsa) and Byturidae (Byturus tomentosus)
(Supplementary Fig. 4). Similarly, in supergroup A several distinct lineages could be delineated,
consisting of Wolbachia sequences found in e.g. Ceutorhynchus obstrictus (Curculionidae),
Diabrotica spp., Oreina spp. and Aphthona spp. (all Chrysomelidae) — which are all represented
by several strains (Supplementary Fig. 4).
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The abovementioned phylogenetic reconstructions of the relations among Wolbachia
strains identified on the basis of polymorphism of several genes show that there is no strict
correlation between host phylogeny and bacterial strain relationships. Even in studies that
covered multiple related species (e.g. those belonging to the same genus), evidence for direct
inheritance of Wolbachia strains from common ancestors is restricted to Hydraenidae (Sontowski
et al. 2015) and some species of Oreina (Montagna et al. 2014). In the case of Altica, the data
show that cospeciation was rare and restricted to a few recently diverged species (Jackel et al.
2013). In contrast, there are numerous examples of phylogenetically related beetle species
possessing different Wolbachia strains (e.g. Lachowska et al. 2010). It is also often the case
among related species that some are infected, whereas others not (Crioceris, Kubisz et al. 2012;
Oreina, Montagna et al. 2014); so any assumption that the bacteria was inherited from a common
ancestor would also need to consider multiple losses of infection. The latter phenomenon is
probable; however, there is no direct evidence from natural populations, at least in studies on
beetles, of Wolbachia disappearing over time. Some exemplary studies that found Wolbachia
present in related species, after detailed examination, rejected the idea that bacteria was inherited
from a common ancestor. This was because different host species harbored unrelated stains (e.g.
among weevils, Lachowska et al. 2010, Rodriguer et al. 2010a) or in cases where strains were
identical or similar, the hosts were not phylogenetically close to each other (e.g. Crioceris,
Kubisz et al. 2012). Finally, there is evermore proof of horizontal Wolbachia transmission via
different mechanisms, such as via predators, parasitoids, common habitat or foraging on the
same host plants (Huigens et al. 2004,Stahlhut et al. 2010,Caspi-Fluger et al. 2012,Ahmed et al.
2015). Studies on beetles have mainly provided indirect evidence of such transmissions. There
are known groups of species that inhabit the same environments and share the same or very
similar Wolbachia strains, e.g. steppic weevils from East-central Europe (Mazur et al. 2014) and
bark beetles in Japane (Kawasaki et al. 2016). Recently, proof has also appeared for the role of
host plants in bacteria spread — Wolbachia DNA was detected in two species of Crioceris leaf

beetles and in their host plant — Asparagus spp. (Kolasa et al. 2017).
Current gaps and future endeavors

The present knowledge on Wolbachia infection across beetle species and populations is

very uneven. Even the basic data about infection statuses in species and frequencies of infected

Peer] Preprints | https://doi.org/10.7287/peerj.preprints.3412v1 | CC BY 4.0 Open Access | rec: 15 Nov 2017, publ: 15 Nov 2017




386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403

404
405
406
407
408
409
410
411
412
413
414
415
416

species across genera and families is superficial, as there are only c. 150 beetle species known to
be infected. This means that if 36% is the average frequency of infection among beetle species,
then only c. 420 species have been tested so far. This is merely c¢. 0.12% of the total number of
beetles, which is estimated to be around 360 000 species (Farrell 1998, Bouchard et al. 2009).
We know even less at the population level, as the majority of beetle species have only had single
individuals tested for Wolbachia infection (e.g. Lachowska et al. 2010, Sontowski et al. 2015).
These very basic screens have probably underestimated the number of infected species because
of false-negative results obtained for species with low or local infection in populations. On the
other hand, these preliminary estimates could have overestimated the real number infected
beetles, as sampling in these studies was rarely random and most often focused on specific
groups, e.g. on genera for which preliminary data suggested the presence of Wolbachia infection.
Indeed, an intensive search of Wolbachia infection across hundreds of beetle species from
Europe suggested a lower infection rate — c. 27% to be infected. Also, knowledge about infection
at the geographic scale is very uneven, and only Europe and Asia (basically China and Japan)
have been relatively well investigated. There is a huge gap in the knowledge for African,
Australian and Oceanian beetles, where a high diversity of beetles exists and probably a similar
diversity of Wolbachia could be expected (e.g. compared to preliminary data available from

Central and South America (Werren et al. 1995, Rodriguer et al. 2010a)).

