A peer-reviewed version of this preprint was published in PeerJ on 7 February 2018.

View the peer-reviewed version (peerj.com/articles/4328), which is the preferred citable publication unless you specifically need to cite this preprint.

An Indo-Pacific damselfish in the Gulf of Mexico: origin and mode of introduction

D Ross Robertson Corresp., 1, Omar Dominguez-Dominguez 2, Benjamin Victor 3, Nuno Simoes 4, 5, 6

1 Naos Marine Laboratory, Smithsonian Tropical Research Institute, Balboa, Republic of Panama
2 Laboratorio de Biología Acuática, Facultad de Biología, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Michoacan, Mexico
3 Guy Harvey Research Institute, Nova Southeastern University, Ft Lauderdale, Florida, United States
4 Unidad Multidisciplinaria en Docencia e Investigacion de Sisal, UNAM, Sisal, Yucatan, Mexico
5 Laboratorio Nacional de Resiliencia Costera, Unidad Académica de Yucatán, Universidad Nacional Autónoma de México, Sisal 97355, Yucatán, Mexico
6 Harte Institute for Gulf of Mexico Studies, Texas A&M University - Corpus Christi, Corpus Christi, Texas 78412, United States

Corresponding Author: D Ross Robertson
Email address: drr@stri.org

The Indo-west Pacific (IWP) coral-reef damselfish Neopomacentrus cyanomos is well established across the southwest Gulf of Mexico (SwGoMx). Comparisons of mtDNA sequences of the SwGoMx population with those from conspecifics from 16 sites scattered across its native range show that the SwGoMx population is derived from two of four native lineages: one from the north-west Pacific Ocean, the other from the northern Indian Ocean. Three hypotheses address how this species was introduced to the SwGoMx: (1) aquarium release; (2) borne by cargo-ship; and (3) carried by offshore petroleum platform (petro-platform). The first is unlikely because this species rarely features in the aquarium trade, and “N. cyanomos” traded to the USA from the sole IWP source we are aware of are a misidentified congener, N. taeniurus. The second hypothesis is unlikely because shipping has not been associated with the introduction of alien damselfishes, there is little international shipping between the IWP and the SwGoMx, and voyages between those areas would be lengthy and along environmentally unfavorable routes. Various lines of evidence support the third hypothesis: (i) bio-fouled petro-platforms represent artificial reefs that can sustain large and diverse populations of tropical reef-fishes, including N. cyanomos in the SwGoMx; (ii) relocation of such platforms has been implicated in trans-ocean introductions leading to establishment of non-native populations of such fishes; and (iii) genetic characteristics of the SwGoMx population indicate that it was established by a large and diverse group of founders drawn from the regions where many SwGoMx petro-platforms originated.
An Indo-Pacific damselfish in the Gulf of Mexico: origin and mode of introduction.

D Ross Robertson¹, Omar Dominguez-Dominguez²,³, Benjamin Victor⁴, Nuno Simoes⁵-⁷

1. Smithsonian Tropical Research Institute, Balboa, Republic of Panamá
4. Guy Harvey Research Institute, Nova Southeastern University, Ft Lauderdale, Florida 33314, USA
5. UMDI-Sisal, Facultad de Ciencias, Universidad Nacional Autónoma de México, Sisal 97355, Yucatán, México
6. Laboratorio Nacional de Resiliencia Costera, Unidad Académica de Yucatán, Universidad Nacional Autónoma de México, Sisal, 97355, Yucatán, México
7. International Chair for Coastal and Marine Studies in Mexico, Harte Research
Institute for Gulf of Mexico Studies, Texas A&M University-Corpus Christi, 6300
Ocean Drive, Unit 5869 Corpus Christi, Texas 78412

Corresponding Author: D Ross Robertson, drr@stri.org

ABSTRACT

The Indo-west Pacific (IWP) coral-reef damselfish Neopomacentrus cyanomos is well established across the southwest Gulf of Mexico (SwGoMx). Comparisons of mtDNA sequences of the SwGoMx population with those from conspecifics from 16 sites scattered across its native range show that the SwGoMx population is derived from two of four native lineages: one from the north-west Pacific Ocean, the other from the northern Indian Ocean. Three hypotheses address how this species was introduced to the SwGoMx: (1) aquarium release; (2) borne by cargo-ship; and (3) carried by offshore petroleum platform (petro-platform). The first is unlikely because this species rarely features in the aquarium trade, and “N. cyanomos” traded to the USA from the sole IWP source we are aware of are a misidentified congener, N. taeniurus. The second hypothesis is unlikely because shipping has not been associated with the introduction of alien damselfishes, there is little international shipping between the IWP and the SwGoMx, and voyages between those areas would be lengthy and along environmentally unfavorable routes. Various lines of evidence support the third hypothesis: (i) bio-fouled petro-platforms represent artificial reefs that can sustain large and diverse populations of tropical reef-fishes, including N. cyanomos in the SwGoMx;
(ii) relocation of such platforms has been implicated in trans-ocean introductions leading to establishment of non-native populations of such fishes; and (iii) genetic characteristics of the SwGoMx population indicate that it was established by a large and diverse group of founders drawn from the regions where many SwGoMx petro-platforms originated.
INTRODUCTION

