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ABSTRACT 37 

Auditory steady-state responses (ASSRs) are sustained potentials used to assess the physiological 38 

integrity of the auditory pathway and objectively estimate hearing thresholds. ASSRs are typically 39 

analyzed using statistical procedures in order to remove the subjective bias of human operators. Knowing 40 

when to terminate signal averaging in ASSR testing is also critical for making efficient clinical decisions 41 

and obtaining high-quality data in empirical research.  Here, we investigated a new detection metric for 42 

ASSRs based on mutual information (MI) [Bidelman, G. M. (2014). Objective information-theoretic 43 

algorithm for detecting brainstem evoked responses to complex stimuli. J. Am. Acad. Audiol., 25(8), 711-44 

722], previously bench tested using only a single suprathreshold stimulus. ASSRs were measured in n=10 45 

normal hearing listeners to various stimuli varying in modulation rate (40, 80 Hz) and level (80 – 20 dB 46 

SPL). MI-based classifiers applied to ASSRs recordings showed that accuracy of ASSR detection ranged 47 

from ~75 - 99% and was better for 40 compared to 80 Hz responses and for higher compared to lower 48 

stimulus levels. Detailed receiver operating characteristics (ROC) were used to establish normative ranges 49 

for MI for reliable ASSR detection across levels and rates (MI=0.9-1.6). Relative to current statistics for 50 

ASSR identification (F-test), MI was found to be a more efficient metric for determining the stopping 51 

criterion for signal averaging. Our new results confirm that MI can be applied across a broad range of 52 

ASSR stimuli and might offer improvements to conventional objective techniques for ASSR detection. 53 

 54 

 55 

Keywords: Auditory evoked potentials (AEPs); auditory stead state response (ASSR); evoked potential 56 
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INTRODUCTION 60 

 Auditory steady-state responses (ASSRs) are sustained evoked potentials typically elicited by 61 

amplitude or frequency modulated signals. ASSRs offer a rapid physiological assessment of hearing 62 

function and can be used to estimate full audiogram thresholds simultaneously in both ears (Cone-Wesson 63 

et al., 2002; John & Picton, 2000; Picton et al., 1998). ASSRs are also preferred over other 64 

electrophysiological measures (e.g., auditory brainstem response, ABR) because response detection is 65 

based on a statistical comparison between signal and noise power in the evoked potential average rather 66 

than human waveform inspection (Dobie & Wilson, 1996; John & Picton, 2000; Sturzebecher & Cebulla, 67 

2013; Vidler & Parker, 2004). This objectivity is beneficial as it avoids subjective operator interpretation 68 

and bias in determining the presence/absence of a response and quality of the auditory evoked potential 69 

(AEP) recording (Bidelman, 2014; Bogaerts et al., 2009; Vidler & Parker, 2004).  70 

 Current approaches to analyze ASSRs typically involve frequency-domain measures where a 71 

statistic is applied to the response spectrum in order to determine the significance of the signal’s amplitude 72 

relative to the surrounding noise floor (Dobie & Wilson, 1996; John & Picton, 2000; Sturzebecher & 73 

Cebulla, 2013; Vidler & Parker, 2004). Several statistics have been proposed in the literature including the 74 

F-test and magnitude-squared coherence (MSC) (Champlin, 1992; Dobie & Wilson, 1996). In all cases, 75 

these statistics become more powerful with increasing number of trials. As such, a stopping rule can be 76 

applied when a criterion value or significance level is achieved (e.g., p<0.05). Such metrics are currently 77 

available in several commercial AEP systems. However, it remains unclear if these are the most optimal 78 

statistics for characterizing sustained AEPs. Arguably, metrics like the F-test are somewhat limited 79 

because they are usable only on specific features of the stimulus (e.g., power at the modulation frequency). 80 

Consequently, these metrics cannot be broadly applied to sustained AEPs elicited by more complex sounds 81 

(e.g., multi-frequency, time-varying stimuli) that have proven more useful in characterizing central 82 

disorders of the auditory nervous system (e.g., Bidelman et al., 2017; Cone-Wesson et al., 2002; Johnson 83 

et al., 2005; Purcell et al., 2004; Rocha-Muniz et al., 2012). Novel statistical approaches might offer higher 84 

sensitivity and/or flexibility for detecting ASSRs and other sustained AEPs. 85 

Towards this end, we have recently developed a new statistical method for detecting sustained 86 

auditory potentials based on mutual information (MI) (Bidelman, 2014), a metric adopted from 87 

information theory and image processing (for review, see Pluim et al., 2003). The essence of our approach 88 

is to compare the spectrographic representations of the stimulus signal to that of the neural response 89 