Little is known about Wolbachia diversity in beetle hosts, as the majority of studies used
only single genetic markers, and often different genes were sequenced for different taxa. This
precludes complex analysis of Wolbachia diversity across all tested beetle hosts. This has
changed since 2006, since Baldo et al. (2006) proposed Multilocus Sequence Typing, which is
based on the genotyping of five housekeeping genes, usually in conjunction with wsp
sequencing. But this remains a superficial way for understanding Wolbachia diversity as the
genome of this bacteria is known to be affected by frequent recombination events (Werren et al.
1995, Werren & Windsor 2000). To fully understand Wolbachia diversity and relations among
strains and supergroups, genome-sequencing is needed. This could be achieved thanks to the
development of next-generation sequencing technologies (NGS). Surprisingly, despite fast
development of NGS in the last years, very few studies have used this technology for studying
Wolbachia in beetle populations. For example, two studies sequenced /6S amplicons generated

from microbiota and accidentally detected Wolbachia (Gurfield 2016; Dudek et al. 2017). The
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only single study that utilized shotgun sequencing was executed for other purposes and also
accidentally showed Wolbachia genes in examined species (Heintzman et al. 2014). NGS is
probably the best prospect for studies on Wolbachia infection and diversity, and will help to

answer most current riddles and issues.

The big challenge is to understand the impact of infection on beetle biology, physiology
and ecology. It is known that Wolbachia has several effects on host reproduction, but relatively
few studies prove or suggest e.g. cytoplasmic incompatibility, male-killing or other effects on the
development of selected beetles (Jackel et al. 2013, Roehrdanz et al. 2006, Keller et al. 2004,
Roehrdanz & Levine 2007,Clark et al. 2001,Zhang et al. 2010, Marifo et al. 2017,Kawasaki et
al. 2016,Jensen 2011, Sharaf et al. 2010, Li et al. 2016, Ming et al. 2015). It is very probable
that this bacteria has large and frequent effects on beetle reproduction and is consequently
partially responsible for beetle radiation, at least in some taxonomic groups, geographic areas or
habitats. Also very few studies have shown data on linkage disequilibrium and selective sweep
between bacteria and host genomes (Jackel et al. 2013,Roehrdanz et al. 2006, Mazur et al. 2016,
Rodriguero et al. 2010b,Kajtoch et al. 2012). These effects could also have led to the speciation
of numerous beetles. Moreover, this phenomenon could have serious implications for beetle
barcoding, as selective sweep is known to reduce mitochondrial diversity in its hosts and
therefore could decrease the number of identified species (Hurst & Jiggins 2005). On the other
hand, cytoplasmic incompatibility can lead to the origin of highly diverged phylogenetic
mitochondrial lineages within species, which would increase the number of identified taxa
(Smith et al. 2012). Also here, NGS technologies will enable more sophisticated analyses of
these genetic relations and their effects (e.g. by the sequencing of transcriptomes for
physiological studies or by genotyping-by-sequencing for phylogenetic studies). Genotyping
with NGS should also verify whether the recent assumption that different supergroups are indeed
“Candidatus Wolbachia” species is correct or not (Ramirez-Puebla et al. 2015, Lindsey et al.

2016).

