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Abstract

The sharing and re-use of data has become a cornerstone of modern science. Multiple platforms
now allow quick and easy data sharing. So far, however, data publishing models have not accommo-
dated on-going scientific improvements in data: for many problems, datasets continue to grow with
time — more records are added, errors fixed, and new data structures are created. In other words,
datasets, like scientific knowledge, advance with time. We therefore suggest that many datasets
would be usefully published as a series of versions, with a simple naming system to allow users to
perceive the type of change between versions. In this article, we argue for adopting the paradigm
and processes for versioned data, analogous to software versioning. We also introduce a system called
Versioned Data Delivery and present tools for creating, archiving, and distributing versioned data
easily, quickly, and cheaply. These new tools allow for individual research groups to shift from a static
model of data curation to a dynamic and versioned model that more naturally matches the scientific
process.

Background

As is evidenced in the advent of journals like Scientific Data®, publication of quality datasets is now con-
sidered a first-class scientific product. Increasingly, funding bodies, publishers, and scientific social norms
are recognizing the value of sharing data, including as standalone products without any accompanying
analyses? 6. Datasets are now routinely archived as part of the publishing process. Moreover, increasing
numbers of standalone “Data papers” (or descriptors) have been appearing in standard domain-level jour-
nals, as well as specialised data journals. Yet, while the last decade has witnessed a rapid and exciting
change in attitudes towards data sharing and publishing, the scientific community is still grappling with
how to effectively disseminate and manage open-source datasets? 710, In particular, the current model
for publishing data has not yet embraced the idea that many datasets are designed to answer scien-
tific questions that extend beyond the scope of a single empirical paper. These datasets are constantly
evolving, i.e. they are never “finished”, and may be the subject of repeated analysis or meta-analysis.
Many of the datasets published as data descriptors are likely to be living entities, meaning the state-
of-the-art (or “canonical”) version of the dataset will change through time. Typical changes include: the
adding new data, improving the quality of existing data, integrating with other datasets, or re-structuring
the dataset content to be able to address new questions. For example, a dataset on a biological organisms
might be expanded through the addition of new records or improved through the correction of spelling
mistakes in taxonomic names. As research around a data product grows, there might be many such
additions. Ideally, any changes to a dataset would become immediately available to any interested parties,
while past versions of the dataset would remain accessible to ensure previous works remain reproducible.
However, current models for publishing datasets do not facilitate distributing successive versions of
a dataset in an effective and scalable manner. The most common current working model for publishing
scientific datasets is to archive them in a variety of open-source data repositories where the data is
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attributed a Digital Object Identifier (DOI) — such as Dryad, Figshare, or Zenodo. Publishing involves
a single data deposition. And once published, datasets are immutable. That means that most published
datasets exist as a singular snapshot of the dataset, taken at the time the data descriptor was published.
While it might only require a small amount of work to update the dataset, if there is no way to distribute
the updated dataset, then that work has to be re-done by every user of that dataset. Moreover, those
required changes add steps between the canonical dataset and any analysis using it, making reproducibility
of the new analysis more difficult than it needs to be. We refer to this type of data delivery as being
“Static” (Table 1).

Many research groups solve the issue of versioning data internally in a variety of ad hoc and suboptimal
ways. A common solution is to email around the latest versions with version numbers or dates appended
to the filename. Another approach is to repeat corrections or updates that have been made elsewhere.
Alas, these practices are both inefficient and a barrier to reproducibility, as the dataset used in a future
publications may differ to the version previously made available on-line. There is therefore a strong need
for an easy way to distribute changes to a dataset after its initial publication to potential users, along
with notes on what has changed and why since the previous version.

In this article we 1) Introduce the concept of Versioned Data Delivery (vDD); 2) Outline how emerging
technologies in data science (Table 2) can be used to help researchers maintain, distribute, and access
small-to-medium sized datasets; and 3) Introduce a new R package called datastorr, a proof-of-concept
implementation of a VDD system. The issue of updating and expanding published data has already
been addressed in large centralised repositories like genetic sequences (GenBank) or species location data,
where new data can be added and there exist abilities to correct errors in existing records (e.g. by adding
multiple version of a genetic sequence). Yet these “Dynamic” web databases (Table 1), require a level of
infrastructure that is beyond most research groups. Our focus here is on the wide range of datasets, such
as those appearing in this journal, that are not covered by these repositories. In most of these cases, the
data collected will not be “big” but rather small-to-medium sized. Such data support important research
projects on particular scientific questions, but are not, in most cases, general enough to warrant custom
infrastructure. Further, while we emphasize particular technologies in our implementation, the principles
are general and could easily be ported to other platforms.