(Bidelman, 2014). MI enables us to characterize signal similarity by considering both linear and nonlinear 90 

dependencies between neural responses and the evoking acoustic stimulus. By applying this metric to 91 

signal and response spectrogram images, we take advantage of the full three-dimensional nature of the 92 

AEP’s time-frequency-amplitude information. In our previous bench tests, we showed that MI could 93 

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.3399v1 | CC BY 4.0 Open Access | rec: 9 Nov 2017, publ: 9 Nov 2017



4 

 

reliably detect speech-evoked frequency-following responses (FFRs) (Bidelman, 2014) and 40 Hz ASSRs 94 

(Bidelman & Bhagat, 2016) from sham (EEG noise) recordings with ~90% accuracy. Moreover, we 95 

reported that MI was superior to human observer judgements (Bidelman, 2014), was more robust in some 96 

cases than the MSC and F-test (Bidelman & Bhagat, 2016), and yielded higher efficiency in detecting 97 

ASSRs in shorter recording times than conventional statistical algorithms (Bidelman & Bhagat, 2016). 98 

While promising, our previous investigations bench testing MI used only a single suprathreshold stimulus. 99 

Thus, it remains unclear if MI can be more broadly applied to detect ASSRs elicited under a range of 100 

stimulus parameters including different modulation rates and levels. Furthermore, the criterion threshold 101 

for MI we used previously was estimated via computational modeling (Bidelman, 2014). Thus, it is not 102 

clear from our previous studies whether this is the most appropriate criterion for detecting ASSRs evoked 103 

by different stimulus levels and rates or if it was idiosyncratic to the one stimulus in our prior report. 104 

Normative data reported here allowed us to address these open questions and recommend ranges for the 105 

MI metric based on its performance (e.g., sensitivity) detecting a wider variety of ASSR responses. 106 

Understanding the performance of MI detection across different stimulus settings is critical if the response 107 

is to be eventually used for objective audiometry (Picton et al., 1998; John & Picton, 2000; Cone-Wesson 108 

et al., 2002). 109 

The present study aimed to more fully characterize the performance of an MI-based classifier for 110 

detecting ASSRs across a broader range of stimulus parameters. We assessed ASSR detection for 111 

responses recorded at different modulation frequencies (40 Hz, 80 Hz) to assess the metric’s dependence 112 

on stimulus modulation rate (and thus putative site of the ASSR generator) (e.g., cortex vs. brainstem: 113 

Herdman et al., 2002). Additionally, we parametrically varied stimulus level across a large dynamic range 114 

(80–20 dB SPL) to evaluate the level-dependence of MI in detecting ASSRs. This latter manipulation is 115 

important given the application of ASSRs for threshold estimation (Johnson & Brown, 2005; 116 

Sturzebecher & Cebulla, 2013). Receiver operating characteristics (ROC) allowed us to characterize how 117 

different choices of MI criterion values affect ASSR detection and thus, allowed us to established a 118 

normative operating range for the metric and guide its future implementation. We further evaluated the 119 

efficacy of the MI algorithm by comparing its application as a stopping criterion for signal ongoing 120 

averaging against other “gold-standard” statistical approaches (i.e., F-test; John & Picton, 2000). 121 

METHODS & MATERIALS 122 

Participants 123 

Ten young, normal-hearing listeners (5 male, 5 female; age: 23.7±1.94 years) participated in the 124 

experiment. All participants had normal hearing thresholds (≤ 15 dB HL, octave frequencies 250–8000 125 

Hz) bilaterally, were right handed (Oldfield, 1971), and were native speakers of American English. 126 

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.3399v1 | CC BY 4.0 Open Access | rec: 9 Nov 2017, publ: 9 Nov 2017



5 

 

Participants gave written-informed consent in compliance with a protocol approved by the University of 127 

Memphis Institutional Review Board (Protocol #2370).  128 

Stimuli 129 

ASSRs were evoked by sinusoidal amplitude modulated (SAM) tones with a carrier frequency (fc) of 130 