Only very preliminary results suggested Wolbachia was not only transmitted vertically,
but that it could also have spread horizontally (Jackel et al. 2013, Kolasa et al. 2012, 2017,
Kawasaki et al. 2016, Mazur et al. 2017). In light of the general lack of cospeciation between

bacteria and beetles, horizontal transmission must be a highly underestimated phenomenon.
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Horizontal transmission of Wolbachia among beetles, cannot be confirmed without considering
other coexisting insects that can mediate transmission, such as predators, parasitoids or beetle
prey. Moreover, other arthropods that share habitats with beetles, e.g. phoretic ticks (Hartelt et al.
2004) and nematodes (Casiraghi et al. 2001), need to be examined. Finally, host plants are
promising objects of studies on Wolbachia transmission across beetle populations (Kolasa et al.
2017), as phloem is probably an important mediator of this bacteria’s spread across insect
populations (DeLay 2012; Li et al. 2016). Concerning transmission — another very poorly
investigated topic is the transfer of Wolbachia genes into host genomes, as only two such
examples have been reported so far (Aikawa et al. 2009, Nikoh et al. 2008). This problem could
be important as if such transfers are frequent, simple testing of Wolbachia presence in a host
based on single or even several gene sequencing could overestimate the number of truly infected

species, populations or individuals.

Finally, a very interesting topic for future studies is the examination of the presence of
other intracellular and symbiotic bacteria (like Cardinium, Spiroplasma, Rickettsia), in
Coleoptera and their relations, both with the host and Wolbachia. So far, only three studies have
found Wolbachia with Rickettsia and/or Spiroplasma together in beetle hosts (Gurfield
2016,Majerus et al. 2000, Dudek et al. 2017). Preliminary results suggest that there is some
balance in the number of these bacteria, probably caused by competition within host cells (Goto
et al. 2006). A recent summary of the presence of these bacteria in insects showed that Rickettsia
has been found in single species of Buprestidae and Coccinellidae (Werren et al. 1994, Lawson
et al. 2001), Spiroplasma in some species of Coccinellidae (Majerus et al. 1998, Hurst et al.
1999, Tinsley & Majerus 2006), and Cardinium has not been detected so far in any beetle species
(Zchori-Fein et al. 2004). The coexistence of different endosymbiotic bacteria and their effects
on hosts should also be investigated with NGS technologies, which are able to detect bacteria in
numerous hosts (e.g. individuals) and estimate prevalence of bacteria in various hosts or different
tissues. Similar or opposite effects of different endosymbiotic bacteria on beetle species,
populations and individuals could be the greatest overlooked phenomenon in the evolution and

ecology of Coleoptera.
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Table 1(on next page)

Image of share of Wolbachia infected species among families and genera of examined
beetles.

Table 1: Share of Wolbachia infected species among families and genera of examined

beetles. Only taxonomic groups for which at least two species were tested are presented.
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family N of examined % of infected  genus N of examined % of infected genus N of examined % of infected
Buprestidae 61 23.0 Barypeithes 9 11.0 Julodis 2 0.0
Chrysomelidae 81 45.7 Brachysomus 4 0.0 Laccophilus 2 0.0
Curculionidae 92 51.1 Buprestis 3 0.0 Limnebius 7 28.6
Dytiscidae 21 14.3 Byturus 3 33.0 Longitarsus 3 100.0
Gyrinidae 3 333 Callosobruchus 7 33.0 Meliboeus 2 0.0
Haliplidae 2 50.0 Capnodis 3 333 Naupactus 16 69.0
Hydraenidae 27 63.0 Charidotella 2 50.0 Neoglanis 2 0.0
Hydrophilidae 12 16.7 Chrysobothris 3 333 Ochthebius 12 41.7
Noteridae 2 100.0 Crioceris 5 40.0 Oreina 5 80.0
genus N of examined % of infected  Diabrotica 12 25.0 Otiorhynchus 4 50.0
Acalymma 2 100.0 Dorytomus 3 67.0 Pantomorus 3 100.0
Acmaeodera 5 0.0 Eurymetopus 2 100.0 Polydrosus 4 75.0
Acmaeoderella 4 0.0 Gyrinus 3 33.0 Rhantus 2 0.0
Agabus 6 16.7 Haliplus 3 33.0 Sciaphobus 2 50.0
Agrilus 34 17.6 Helophorus 3 0.0 Sitophilus 3 100.0
Altica 16 88.0 Hydraena 24 333 Sphenoptera 11 9.1
Anthaxia 6 16.7 Hydroporus 5 0.0 Strophosoma 3 67.0
Aramigus 3 100.0 Hygrotus 5 20.0 Trachypteris 2 0.0
Atrichonotus 2 50.0 1lybius 2 0.0 Trachys 6 16.7
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Figure 1(on next page)