The damselfish *Neopomacentrus cyanomos* (Bleeker, 1856), which is native to coral reefs of the tropical Indian Ocean and West-Pacific Ocean (Allen, 1991), was first recorded in the southwest Gulf of Mexico (SwGoMx) in mid-2013 (González-Gándara & Cruz-Francisco, 2014). However, by then it was common on both coastal and offshore reefs dispersed across at least 350 km of that area (Robertson et al., 2016 a). Since then, this species has been found across most of the SwGoMx, and, most recently, in both the northwest and northeast Gulf of Mexico (USGS, 2017, accessed October 10, 2017). After the lionfish (*Pterois volitans*), this is only the second species of Indo-west Pacific coral-reef fish to have established a substantial population across a large area of the tropical Greater Caribbean. This paper deals with two questions: (i) from where in its native range did the SWGoMx population of *N. cyanomos* originate, and (ii) by what means were the fish that established that population transported to the Gulf of Mexico.

To address these two questions we compared DNA sequences of the mitochondrial DNA cytochrome c oxidase I gene (CO1 sequences) to assess relationships among three groups of fish: (i) aquarium-trade fish purchased in the USA that were said to be “*N. cyanomos*” shipped there from the Philippines; (ii) a large group of individuals of *N. cyanomos* collected from two reefs in the SwGoMx, and (iii) samples of *N. cyanomos* collected at 16 sites scattered across most of its native, Indo-west Pacific range.

We used these genetic data to assess the following predictions relating to three hypothetized modes by which marine fishes have been transported long distances to
well outside their native ranges (see González-Gándara & Cruz-Francisco, 2014; Robertson et al., 2016 b): (1) release of aquarium specimens; (2) carriage by cargo-ship, on the hull or in ballast water; and (3) carriage by marine platforms used for exploration and production of offshore oil and gas (“petro-platforms”). We predicted that if the *N. cyanomos* population in the SWGoMx was established by aquarium release, then individuals from that area should match genetically to those supplied by the aquarium trade from the Philippines (apparently the sole source of fish labelled as this species for the US trade to the Americas during the early 2000s, the only period for which published data are available, see https://www.aquariumtradedata.org/, accessed July 15, 2017). Since it is likely that an aquarium release of an obscure species such as *N. cyanomos*, a minor component in the international fish trade (see discussion), would involve a relatively small number of individuals, then the *N. cyanomos* population in the SWGoMx should have low genetic diversity and show evidence of having passed through a genetic bottleneck due to its expansion from a small number of founders.

Similarly, if the introduction were from transport by cargo-ship, a method not conducive to transport of large numbers of individual fishes in a single event (see discussion), we predicted a SWGoMx population with genetic characteristics essentially the same as those for a population established by aquarium release, i.e. low genetic diversity, with evidence of having passed through a genetic bottleneck as the population expanded from a few founders. In contrast, we predicted that transfer by petro-platforms would produce a markedly different genetic profile in the GoMx population. These platforms can host substantial populations of a range of species of tropical reef-fishes (see discussion), and at least one small platform in the SWGoMx supports a population of
many thousands of *N. cyanomos* (Simoes & Robertson, 2016). Hence a platform being transported from the IWP potentially could carry a substantial number of individuals representing a cross section of the population(s) of *N. cyanomos* from the IWP site(s) where it had been constructed or stationed before arriving in the GoMx. A GoMx population that was genetically diverse and showed no signs of having passed through a genetic bottleneck due to small founder population size would be consistent with such a mode of introduction. In addition, that GoMx population should be most closely related to an IWP population(s) in an area(s) that contain offshore oilfields and/or where petro-platforms were constructed or stationed before being moved to the SwGoMx.

METHODS

The native range of *N. cyanomos* extends from the Red Sea and the Persian Gulf to south-east Africa, and eastward to Japan, the Philippines, the Solomon Islands and New Caledonia in the West-Pacific. (Allen, 1991; and see https://www.gbif.org/species/2398535, accessed September 20 2017). The range of *N. cyanomos* encompasses most of the range of the entire genus, which extends only further southeast, to the south central Pacific (Allen, 1991; and see https://www.gbif.org/species/2398526, accessed September 20 2017). No members of the genus occur naturally in the Atlantic Ocean (Allen, 1991), and none are known from the Mediterranean Sea, either naturally (Allen, 1991) or as a result of introduction (Arndt & Schembri, 2015).