1000 Hz and modulation frequencies (fm) of 40 Hz or 80 Hz (100% modulation depth). Stimulus duration 131 

was 200 ms (including 5 ms onset/offset ramping to minimize onset components) following our previous 132 

report (Bidelman & Bhagat, 2016). Stimuli were delivered binaurally via ER-2 insert earphones 133 

(Etymotic Research) at levels of 80, 60, 40, and 20 dB SPL using alternating polarity. In addition to these 134 

stimulus conditions, sham recordings were obtained by presenting stimuli with the inserts removed from 135 

participants’ ears (e.g., Aiken & Picton, 2008; Bidelman, 2014). Shams provided baseline, control 136 

recordings of “neural noise” (Bidelman, 2014; Bidelman & Bhagat, 2016). 137 

Electrophysiological recordings 138 

ASSR recording procedures and stimuli were similar to our previous report (e.g., Bidelman & 139 

Bhagat, 2016). EEGs were recorded between Ag/AgCl disc electrodes placed on the scalp at the high 140 

forehead at the hairline, referenced to linked mastoids (A1/A2) (mid-forehead= ground). Interelectrode 141 

impedances were ≤ 5 k. Continuous EEG signals were digitized at 10 kHz (SynAmps RT amplifiers; 142 

Compumedics Neuroscan). EEGs were windowed [0-200 ms], filtered (30-1000 Hz), and averaged in the 143 

time domain to obtain ASSR waveforms for each stimulus. Listeners heard 2500 repetitions of the 144 

stimulus token presented at an interstimulus interval of 5 ms. Post-processing and analyses were 145 

performed using custom routines coded in MATLAB® 2015b. (The MathWorks, Inc.) 146 

Mutual information (MI) detection metric 147 

We computed the mutual information (MI) between spectrographic representations of the 148 

stimulus and neural response to index the degree to which neural responses captured spectrotemporal 149 

details of the acoustic input. Details of this metric are fully elaborated in our previous studies bench 150 

testing this metric for AEP detection (Bidelman, 2014; Bidelman & Bhagat, 2016). MI is a dimensionless 151 

quantity (measured in bits), which measures the degree of linear and nonlinear dependence between two 152 

signals (A and B). In the specific case where A and B are two spectrograms, MI computes the dependence 153 

or similarity between the two images (Pluim et al., 2003).   154 

 MI was computed between the stimulus and each neural response spectrogram allowing us to 155 

assess the degree to which neural responses reflected spectrotemporal properties of the evoking stimulus 156 

(Bidelman, 2014). Spectrograms were computed using the “spectrogram” routine in MATLAB and 157 

converted to grayscale images. This routine computed a 214 point FFT in consecutive 50 ms segments 158 
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(Hamming windowed) computed every 3 ms (Bidelman, 2014)1. Time waveforms were zero-padded to 159 

minimize edge effects and ensure that spectrograms ran to the end of the signal’s duration. Identical 160 

parameters were used to compute both the stimulus and response spectrograms. SAM tone stimulus 161 

spectrograms were squared prior to computing MI to account for the half-wave rectification that is 162 

applied during the cochlear transduction process (Bidelman & Bhagat, 2016; Lins et al., 1995; Oxenham 163 

et al., 2004). 164 

Receiver operating characteristics (ROC) for the MI classifier  165 

 After determining a criterion (i.e., decision rule) for MI empirically from our data (see Results), 166 

we then applied this threshold (MIθ) as a binary classifier to ASSR and sham recordings. Recordings 167 

yielding MI ≥ MIθ were classified as neural responses whereas recordings with MI < MIθ were considered 168 

to be noise (i.e., no response) (Bidelman, 2014). Classifier performance was evaluated by computing 169 

standard signal detection theory and ROC metrics including true and false positive rates. ROC analyses 170 

also allowed us to validate the acceptable range of MI values that yielded above chance detection of 171 

ASSRs from noise. For a given value of MI, sensitivity was computed as the percentage of actual ASSR 172 

recordings correctly identified; false-positive rate as the percentage of sham recordings (i.e, “neural 173 

noise”) erroneously classified as a biological ASSR response. ROC curves were constructed for each 174 

modulation rate (40 Hz, 80 Hz) and level (80 – 20 dB SPL) to characterize the overall performance of the 175 