A lightweight, cheap, and scalable workflow for delivering ver-
sioned data
In brief, the VDD workflow we present borrows best-practices for software development!! and applies
them to the challenge of maintaining and distributing versioned data. Software developers maintain a
core set of code which produces a binary executable file that can be installed on a users local computer.
With a vDD system, data developers similarly maintain a core set of files (the “code”), which produce
an organised dataset that can be “installed” on a user’s local computer. In either the development
of software or data, successive versions (called “releases”) are distributed over time. The similarity in
workflow between software and data then allows us to deploy the same technological platforms that
are used in software development, for the development and distribution of data. Importantly, our vDD
systems uses well-established tools (Table 2), ensuring high-level performance and stability.

The core technologies used are summarised in Table 2 and described further below. Several groups will
interact with the vDD system, including dataset maintainers, contributors, and users. The requirements
of these different groups are outlined in Table 3.

Version control

Version control, primarily an open-source variety called git, has become ubiquitous in software devel-
opment. In practice, version control tracks line-by-line changes in text files and creates and maintains
a history of those changes. Increasingly version control has been applied to scientific code and data
management, especially for small-to-medium sized datasets® %12, git is attractive for data management
because it tracks all changes in monitored files, provided these are saved in text format (e.g. “.csv”,
“tsv”, “txt”). The history is visible to anyone interacting with the repository. It also allows users to
annotate changes (“commits”) with informative messages detailing the rationale for those changes. In it’s
present form, git can handle individual data files at least up to 100MB, which includes a large fraction
of scientific cases.
As a general strategy for tracking a dataset under version control with git, we recommend:
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1. Dataset maintainers establish a separate git repository for any dataset to be distributed.

2. Saving all files as plain text, so that git can identify line-by-line changes. For example, you might
maintain tabular data as a “csv”.

3. Saving data in their rawest form. In some datasets you might only have a single file. Others may
have may files that get manipulated or combined in some way to produce a unified product.

4. Including in the git repository any code needed to manipulate or compile the raw data files into
the final dataset. For example, you might combine many independent datasets into one unified
dataset.

5. Documenting any change in the dataset as a “commit” into the git repository logs, with informative
commit messages outlining why a particular change was made.

Hosting and distributing versioned data

Datasets stored under version control via git reach their real potential when hosted at a suitable internet
hosting service® !2. Here we focus on the platform GitHub (Table 2), but similar functions could be
achieved via other providers such as bitbucket.org and gitlab.com. Hosting of a git repository enables
dataset maintainers to connect with other potential contributors and also users (Fig. 2). These platforms
are designed to work with git repositories, and thus offer many helpful features, such as ability to record
issues, host documentation, or review edits over time.

Of particular interest for current purposes, is GitHub’s ability to host a stream of “releases” from the
dataset, alongside the git repository containing all the rawfiles. Each release is linked to a specific commit
in the git repository history and occur at points where the dataset maintainer decided to generate a new
version of the data for distribution. While users could in principle download the entire git repository,
actually all they want are the releases.

Deciding when to make a new release is at the discretion of the dataset maintainer. In practice, one
makes fewer releases than one does commits into the git repository, though there is nothing stopping
maintainers from releasing a new version for every commit. The flexibility here allows maintainers to
do internal work between releases and only release the data to users when the revision represents a clear
improvement on the previous release.

Another important consideration is that websites like GitHub naturally cater for two types of data
users to access the data: those that interact with the data via point and click downloading and those
that use programmatic interaction (Fig. 2, Table 3). Specifically, GitHub releases can be downloaded
directly by users via point-and-click, or accessed programmatically via the GitHub API.

Semantic versioning

To realize the full benefits of a versioned controlled dataset, users should be able to easily intuit the types
of changes that have occurred among versions. Since software development has effectively already dealt
with almost identical; problem in the labelling of software releases, we suggest there is benefit in adopting
the best-practices from that field.

Specifically, we suggest applying the theory of “semantic versioning”, developed for software distribu-
tion (semver.org), to successive releases of a dataset. Semantic versioning uses tri-digit notation of the
form “X.Y.Z” for successive versions, where X, Y, and Z are non-negative integers. For example, version
“1.0.0”. Changes in the version number then signal the type of changes that occurred in the dataset (Fig
1). Applying semantic versioning to data, a change from:

e 1.0.0 — 1.0.1: implies a “correction” (or “patch”), for example a small error correction which is
unlikely to break, or change in a substantial way, a users’ analyses, although there may be minor
changes in the results.

e 1.0.0 — 1.1.0: implies a “minor” enhancement, for example adding a new study to a meta-analysis
dataset (while otherwise maintaining the same dataset structure); this change is large enough that
in the view of the dataset curator it might change the results of an analysis done with the prior
version and so warrants closer inspection.

e 1.0.0 — 2.0.0: implies a very “major” revision, for example improving the entire structure of the
dataset and adding new columns. These changes are very likely to change the results of most users’
analyses or to break code that was written to work on the previous version of the dataset or both.
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Any user of a dataset where releases were tagged using semantic versioning, would immediately know
the types of change that might have occurred when requesting different versions and set their there
expectations accordingly.

datastorr and dataset-specific R packages

To aid reproducibility and efficient usage, many users will want access to all versions of any particular
dataset programmatically (Table 3). Code to access a stream of GitHub releases could be written indi-
vidually by each user, but this creates an unnecessary technological hurdle. To make it easier for users
to access versioned data via code, we offer a novel implementation of vDD focussing on the R platform,
as one of the most prominent platforms for data science®.