The specimens used for DNA sequencing in our analysis comprised nine aquarium-trade fish purchased in the USA that were identified by the US wholesale
dealers as “N. cyanomos” originating from the Philippines; eight from a single group purchased from a dealer by BV in Los Angeles, California, and one from a dealer in New York, New York. In addition, 54 documented N. cyanomos (many identified by GR Allen), that had been collected by a variety of researchers, including some contributors to the Fish Barcode of Life project (Fish-BOL), at 16 sites (1-8 fish per site) scattered across most of the native Indo-west Pacific range were also sequenced (Table S1). These sequences were compared to sequences of 65 individuals of N. cyanomos collected from the non-native population on Campeche Bank, in the SwGoMx using clove-oil anaesthetic, two from Madagascar reef in 2015 (see Robertson et al., 2016 b) and 63 of them from Cayo Arcas reef collected in 2016. After collection those 65 fish were euthanized with an overdose of clove-oil anaesthetic and preserved in 95% ethanol.
Total genomic DNA was isolated with the Qiagen BioSprint Dneasy Tissue and Blood Kit (Qiagen, Valencia, CA, USA), following the manufacturer's protocol. A fragment of cytochrome oxidase subunit I (COI: 594 pb) was amplified using the primers Fish-F1 and Fish-R1 following Ward et al. (2005). Polymerase chain reactions (PCRs) were performed in a volume of 12.5 µl containing 4.25 µl ultrapure water, 0.5 µl of each 0.2 µM primer, 6.25 µl Dream Taq Green PCR Master Mix 2x (Thermo Scientific), and 1 µl (ca. 10-100 ng) of DNA template. The PCR products were purified using ExoSAP-IT (USB Corp.) and submitted to Macrogen Inc. for sequencing. The native populations of *N. cyanomos* and the aquarium-trade specimens were sequenced at The Biodiversity Institute of Ontario, University of Guelph, Canada. A 652-bp segment was amplified from the 5′ region of the mitochondrial cytochrome c oxidase (COI) gene using a variety of primers (Ivanova et al., 2007). DNA extractions were performed with the NucleoSpin96 (Machery-Nagel) kit according to manufacturer's specifications under automation with a Biomek NX liquid-handling station (Beckman-Coulter) equipped with a filtration manifold. PCR amplifications were performed on 12.5 µl volumes including 6.25 µl of 10% trehalose, 2 µl of ultra pure water, 1.25 µl of 10× PCR buffer (10mM KCl, 10mM (NH4)2SO4, 20mM Tris-HCl (pH8.8), 2mM MgSO4, 0.1% Triton X-100), 0.625 µl of MgCl2 (50mM), 0.125 µl of each primer (0.01mM), 0.0625 µl of each dNTP (10mM), 0.0625 µl of Taq DNA polymerase (New England Biolabs), and 2 µl of template DNA. The PCR conditions consisted of 94°C for two min., 35 cycles of 94°C for 30 sec., 52°C for 40 sec., and 72°C for one min., with a final extension at 72°C for 10 min. Specimen information and barcode sequence data for these specimens were compiled using the
Barcode of Life Data Systems (Ratnasingham & Hebert, 2007; Ward, Hanner & Herbert, 2009).

Phylogenetic analysis and haplotype network reconstruction

Nucleotide sequences were edited and manually aligned in Mega v.6.06 (Tamura et al., 2013) and examined with a chromatogram. Maximum likelihood (ML) analysis was conducted with RAxMLGUI v. 1.3.1 (Stamatakis, 2006; Silvestro & Michalak, 2012), performing 10,000 bootstrap repetitions and using the evolutionary substitution model estimated with the General Time-Reversible model (Tavaré, 1986) + gamma (GTR+G), as obtained in jModelTest (Posada, 2008). *N. azysron* and *N. sororius* (Genbank # KP194962.1, and BOLD # PCOM166-10, respectively) were used as out-groups. The haplotype network was constructed using PopART (available at htt://popart.otago.ac.nz) and applying the Median-Joining method (Bandelt, Forster & Rohl, 2000).

Historical demography

To detect signatures of demographic changes in populations of the two lineages of *N. cyanomos* found in the SWGoMx (those belonging to groups 1 and 4 in the haplotype network of Figures 1 & 2), Tajima’s D (Tajima, 1989) and Fu’s Fs (Fu y Li, 1993) neutrality tests were calculated, with significance levels set at α=0.05 and 10,000 random permutations implemented in ARLEQUIN 3.5.1.2 (Excoffier and Lincher, 2010). Evidence of an expanding population of either lineage would be assumed if significant negative values of Tajima’s D and Fu’s F-statistics were obtained (Mousset et al., 2004). Additionally, a pairwise mismatch distribution was computed. Populations that have been historically stable are predicted to have multimodal mismatch distributions, whereas those that have undergone a recent expansion are predicted to be unimodal.
To test if the observed mismatch distributions predicted a stable or an expanding population model, differences between observed and expected distributions were evaluated using the Harpending's raggedness index (raggedness) (Harpending et al., 1993) and the R² statistic (Ramos-Onsins & Rozas, 2002).