MI classifier across the different stimulus settings.    176 

Comparison of MI to the F-test 177 

 To test the efficiency of MI as a stopping criterion for signal averaging, we computed MI on a 178 

sweep-by-sweep basis as accumulating trials were added to the ongoing ASSR average. This was 179 

repeated separately for each level and modulation rate. Similarly, we compared the “online” development 180 

of MI against the well-known F-test (Dobie & Wilson, 1996; John & Picton, 2000) used in commercial 181 

ASSR recording systems (e.g., Bio-logic MASTER II; Intelligent Hearing Systems SmartEP-ASSR). 182 

While other detection metrics are available (e.g., MSC) we have previously shown that MI is most 183 

comparable in detection performance to the F-test (MSC performs more poorly) (Bidelman & Bhagat, 184 

2016), and thus, represents a stringent comparison to benchmark against. The underlying assumption of 185 

this approach is that in the spectral domain, ASSR energy should be localized to a frequency bin near the 186 

stimulus modulation frequency; activity in adjacent bins contain only random noise with zero mean and 187 

                                                      
1 Window length changes the spectral resolution of the resulting spectrogram which could impact the computation of MI when 

comparing the stimulus and responses spectrograms. In initial analyses, we varied the sliding window length parametrically from 

25 ms to 100 ms. However, in pilot testing, we found no appreciable changes in the accuracy of response detection for different 

window lengths (data not shown). Consequently, we adopted a 50 ms window, equivalent to a spectral resolution of 20 Hz. This 

is able to resolve both 40 Hz and 80 Hz components and is consistent with our previous studies (Bidelman, 2014; Bidelman & 

Bhagat, 2016). 
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variance distributed equally across the noise bins (John & Picton, 2000). The ratio of signal power to the 188 

sum of the powers in N adjacent frequency bins is distributed according to an F distribution with 2 and 189 

2N-1 degrees of freedom (John & Picton, 2000). In the current study, we used N=12 frequency bins 190 

surrounding the target signal. We then compared our measured F-ratio against the critical F-value with 2 191 

and 23 degrees of freedom and obtained a corresponding p-value for response detection. Traces yielding 192 

p<0.05 were deemed to have response energy at the fm frequency that was significantly above the 193 

surrounding noise floor. Comparison between the MI and F-test statistical metrics allowed us to relate 194 

their performance and determine differences in their stopping rule for signal averaging, that is, the 195 

number of trials where each measure detected the presence of ASSRs.  196 

RESULTS 197 

ASSR responses 198 

 ASSR time waveforms and spectra are shown for actual and sham recordings in Figure 1. Spectra 199 

illustrate response energy at the modulation rates (40 Hz or 80 Hz) and their upper harmonics for ASSR 200 

but not sham recordings (gray trace). These findings confirm that ASSRs contained robust phase-locked 201 

neural activity whereas sham recordings contain no ASSR response (nor stimulus artifact) and are thus 202 

suitable for use as “catch trials” in validating our MI detection metric (Bidelman & Bhagat, 2016). As 203 

expected, ASSR amplitudes also decreased with decreasing stimulus level and were only weakly above 204 

the noise floor at 20 dB SPL.  205 

 206 

 207 

 208 

Figure 1: Auditory steady-state response (ASSR) waveforms and spectra elicited by 40 Hz (left) and 80 Hz (right) SAM tones (fc = 

1 kHz) showing the level dependence of responses. ASSR waveforms show phase locking at the stimulus modulation rate and first 

few harmonics which progressively weakens with decreasing level, approaching the noise floor at ~20 dB SPL. Gray traces, sham 

recording in which the earphone was removed from the ear canal (i.e., EEG noise floor). ▼=response energy at the fm.  
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Performance and ROC characteristics of the MI classifier 209 

 Examples of MI computed between the 40 Hz SAM stimulus and responses are shown for 210 

different stimulus levels in Figure 2A. MI decreases at lower stimulus levels indicating weaker 211 

dependence between the stimulus and ASSR response. At high intensities (80 dB SPL) ASSR 212 

spectrograms show strong dependence on the evoking stimulus spectrogram and MI is large. Nearer 213 

threshold (20 dB SPL), ASSRs are dominated by background EEG noise, implying that the averaged 214 

neural response shares less information with the stimulus, which consequently yields a low MI2. 215 

 Our first aim was to empirically determine a decision rule for MI for use in detecting ASSR 216 

responses. To this end, signal detection theory was used to determine an optimal criterion (MIθ) for the 217 