Prisma flow-diagram for literature on Wolbachia-Coleoptera relations included in this
study.

Figure 1: Prisma flow-diagram (see Moher et al., 2009) for literature on Wolbachia-Coleoptera

relations included in this study.
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Figure 2 (on next page)

Image of change in the number of publications considering Wolbachia infection among
Coleoptera.

Figure 2: Change in the number of publications considering Wolbachia infection among

Coleoptera.
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Figure 3(on next page)

Image of number of publications that described Wolbachia infection among Coleoptera
and number of infected beetle species.

Figure 3: Number of publications that described Wolbachia infection among Coleoptera and
number of infected beetle species. Both are shown with respect to the zoogeography of the

examined hosts (from which continent the host was collected). )
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Figure 4 (on next page)

Image of numbers of sites and numbers of individuals of beetles examined with respect
to Wolbachia infection.

Figure 4: Numbers of sites and numbers of individuals of beetles examined with respect to

Wolbachia infection. P - Man-Whitney test p-values.
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Figure 5(on next page)

Image of shares of Wolbachia genes used in studies on Wolbachia infection among
Coleoptera.

Figure 5: Shares of Wolbachia genes used in studies on Wolbachia infection among

Coleoptera.
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Figure 6(on next page)

Image of shares of Wolbachia infected beetle species across the examined families of
Coleoptera.

Figure 6: Shares of Wolbachia infected beetle species across the examined families of

Coleoptera. The numbers presented after the family names indicate the number of infected

species.

Peer] Preprints | https://doi.org/10.7287/peerj.preprints.3412v1 | CC BY 4.0 Open Access | rec: 15 Nov 2017, publ: 15 Nov 2017




Haliplidae 1 ““Noteridae 1||Dytiscidae'3 [Carabidae 1]
Gyrinidae 1] N\ Staphyllinidae1|

= Hydrophilidae 1|

Hydraenidae 14|

Scarabaeidae 1 |

% Buprestidae 13|

Byturidae 1
Cleridae 1

Lampyridae 1
Coccinellidae 3

Curculionidae 62

Tenebrionidae 2

Meloidae 1
Sylvanidae 1

Cerambycidae 1

hrysomelidae 42

Peer] Preprints | hitps://doi.org BSSWFPT CC BY 4.0 Open Access | ref: 15Nov




Figure 7 (on next page)

Image of numbers of Wolbachia infected species found in the examined genera of
beetles.

Figure 7: Numbers of Wolbachia infected species found in the examined genera of beetles.

Only genera with at least two infected species are presented.
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Figure 8(on next page)

Image of shares of beetles infected by Wolbachia supergroups (A, B, F).

Figure 8: Shares of beetles infected by Wolbachia supergroups (A, B, F). [Beetle photographs
are from ICONOGRAPHIA COLEOPTERORUM POLONIAE (© Copyright by Prof. Lech Borowiec]
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Figure 9(on next page)

Image of diversity of Wolbachia infection in Coleoptera with respect to shares of
infected individuals within species and numbers of strains found in beetles.

Figure 9: Diversity of Wolbachia infection in Coleoptera with respect to shares of infected
individuals within species and numbers of strains found in beetles. [Beetle photographs are

from ICONOGRAPHIA COLEOPTERORUM POLONIAE (© Copyright by Prof. Lech Borowiec]
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