RESULTS

We obtained mtDNA COI sequences from 54 specimens of *N. cyanomos* from 16 sites scattered across this species’ native range, and from 9 fish provided by two aquarium-trade dealers in the US, identified as “*N. cyanomos*” shipped from the Philippines. For comparison, we sequenced 65 specimens of *N. cyanomos* collected on two reefs in the SwGoMx. The haplotype network for the entire set of specimens is presented in Figure 1, and the locations from which individuals in the different haplotype groups were obtained are shown in Figure 2.

The aquarium-trade specimens from the Philippines are only distantly related to all *N. cyanomos* in the study and were identified morphologically (by BV) and genetically as a different species, *Neopomacentrus taeniurus* (Bleeker, 1856), which is native to brackish non-reef environments and widespread in the Indo-West Pacific Ocean (Allen, 1991). Their mtDNA lineage is separated by 80-89 mutations from all four haplotype groups of native-range *N. cyanomos*, as well as from the SwGoMx fish (Figure 1).

All native-range specimens of *N. cyanomos* belong to four closely related haplotype groups that included a total of 23 haplotypes, 12 of those from groups 1 and 4 (18 of 54 individuals; Figures 1 & 2). The 65 SwGoMx specimens included 11 haplotypes, four of which were shared with native-range specimens, all members of
groups 1 and 4 (see Figure 1). Genetic diversity was high among the native-range specimens, with haplotype diversity 0.913 and nucleotide diversity 0.0468. Within native-range Groups 1 & 4, haplotype diversity was high (0.942) and nucleotide diversity lower (0.0168), and a similar pattern occurred within the SwGoMx specimens (haplotype diversity 0.823; nucleotide diversity 0.0183).

The SwGoMx population comprises roughly equal numbers of individuals drawn from the two haplotype groups, 1 & 4, which are largely geographically separated in the native range, with group 1 restricted to the northern Indian Ocean and group 4 found in samples from Indonesia and Taiwan in the north-west Pacific Ocean (Figure 2). The only exception to this pattern of geographic separation is two individuals of group 4 that were collected at Gujarat, in India, at the same location as one individual of group 1.

The results of the neutrality tests for the SwGoMx haplotype groups showed that the Tajima's D and Fu's Fs values were not statistically significant for either group 1 (Tajima's D = -0.082, p>0.05 and Fu's Fs 1.05, p>0.05) or group 4 (Tajima's D = -1.08, p>0.05 and Fu's Fs -1.93, p>0.05). Each of those groups showed a multimodal mismatch distribution, with non-significant results in both Harpending's raggedness index and the R2 statistic (p >0.05 in both cases).

DISCUSSION

The analysis of mtDNA sequences indicate that the SwGoMx population of *N. cyanomos*, is unrelated to the aquarium-trade fish from the Philippines, which represent a different species, *N. taeniurus*. Most significantly, the SwGoMx population is derived from two distinct genetic lineages found in the native range, is genetically diverse, and
shows no signs of having passed through a genetic bottleneck. Lastly, the SwGoMx population is derived from a combination of a lineage found in the northern Indian Ocean and another from two widely separated locations in the northwest Pacific Ocean (Taiwan and Indonesia). These results permit an evaluation of alternative hypotheses on the origin and mode of introduction of this non-native species into the Gulf of Mexico.

Aquarium-Release Hypothesis:

The aquarium-trade specimens sold as “*N. cyanomos*” proved to belong to a different species, *N. taeniurus*. As part of a separate phylogeographic study of the genus, BV has obtained mtDNA COI sequences of specimens of all 15 nominal species of *Neopomacentrus* that were collected in the field and identified by experts in damselfish taxonomy. The mtDNA sequences of the Philippines aquarium-trade specimens are nested within a cluster of barcodes of *N. taeniurus* (BV unpublished data). In addition, a morphological examination confirms this identification; species of *Neopomacentrus* fall into two morphological groups, one (including *N. cyanomos*) with the lower edge of the suborbital bone hidden under a covering of scales, and the other (including *N. taeniurus*) in which the suborbital margin is exposed and not covered by scales. Specimens from the SwGoMx (examined by DRR) have a hidden suborbital margin, while the aquarium-trade specimens of “*N. cyanomos*” (examined by BV) have exposed suborbitals. *N. taeniurus* has a similar color pattern to, and can be easily mistaken for *N. cyanomos*.