MI classifier from the recordings. Figure 2B shows the probability density functions of MI values for all 218 

trials and subjects for the 40 Hz and 80 Hz ASSRs (pooling across levels) and sham recordings. On 219 

average, MI values range from ~1 to 1.5 across all stimulus combinations. All ASSRs are, to varying 220 

degrees, linearly separable along the MI decision axis compared to sham recordings which elicit weak MI 221 

(~0.9). In the current study, MIθ = 0.93 was taken as the criterion value because 95% of the data (i.e., MIs 222 

for ASSR responses) fell above this threshold; consequently, the false positive rate was 5%. From a signal 223 

detection standpoint, this implies that any arbitrary recording for which MI > MIθ will predicted to 224 

contain a true ASSR response whereas recordings with MI < MIθ are considered noise (no response). MIθ 225 

                                                      
2 Non-zero MI is observed even for sham recordings suggesting some shared-time-frequency information between the stimulus 

and neural noise. We attribute this to myogenic noise of the EEG which is strong for frequencies < 40 Hz. The SAM tone 

stimulus also has significant low frequency energy below < 40 Hz. Thus, even in the absence of a stimulus, spectral energy below 

< 40 Hz in both the stimulus and “neural noise” can produce a non-zero MI. This can be taken as the floor of the metric.  

Figure 2:  Characterizing quality of ASSR recordings using mutual information (MI). (A) (left) Rectified stimulus spectrogram for 

a 40 Hz SAM tone stimulus. (right) Spectrograms of ASSRs recorded for a descending level series. The inset of each panel indicate 

the MI computed between each response spectrogram and that of the stimulus (Bidelman, 2014; Bidelman & Bhagat, 2016). With 

decreasing level, time-frequency representations of the neural ASSRs show less correspondence with that of the stimulus as 

indicated by decreasing values of MI. (B) Signal detection theory analysis to determine an optimal criterion (MIθ) for the MI 

response classifier. Shown here are the distribution (probability density functions) of MI values for 40 and 80 Hz ASSRs (pooled 

across stimulus levels) and sham recordings. MI is always larger for true vs. sham recordings. The criterion MIθ = 0.93 segregates 

95% of suprathreshold ASSRs from sham noise. From a classifier perspective, recordings containing an MI > MIθ are predicted to 

contain a true neural ASSR response whereas recordings with MI < MIθ are considered noise (no response).  
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Figure 3: Receiver operating characteristic (ROC) curves for ASSRs evoked by different modulation rates and levels. Individual 

points denote the true positive (sensitivity) vs. false positive (1- specificity) rates for various values of MI in distinguishing true 

from sham recordings based on 2500 sweeps. Optimal sensitivity/specificity for the empirically derived criterion value (MIθ =0.93) 

is repented by the point in the upper left corners of each ROC. Dotted lines correspond with chance performance (i.e., d′ = 0). With 

MIθ =0. 93, classification accuracy (AUC) is 99% for 40 Hz ASSRs at 80 dB SPL and 90% for 80 Hz ASSRs. Classification 

accuracy is better for low (40 Hz) compared to high (80 Hz) modulation rates and high vs. low level stimuli.  

=0.93 was determined to be the optimal decision rule for ASSR detection and was used in subsequent 226 

analyses.   227 

 Classifier performance of the MI metric is show in Figure 3 as ROC curves. Each panel 228 

represents the true (sensitivity) vs. false positive (1- specificity) rate for distinguishing ASSRs from sham 229 

recordings at different stimulus levels. The bowing of the ROC curve toward the upper left corner is 230 

indicative of robust sensitivity in segregating signal from noise (i.e., higher d-prime). Each individual data 231 

point represents the true/false positive rate for a different choice of MIθ. A criterion located at the 232 

maximum curvature of the ROC curve represents the optimal decision rule for classification, one which 233 

produces the highest sensitivity while minimizing false-positive detection (i.e., erroneously labeling a 234 

noise recording as an ASSR).  235 

  236 

 With decreasing levels, ASSRs become more difficult to segregate from EEG noise, as evident by 237 

the ROC curves approaching chance performance (dotted lines) at 20 dB SPL. Overall classification 238 

accuracy for the 40 Hz responses is near ceiling (99%) at 80 dB SPL, as indicated by the area under the 239 

curve (AUC) (Hanley & McNeil, 1983). Classification accuracy weakens with decreasing level indicating 240 

discriminating ASSRs from noise is more difficult nearer to threshold. Nevertheless, classification 241 

remains high (74%) for the 40 Hz responses at 20 dB SPL. Accuracy in detecting 80 Hz responses is 10-242 