Here we introduce a dedicated R package, called datastorr (github.com/ropenscilabs/datastorr), that
facilitates access to releases of any versioned data hosted on GitHub (Fig. 2). Specifically, the datastorr
package: 1)Constructs the shell of a second, dataset-specific R package, which is used to access releases
from a specific repository stored on GitHub; and 2) Contains the main code needed to interact with the
GitHub API to retrieve versions of the dataset. Using datastorr, a researcher can create and distribute
a custom R package that facilitates access to their data with (very) minimal computational skills.

For example, datastorr has been used to build several packages (Table 4), including baad.data
(github.com/traitecoevo/baad.data), which is an interface to the Biomass and Allometry Database'# stored
at github.com/dfalster/baad. The R package baad.data consists of only a few simple functions and asso-
ciated help files, that were automatically generated with datastorr. For a user, accessing a version of
the data is a simple as typing a single line of code (Fig. 2). Accessing a different version of the data
involves changing only the version number. From the users perspective, the existence of the baad.data
and datastorr packages makes reproducing analyses using specific versions of the data possible!5:16,

Using datastorr, dataset maintainers can set up their own R package to deliver there versioned
dataset simply by providing:

1. a GitHub repository name (e.g., “traitecoevo/baad.data”) where releases are stored;
2. the filename in the release that will contain the versioned data;
3. the function used to load this into R.

A full tutorial explaining precisely how to set this up is available at github.com/ropenscilabs/datastorr.

Then as the dataset grows over time, the maintainers update the git repo and create a GitHub release
with a new version number. All the releases are simultaneously available to any user, both point-and-click
and programmatically.

The dataset-specific packages created by datastorr are designed to be computationally efficient and
also work offline. Packages created by datastorr contain no actual data, only the rules for fetching the
data. As such, the basic package structure is quick to install and takes up virtually no space on the user’s
hard-drive. The package functions by fetching each data version once (the first time it is requested), and
then caching these files locally for future reuse. Moreover, users can have several versions of the same
dataset on their computer and unambiguously access the different versions with one simple function call.

Discussion

The main issue we have identified in this article will not come as news to many readers: datasets are
constantly improving and, despite tremendous advances in data sharing and associated technologies over
the last decade, there is little consensus about how to handle dataset updates. Some specific solutions
for versioning already exist, such as those designed for genetic sequence data (e.g., GenBank; see wuw.
ncbi.nlm.nih.gov/genbank/sequenceids/). But so far, versioning solutions have only been developed for large
dynamic databases managed by well-funded institutions or consortia and involving simple standardised
data types. While individual research groups working with a specialized type of data could in principle
create their own dynamic web interface, the technological hurdles, cost and maintenance required (Table
1) will be discouraging for most. This suggests there is a substantial need for an easy, cheap, and scalable
solution for serving versioned data. By adopting best practices from software engineering, we believe a
workable system now exists. Moreover, we created the datastorr package to make such a VDD system
easy to implement for R users. As it builds off established and open source software and data science
platforms, the proposed system is already easy to deploy on relatively large scale.
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A central feature of the proposed vDD system is that data are maintained in the cloud. This has
two main benefits: first, it provides a platform for multiple data contributors to sync their files and
correspond about changes in the dataset, and second, it allows for hosting of a stream of data releases
for distribution (Fig. 2). Cloud systems thus act as a central point for the collection, curation, and
distribution of the data. Additionally, one of the greatest benefits of using cloud-based tools like GitHub
for development of software and data has been the way they encourage contributions from multiple
individuals working simultaneously — including from people from outside the initial group of project
participants®!7. Multiple users can make changes to different parts of the code (or in our case, data)
and the git system will integrate these together (if that is possible) or, when needed, flag where there
are conflicts that need to be resolved. Adopting a vDD system thus has the added benefit of facilitating
seamless and transparent collaboration among research groups in the construction and maintenance of
datasets.