Aquarium-trade data presented by Rhyne et al. (2015) indicate that “*N. cyanomos*”, which is not brightly colored like many desirable aquarium species, is a very
small component of the aquarium trade in damselfishes to the USA (not sold in sufficient numbers to be represented among the top 20 species of damselfishes), and that the Philippines apparently is the sole native-range source for that trade to the USA. *Neopomacentrus cyanomos* is known to occur in the Philippines, but whether or not any aquarium-trade imports from there actually are that species remains uncertain. Furthermore, it is not clear which mitochondrial lineage(s) of *N. cyanomos* is present in the Philippines, given the proximity of that Archipelago not only of the Group 4 lineage (one of the SWGoMx lineages), but also the Group 2 lineage at western Irian Jaya (Figure 1), which is not. Even if the Group 4 lineage that is present in the SwGoMx were exported in the aquarium trade to the US, the northern Indian Ocean lineage (Group 1) that forms a major part of the SwGoMx population would not be expected to be part of the trade.

While keeping marine aquarium-fish is popular in the US, that is not the case in Mexico (NS Pers. Obs.), where *N. cyanomos* was first recorded. Any individuals of that species potentially obtained by aquarists in Mexico likely would have been derived from US wholesalers, the main global recipient in the aquarium trade. Almost all recorded aquarium-trade releases of exotic marine fish in the vicinity of the GoMx have occurred in southeast Florida, where many such species are known (Semmens et al., 2004), and *N. cyanomos* would be expected to have established there first if they were derived from aquarium release. However, southeast Florida hosts an abundance of divers, and is intensively monitored by the REEF organization (www.reef.org) for sightings of exotic species. REEF was made aware of the presence of *N. cyanomos* in the Gulf of Mexico...
by the publication of González-Gándara & Cruz-Francisco (2014). To date, there remain no records of *N. cyanomos* in south Florida (USGS, 2017, accessed October 9 2017).

The genetic data do not support the aquarium-release hypothesis. Both SwGoMx lineages of *N. cyanomos* are genetically diverse, and the results of both the neutrality tests and mismatch distributions suggest a stable population that did not pass through a genetic bottleneck, and hence was not established by a few founders, i.e. by a few fish released from an aquarium.

Cargo-ship carriage hypothesis:

Movements of cargo-shipping in the normal course of business have been implicated in the long distance transport of exotic marine fishes well beyond their native ranges, usually in ballast water (Wonham et al., 2000), but, potentially, also in sea-chests on the hulls of ships. Such shipping was proposed as the means of introduction of *N. cyanomos* into the SwGoMx by González-Gándara & Cruz-Francisco (2014).

Damselfishes are not included among the species thought to be introduced by ballast water (Wonham, Carlton & Ruiz, 2000) and none were found on the hulls of cargo ships examined in Brazil by Ferriera, Goncalves & Coutinho (2006). There are very few instances of long-distance introductions by alien damselfishes. One of those evidently is due to natural range expansion in a species that associates with flotsam (Coleman et al., 2014). Another introduction (of a species that also associates with flotsam) from the Atlantic to the Mediterranean, has been attributed to “shipping” by Occhipinti-Ambrogi et al. (2011), without the presentation of any justification (see Tsadok et al., 2015 for resolution of the identity of this species; and see also Pajuelo et al., 2016, below).
A modern cargo-ship, which typically will not have a heavily fouled hull, travelling at 20-25 knots on a voyage from the western Pacific (Hong Kong) to the SwGoMx via the Panama Canal would take ~19-23 days, and ~16-20 days from Northwest India via the Suez Canal (Calculated on http://sea-distances.org, accessed September 20 2017), not counting stoppages at any ports during the voyage. Survivorship in ballast water is time-dependent for many marine organisms (see Muirhead et al., 2015) and, in addition to the lengthy duration of a transit by either route, the Pacific route would pose additional environmental barriers for any tropical reef fishes that hitched a ride on the hull of a cargo-ship going to the Gulf of Mexico via that route. Most such traffic goes via California (see Figure S1), which has a colder temperate environment unsuitable for survival of coral-reef fishes. Second, passing through the Panama Canal (see Figure S1) exposes any hull-associated organisms to the freshwater lake that constitutes most of that canal, and represents an effective barrier to transfer of tropical reef-fishes between the oceans separated by the Isthmus of Panama (although a few euryhaline, non-reef fishes that live in brackish environments have made the transit; reviewed in Cohen, 2006; and see Robertson & Allen 2015; Robertson & Van Tassell 2015).