15% poorer compared to 40 Hz responses but still remains well above chance (73%) even at the lowest 243 

intensity tested. These operating characteristics demonstrate that the MI between a stimulus and neural 244 

response provides an objective means for detecting ASSRs across various levels and modulation rates.  245 
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Figure 4: Acceptable MI values for detecting suprathreshold ASSRs across stimulus level and modulation rates. (A-B) Level-

dependent classification accuracy for the 40 Hz (A) and 80 Hz (B) responses. Each family of functions shows the overall accuracy 

in correctly detecting ASSRs from noise using difference MI cutoffs. (C) Range of acceptable MI values for classifying 40 and 80 

Hz ASSRs above chance levels. Ranges were extracted from the width of each level-dependent accuracy function shown in panels 

A and B. (D) Max accuracy for detecting ASSRs and the corresponding MI. Max accuracy was extracted from the peak of each 

level-dependent accuracy function of panel A and B. Note that some points for the 80 Hz responses overlap. (E) Overall accuracy 

across stimulus levels and modulation rates. Accuracies were extracted from ROC functions (e.g., Fig. 4) as the area under the 

curve (AUC). (F) Sensitivity of the MI metric controlling (fixing) false positive rate at 5%. Accuracy and sensitivity are better for 

40 Hz compared to 80 Hz responses, decrease with decreasing stimulus level, but remain well above chance.  
 

Acceptable ranges of MI for ASSR detection 246 

 While the empirically derived criterion MIθ =0.93 represents the optimal threshold for detecting 247 

ASSRs (5% false positive), our ROC characterizations reveal there is a range of acceptable MI values 248 

that could be used to reliably detect neural responses. Figure 4 shows the overall accuracy of detecting 249 

ASSRs from shams for different choices of MI for 40 Hz (Fig. 4A) and 80 Hz (Fig. 4B) responses. Each 250 

family of functions shows the overall accuracy in correctly detecting ASSRs from noise using different 251 

MI cutoffs. The reduction in peak accuracy across curves indicates a level-dependent effect in 252 

classification accuracy. Consistent with ROC results, MI is less robust at detecting ASSRs evoked by 253 

weaker stimulus levels. Nevertheless, there is a range of MI values that still allow above-chance detection 254 

of the response (Fig. 4C). MI ranges were extracted from the width of each level-dependent accuracy 255 

function shown in panels A and B and show the acceptable range of MI cutoff thresholds that allow from 256 

above-chance detection. For the 40 Hz response, acceptable values of MI range from 0.9–1.6 for high 257 

level (80 dB) stimuli. This allowable range is reduced with decreasing level; 40 Hz responses are 258 

detectable at 20 dB with MI values between 0.9–1.3. Similar results were obtained for the 80 Hz 259 

responses, although the acceptable MI range was reduced at both high- (0.9-1.4) and low-level (0.9-1.2) 260 

stimuli.  261 

 262 
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Figure 5: Comparison of the growth in MI to the F-

test during online ASSR recording. Sweep-by-sweep 

ASSR detection based on MI for the 40 Hz (A) and 

80 Hz (B) responses at each level. (C-D) 

Improvement in ASSR detection using the 

conventional F-test procedure (John & Picton, 

2000). Dotted lines denote the criterion threshold for 

ASSR detection under each metric (MIθ: 0.93; F-

test: p<0.05). Abscisse show both the number of 

sweeps and corresponding recording time for online 

ASSR averaging. 40 Hz responses exceed the MI 

stopping criteria within ~50 sweeps (< 1 min); 

longer recording times are needed for detecting 

ASSRs using the F-test [e.g., ~750 sweeps (2.5 min) 

are required for the 40 Hz reponse@80 dB SPL and 

~1500 sweeps at 60 dB SPL]. Shading = ±1 s.e.m. 
 