An important concern for any data delivery system is the stability and reliability of the system.
In the short term, users want minimal downtime, high speed, and seamless operation. As one of the
largest companies hosting computer source code, GitHub provides exceptional performance in this regard
— certainly as good or better than nearly any system scientists might build themselves. In the long term,
scientists want their datasets, software, and papers to preserved and remain accessible. To enhance long-
term stability of data-versions released on GitHub, users can also choose to automatically archive every
version in one of several traditional data archives, with a Do1 (Digital Object Identifier) minted for each
release. Currently, both Zenodo (zenodo.org) and FigShare figshare.com each integrate with GitHub for
archiving of material hosted there.

The design choices we made in datastorr represent only one of many possible ways to adopt a VDD
system; we can imagine many alternative models for interacting with versioned data stored in the cloud.
The key is not the specific technology, but rather the concept of creating, maintaining, and distributing
versioned data. Indeed, as with every technology the best available approach is certain to evolve, especially
as merging technologies — such as CKAN, OKFN or Git-LFS — facilitate even better VDD systems in
the future. There are some really exciting ideas that are currently under development which will make
versioning systems faster computationally, smaller in file size, flexible with respect to data structures,
and thus allow for larger datasets to be versioned efficiently 819,

In short, many of the key roadblocks preventing a switch from a static to a dynamic data world were
technological: in the past, it took great deal of money and expertise to set up and maintain a vDD system.
By adopting best practices from software engineering, we believe a relatively easy, cheap, and scalable
solution for serving versioned data now exists.
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Table 1: Alternative frameworks for distributing data.

Feature
Platform (e.g.)
User access
Ease of setup
Data size

Cost
Bandwidth
Maintainer skills
User skills
Versioning

DOI minting

Static datasets
datadryad.org
Web browser
Very easy

Up to several Gb
Varies

Managed by provider
None

‘Web browsing
None

Automatic

‘Web databases
coraltraits.org
Web browser
Hard
Small-Very large
Varies

Pro rata

High

Web browsing
Hard

Manual

Versioned Data Delivery
github.com

Web browser or R
Easy

Up to 1Gb

Free

Managed by GitHub
R + git

Web browsing or R
Easy

Automatic
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Table 2: Overview of technologies used to maintain, store, and distribute the versioned data as described
in this paper.

Technology Description

API An Application Programming Interface provides a set of protocols for
exchanging information.

datastorr R package used to fetch versioned releases from GitHub.

DOI Digital object identifier, which refers a user to a single published ob-
ject.

git Open source version control system used for tracking progressive
changes in a set of text files, typically computer code but also data.

github.com A commercial web platform for sharing, visualising, and managing

‘git’ repositories. Includes ability to browse the ‘history’, ‘issue’ track-
ing, and ability to create ‘releases’.
R Open source statistical and data processing language.
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Table 3: Groups of users interacting with the Versioned Data Delivery system described and their re-

quirements.
Group Goal Requirements
Maintainer Create and distribute ver- Low technical overhead

sioned datasets
Easy workflow for releasing new versions
Long term preservation
Easy to crowd-source error checking and con-
tributions
Low initial cost
Low on-going maintenance
Contributor Contribute to future versions Add new data
of a dataset
Report errors in existing data
Users (all) Easy access to releases from a  Introduction & overview
versioned dataset
Long term stability
Clear path for users to become contributors

Users (pro- Build reproducible products Programmatic access to releases
grammatic) using specific versions of a
dataset

Easy installation
Long term stability
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Table 4: Example datasets using the Versioned Data Delivery system described in this paper.

GitHub repo R package Description

dfalster/baad baad.data The Biomass And Allometry Database provides
data on the size dimensions of plants for many
species, compiled from multiple scientific papers4.

traitecoevo/taxonlookup  taxonlookup Provides a taxonomic lookup table for land
plants2°.
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Figure 1: Semantic versioning allows users to anticipate the types of changes that have occurred between
successive versions of a dataset. a) 3 numbers indicate type of change. b) A typical release stream.

Peer] Preprints | https://doi.org/10.7287/peerj.preprints.3401v1 | CC BY 4.0 Open Access | rec: 10 Nov 2017, publ: 10 Nov 2017



Data contributors
(can use git)
Maintainer(s)

Other contributors

(send pull requests)
@ git repo |

T Submit via git user
or webhook
Data contributors

(does not use git)

8 &

NOT PEER-REVIEWED

Falster et al. — Versioned Data Delivery

& Git host User
(e.g. GitHub) (code-based)
@ git repo ' ' git repo

> baad.data::baad_data_version_current()
[11"1.0.1"

> X <- baad.data::baad_data("1.0.0")
make a release

releases @ Datastorr package
1.0.0

1.01

doi minting l

Long-term

User
archive doi | a (point & click)
(e.g. Zenodo) download
10.5281/...

& g

- fetches releases via API as needed
- caches release on local machine

Figure 2: Overview of the different users and technologies involved in distributing a versioned dataset
via datastorr.
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