In addition, due to the fact that the Panama Canal represents a major global chokepoint for international shipping (see Figure S1), one would expect the first occurrence of marine reef-fishes transported across the Pacific in this manner to be on reefs adjacent to the Pacific end of the canal, where ships often stop before making a canal transit. However, there are no records of such occurrences (review in Cohen 2006; and see Robertson & Allen, 2015, Robertson & Van Tassell, 2015), at either end of the canal.
As in the aquarium-release hypothesis, the genetic data do not support this hypothesis, since both the SwGoMx lineages of *N. cyanomos* are genetically diverse, and the results of both the neutrality tests and mismatch distributions suggest a stable population that shows no signs of having passed through a genetic bottleneck and hence was not established by a few founders, i.e. by a few fish transported on the hull of a cargo ship.

Petro-platform translocation hypothesis:

Offshore petro-platforms have been shown to support an abundance of reef fishes belonging to a broad variety of taxa, in the Gulf of Mexico (Hastings, Ogren & Mabry, 1976; Topolski & Szedlmayer, 2004; Ajemian et al., 2015), Brazil (Ferreira, Goncalves & Coutinho, 2006), California (Claisse et al., 2014, Martin & Lowe, 2010), the Mediterranean (Consoli et al., 2013), west Africa (Friedlander et al., 2015), Australia (Pradella et al., 2014), the Canary Islands (Pajuelo et al., 2016), and the Persian Gulf (Torquato et al., 2017). In the SwGoMx, we have observed *N. cyanomos* living on such platforms, including in superabundance on a relatively lightly-fouled platform near Cayo Arcas, in the southwest corner of Campeche Bank (up to 100 individuals m⁻²; see video of Simoes & Robertson, 2016). That platform is one of several hundred platforms in the area of the greatest concentration of such structures in the SwGoMx (https://portal.cnih.cnh.gob.mx/iicnih/?lng=en_US, accessed September 20, 2017).

Translocated petro-platforms have long been known to be vectors of long-distance transport of sessile fouling organisms (e.g. see Foster & Willan, 1979; Bax et al., 2003; Hopkins & Forrest 2010; Wanless et al., 2010; Yeo et al., 2010; Mineur et al.,
Recently, however, such translocation has been implicated in transoceanic transport of western Atlantic reef fishes to the Canary Islands, where a platform-servicing center has been established (Falcon et al., 2015; Pajuela et al., 2016), as well as to the Mediterranean (Dulcic & Dragicevic, 2013; Pajuela et al., 2016). Petro-platforms have also transported non-native fishes from Australia and the Red Sea through the Suez Canal to the Mediterranean Sea (Galil, 2008). Some reef-fish species apparently carried to the Canary Islands in this way have established breeding populations there (Falcon et al., 2015; Pajuelo et al., 2016). Petro-platforms may help exotic reef-fishes establish in west Africa (Friedlander et al., 2014), and Pajuelo et al. (2016) suggested that translocated platforms may have carried eastern Atlantic reef-fishes to Brazil, where some have recently become established.

Among the exotic reef fishes newly recorded in the Canary Islands, one species identified by Falcon et al. (2015; see plate 4B) as the (naturally trans-Atlantic) damselfish, *Abudefduf taurus*, actually is most likely the Indo-west Pacific species *A. sordidus* (GR Allen pers. comm. 2016). Since *A. sordidus* is a dull-colored species that is not found in the aquarium trade (see Rhyne et al., 2015), this occurrence represents support for the hypothesis that Indo-west Pacific reef fishes are carried from their native ranges into the Atlantic by petro-platforms. Another example, in the Pacific ocean, reported by Myers & Donaldson (1996) and Myers (1999, p 183), is the damselfish *Neopomacentrus violascens* (Bleeker, 1848), which they proposed was transported to Guam, where it is not native, from the Philippines by a bio-fouled military barge. It has now established a population at Guam, living on bio-fouled mooring chains rather than on natural substrata.
Are there movements to the SwGoMx of petro-platforms from the two areas of the native range of *N. cyanomos* that contain the lineages of that species found in the SwGoMx? The website www.infield.com/rigs (accessed July 15, 2017) provides information on the construction sites of petro-platforms and drill ships found in different countries. A review of information on that site of the origins of such platforms and drill-ships showed that about 60% of those listed as being used in the area currently occupied by *N. cyanomos* in the SwGoMx were constructed at sites within the native ranges of the two lineages found in the SwGoMx (see Figure S2). These linkages represent only part of a global web of movements of relocated new and used petro-platforms and drill-ships within and between oceans that could result in establishment of exotic sessile and mobile reef organisms well beyond their native ranges (e.g. see Wanless et al., 2010; Yeo et al., 2010; Pajuelo et al., 2016).

The genetic structure of the SwGoMx population of *N. cyanomos* indicates it was established by two large and genetically diverse groups of founders, which did not go through a genetic bottleneck during the expansion of their populations in that area. These results support the hypothesis that a large number of fish were transported, which would be most consistent with the movement of one or more petro-platforms from the native range.