MI values corresponding to maximum classification accuracy (i.e., peak of functions in Figs. 4A-263 

B) are shown in Fig. 4D. Maximum accuracy is obtained with an MI≈1 (cf. MIθ). Collectively, these 264 

results help provide a normative tolerance range and optimal choice of MI values for using it as an ASSR 265 

classifier.  266 

 Typically, the performance of a diagnostic or detection method is evaluated by considering the 267 

sensitivity and specificity of the measure. However, it is also useful to evaluate a diagnostic’s true 268 

positive rate (i.e., sensitivity) for a fixed false positive rate (e.g., 5%). Figure 4E-F shows the overall 269 

accuracy of the MI metric (AUC) and sensitivity at a fixed 5% false positive rate (i.e., 95% specificity) 270 

across stimulus levels and modulation rates. For 40 Hz ASSRs, performance ranges from 100/95% 271 

sensitivity/specificity at 80 dB SPL to 20/95% sensitivity/specificity at 20 dB SPL. For 80 Hz ASSRs, 272 

performance ranges from 55/95% sensitivity/specificity at 80 dB SPL to 20/95% sensitivity/specificity at 273 

20 dB SPL.  274 

MI as a criterion for terminating signal averaging 275 

 In addition to detection, an objective metric should be suitable as a stopping criterion for online 276 

signal averaging. Figure 5 shows the growth in MI (present study; Bidelman, 2014; Bidelman & Bhagat, 277 

2016) and conventional F-test (Dobie & Wilson, 1996; John & Picton, 2000) metric during ASSR 278 

recordings as a function of the number of trials in the ongoing average. In general, each metric improves 279 

with additional trials and asymptotes as the running AEP stabilizes. Response growth is faster for 40 Hz 280 

relative to 80 Hz responses and at higher (80 dB SPL) compared to lower (20 dB SPL) intensities. For 281 

high-level 40 Hz ASSRs, responses exceed the MI and F-test stopping criteria (MI=0.9; F-test: p=0.05) 282 

by ~50 and 750 sweeps, respectively, corresponding to < 1min (MI) vs. 2.5 min (F-test) of recording time. 283 
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More extended recording durations (sweeps) are needed for detecting low-level ASSRs and the 80 Hz 284 

responses, which sometimes do not achieve the criterion thresholds (e.g., Fig. 6D). As an expected 285 

control, MI remains invariant sweep-to-sweep for sham (noise) recordings.  286 

DISCUSSION 287 

 In the current study, we demonstrate the tolerance of a new, objective statistical approach to 288 

detect ASSRs based on mutual information (Bidelman, 2014). The technique quantifies the quality of 289 

ASSRs by considering the linear and nonlinear dependences between the rich time-frequency information 290 

provided by the signal and response spectrograms. Our previous reports bench testing the MI classifier 291 

demonstrated its superiority over “gold standard” judgments of human observers (Bidelman, 2014) and 292 

other objective techniques for ASSR detection (e.g., MSC, F-test) (Bidelman & Bhagat, 2016) for 293 

suprathreshold (70-80 dB SPL) stimuli.  Here, we extend these previous findings by showing that MI can 294 

be used for response detection across a broader range of ASSR-evoking stimuli including different 295 

combinations of levels and modulation rates.  296 

 Overall performance accuracy in distinguishing true neurobiological responses from noise using 297 

our MI metric was >90% for high level stimuli (80 dB SPL) and remained well-above chance (73%) for 298 

levels nearer to threshold (20 dB SPL). More importantly, our results establish a normative tolerance 299 

range for MI criterion values (MI = 0.9 – 1.6) that allow for robust detection of ASSRs across different 300 

modulation rates and intensities. However, as determined by ROC analyses, the most optimal 301 

classification of ASSRs is achieved with a criterion MIθ =0.93. Lastly, we showed that MI increases 302 

monotonically with increasing number of stimulus presentations (i.e., trials) and can, for some stimulus 303 

conditions, detect ASSRs in a fewer number of trials compared to conventional ASSR detection 304 

procedures (i.e., F-test; Dobie & Wilson, 1996; John & Picton, 2000). 305 

 In prior studies, we previously showed that MI could be applied to other classes of AEPs 306 

including speech-evoked FFRs (Bidelman, 2014) as well as high-level ASSRs (Bidelman & Bhagat, 307 

2016). MI is an information-theoretic measure that is “distribution free” and therefore requires fewer 308 

assumptions than other statistical approaches (e.g., F-test), which utilize parametric (distribution-based) 309 

statistics. Unlike other metrics, MI can also be easily applied to time-varying signals (Bidelman, 2014). 310 