How many introductions to the GoMx?

The fact that the SwGoMx population of *N. cyanomos* is derived from two lineages mostly confined to different oceans raises the question of whether that population was derived from two well-separated sources and two separate
introductions. While those lineages are largely allopatric, both are present at Gujarat, in northwestern India (see Figure 2). That occurrence and the absence of the Pacific lineage (group 4 of figure 2) at Sri Lanka (in an admittedly small sample of fish), which is closer to the Pacific than Gujarat, suggests that the presence of group 4 at western India may not be natural. Is there evidence that indicates that oil-industry activity provides connections that could have carried group 4 fish from the Pacific to Gujarat?

There is a major active offshore-petroleum area immediately to the south of the broad Kathiawar peninsula of Gujarat that projects well into the Indian Ocean (e.g. see https://watchers.news/data/uploads/2012/04/Untitled1.png). Of 41 petro-platforms used in India that are listed by www.infield.com/rigs, (accessed July 15, 2017), 15 were constructed in Singapore and two in southeast China, near the Taiwan sample of the Group 4 lineage of *N. cyanomos*. Further, there is a major global shipbreaking site on either side of the Gujarat peninsula, one at Gaddani in Pakistan, ~360 km from Gujarat, the other at Alang, at the eastern base of that peninsula in India. A list of decommissioned vessels of various types that were sent to those two sites during 2015-2016 (provided by www.shipbreakingplatform.org) shows that decommissioned offshore platforms and support vessels do get taken from various locations within the north-west Pacific (Indonesia, Singapore, Vietnam, SE China) to both those shipbreaking yards. In addition, other types of decommissioned vessels also make similar last voyages. Decommissioned vessels transiting to a shipbreaker do not have clean hulls; rather, typically they are heavily bio-fouled (Davidson et al. 2008), which would facilitate long-distance transport of fishes such as *N. cyanomos*.

Thus there are interoceanic connections involving movements of petro-platforms,
drill-ships, offshore support vessels, and decommissioned vessels of various types that could be responsible for the occurrence of both lineages in the sample from Gujarat.

These findings support the hypothesis that the occurrence of *N. cyanomos* in the GoMx is due to a single introduction (the simplest explanation) rather than multiple introductions from different source locations.

Where in the GoMx was *N. cyanomos* initially introduced?

Neopomacentrus cyanomos was first recorded at Coatzacoalcos, in the southwest corner of the GoMx in July 2013 by González-Gándara & de la Cruz-Francisco (2014), who thought it had been introduced directly to that port from its native range. However, several years later, inspection of underwater photographs taken at Cayo Arcas reef, 350 km northwest of Coatzacoalcos, showed that it was present in significant numbers at both those sites at the same time in 2013 (see Robertson et al., 2016 a). Furthermore, this species was recorded in appreciable numbers on reefs near Veracruz, 200 km northwest from Coatzacoalcos and 450 km west from Cayo Arcas, in October 2014 (see Robertson et al., 2016 b). These observations indicate that *N. cyanomos* was already well established over a large area in the SwGoMx when it was first discovered. Since then, *N. cyanomos* has been found to be even more widely spread across the SwGoMx, and is evidently spreading eastwards on reefs on the Campeche Bank. In the latter half of 2017, it was found at widely separated sites in the northern GoMx, off Texas in the west and off the Florida Panhandle in the east (USGS 2017, accessed October 8 2017).

The occurrence of *N. cyanomos* at two widely separated sites at the time it was
first discovered in the GoMx clearly demonstrates that the location at which a non-native species is first discovered cannot be equated with the location where it was first introduced. This issue is particularly applicable to *N. cyanomos*, since it is small, dully colored, and often mistaken for a native planktivorous damselfish, the Brown Chromis, *Chromis multilineata* (Guichenot, 1853), which it resembles in size, shape, and coloration. Distinguishing small juveniles of these two species in the field is more difficult than distinguishing adults. The Brown Chromis is particularly abundant on reefs in the SwGoMx, where it is far more numerous than *N. cyanomos*. (DRR Pers. Obs.)

There, both species often co-occur in feeding aggregations that are predominantly composed of Brown Chromis. Small numbers of *N. cyanomos* sharing a reef with many Brown Chromis could easily be mistaken for Brown Chromis by a diver who is not familiar with both species and not actively searching for *N. cyanomos*.

Given the difficulty in detecting the first introduction of *N. cyanomos* in the SwGoMx, the possibility that *N. cyanomos* was initially introduced to the northern GoMx rather than the southwest part cannot be ruled out. Inspection of data on www.infield.com/rigs (accessed September 2017) about the origins of petro-platforms used in the northern GoMx shows that about 1/3 of them were constructed at Singapore and China, but none in the Indian Ocean. Thus connections exist between the native range of *N. cyanomos* and both parts of the GoMx, although they are stronger with the SWGoMx, where there is direct evidence of Indian Ocean petro-platform origins. The fact that *N. cyanomos* seems to be much more abundant in the SwGoMx, even superabundant on petro-platforms there, suggests that it was initially introduced there.

As can be seen from the numbers of platforms dispatched to other countries from
Singapore (www.infield.com/rigs), that city state is a major global player in the business, has produced the largest number of GoMx petro-platforms that originated in the Indo-West Pacific, and is a site for servicing of old platforms coming from various areas, including the Atlantic. Documenting which lineage(s) of *N. cyanomos* occur in Singapore would help evaluation of the potential for Singapore as a source population for the Gulf of Mexico population of this damselfish. A substantial set of DNA sequence data is also needed from Gujarat, to indicate the proportional abundances of group 1 and 4 lineages in the population there, and to show whether group 4 haplotypes present there are shared with west Pacific sites. In addition, barcode data on confirmed *N. cyanomos* from the Philippines would clarify the extent to which *N. cyanomos* is actually involved in the aquarium trade to the Americas.

CONCLUSIONS

While there are no solid data consistent with either the aquarium-release or cargo-ship transport hypotheses, various lines of evidence support the petro-platform translocation hypothesis: petro-platforms can provide habitat for substantial populations of a broad variety of tropical reef fishes; *N. cyanomos* can live in a dense population on a lightly fouled petro-platform; petro-platforms are regularly constructed within the parts of the native range of *N. cyanomos* where the SwGoMx lineages occur, and transported from there to the SwGoMx; translocation of such platforms has been implicated as vectors of long-distance transport of tropical reef-fishes, sometimes in sufficient numbers to allow them to establish breeding populations in non-native areas; *Neopomacentrus* species apparently can be transported long distances by bio-fouled structures in sufficient numbers to establish populations outside their native ranges;
and, finally, the genetic structure of the SwGoMx population of *N. cyanomos* indicates it is derived from a large and genetically diverse population of founders, consistent with large numbers of fish being transported by a petro-platform. *Neopomacentrus cyanomos* has characteristics well suited to petro-platform transport: it is small (maximum length ~10cm), can feed on the plankton stream produced by a slow-moving platform (1-6 kts; see Yeo *et al* 2010), and can live in high-density aggregations on small amounts of relatively low-profile bio-fouling cover.

ACKNOWLEDGEMENTS

Samples, sequences, and/or data for comparison were provided by Gerald Allen and Mark Erdmann (Indonesia), Gavin Gouws, Roger Bills, and Phillip Heemstra (SW Indian Ocean), Luiz Rocha and Joseph Battista (Djibouti, Somaliland, and Saudi Arabia), Mark McGrouther and Jeff Leis (Australia), Nicolas Hubert (Madagascar), Dirk Steinke and Glenn Moore (Australia), Allan Connell (Mozambique), Fenton Walsh and Tim Bennett (Australia), Dhaval Bhamiya (India), Chiahao Chang and Kwang-Tsao Shao (Taiwan), Alyssa Marshell and Mark Priest (Oman), as well as Christopher Buerner and Adam Mangino of Quality Marine, Los Angeles, and Jason Edward of Greenwich Aquaria for aquarium trade specimens. Nicola Mulinaris of www.shipbreakingplatform.org supplied DRR with a list of petro-platforms, drill-ships and offshore support vessels sent to different shipbreaking sites during 2015-16. We thank Quetzal Hernandez for help collecting specimens in the Gulf of Mexico, Rosa Gabriela Beltran López for support with the genetic analyses, and Maribel Badillo for photographs of the *N. cyanomos* specimens collected at Madagascar Reef. Research at Cayo Arcas in 2016 was permitted by the Mexican Navy (SEMAR DO: 112/162), which
also provided logistical support for that activity. An ACUC permit from the Smithsonian Tropical Research Institute (no. 2017-1107-2020) approved methods used to collect specimens there.

REFERENCES

https://doi.org/10.1577/C09–037.1

Figure 1. Haplotype network of *N. cyanomos* from its native range and the southwest Gulf of Mexico, and of aquarium-trade “*N. cyanomos*” (= *N. taeniurus*) from the Philippines. Number of mutation steps: each red line indicates a single step, boxed numbers indicate number of multiple steps.
Figure 2 (on next page)

Locations of sites with different haplotype groups

Locations of sites within the Indo-west Pacific and the southwest Gulf of Mexico from which individuals were obtained from four different haplotype groups (see Figure 1) of *N. cyanomos*, and of aquarium-trade “*N. cyanomos*” (= *N. taeniurus*) from the Philippines. The ML (bootstrap support >85% in all cases) tree is shown as an inset.