Thus, in addition to potentially broader application, MI may offer a useful alternative to other ASSR 311 

response detection approaches currently employed in commercial hardware.  312 

 The more comprehensive stimulus set in this compared to our previous studies (Bidelman, 2014; 313 

Bidelman & Bhagat, 2016) allows for a more comprehensive characterization of MI’s effectiveness as an 314 

ASSR classifier. Several observations are worth noting regarding the metric’s performance. First, while 315 

MI can successfully detect the presence of ASSRs at different modulation rates (Fig. 3), we found overall 316 
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accuracy was generally higher for 40 Hz compared to 80 Hz responses. Thus, while MI can successfully 317 

detect ASSRs across a wide range of stimulus levels and modulation rates, it is more accurate and 318 

sensitive for 40 Hz responses and higher, compared to lower level stimuli. The more optimal performance 319 

at 40 Hz is likely due to the higher signal-to-noise ratios and more robust amplitudes of ASSRs to low vs. 320 

high-frequency modulation rates (present study, Fig. 2; Galambos et al., 1981; Korczak et al., 2012; 321 

Purcell et al., 2004). Indeed, by early adolescence, the 40 Hz response is nearly twice the amplitude of the 322 

80 Hz response (Pethe et al., 2004). Moreover, unlike their 80 Hz counterparts, 40 Hz responses are 323 

highly dependent on subject state: low fm responses are reliably recorded only in awake individuals 324 

(Cohen et al., 1991; Korczak et al., 2012; Kuwada et al., 1986) and are eradicated with anesthesia 325 

(Galambos et al., 1981; Kuwada et al., 2002). These properties have limited the utility of the 40 Hz ASSR 326 

for infant testing. Thus, while we have confirmed that MI is efficacious for detecting suprathreshold 327 

ASSRs across different modulation rates, MI would be less appropriate to monitor response detection for 328 

low-level stimuli. This may limit the metric’s utility for hearing threshold testing. Nevertheless, 329 

suprathreshold ASSRs and other sustained AEPs do find clinical use [e.g., newborn hearing screenings 330 

(American Academy of Pediatrics, 2007)]. Research applications typically involve complex paradigms, 331 

multiple subject cohorts, and longer testing protocols. Our results therefore suggest that MI could offer a 332 

means to collect sustained ASSR/AEP data in a more time-optimized manner and reduce valuable 333 

recording time (present study; Bidelman, 2014; Bidelman & Bhagat, 2016).  334 

 Secondly, we find that MI has a smaller useable range (Fig. 4C) and lower accuracy/sensitivity 335 

(Fig. 4D) for low-level, 80 Hz stimuli. This would tend the limit the metric’s application for threshold 336 

testing (Picton et al., 2005), particularly in infants (Stroebel et al., 2007). Additionally, neural generators 337 

of the ASSR are dependent on the frequency of the stimulus modulation rate; high frequencies (80 Hz) 338 

evoke brainstem generators whereas low-frequencies (40 Hz) recruit cortical sources (Herdman et al., 339 

2002; Kuwada et al., 2002). Thus, the fact that we observe superior performance for 40 Hz stimuli across 340 

the board implies that MI might be more useful for monitoring cortical rather than subcortical neural 341 

activity.  342 

Lastly, sweep-by-sweep tracking of MI confirmed the metrics’ efficiency as a stopping rule for 343 

ASSR signal averaging. In this regard, we found that MI was able to detect 40 Hz ASSRs within ~1 min, 344 

corresponding to < 50 stimulus trials. In contrast, using the F-test required considerably more stimulus 345 

presentations; ~750 sweeps (2.5 min of testing) were needed to detect the 40 Hz response at 80 dB SPL 346 

and ~1500 sweeps at 60 dB SPL. Moreover, our 80 Hz ASSRs never achieved the F-test criterion, 347 

indicating that more than 2500 trials would be needed to detect those responses. While our data show that 348 

that MI can offer a more efficient stopping rule for terminating averaging compared to the F-test, from a 349 

practical standpoint, this improvement in testing time (1-2 min) is probably negligible. Nevertheless, our 350 
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data indicate that under some stimulus conditions, MI can detect ASSRs in half the number of trials (i.e., 351 

twice as efficient) as the gold-standard F-test. 352 

 In conclusion, the application of the MI metric to electrical response audiometry may provide 353 

clinicians and researchers with a more robust tool to objectively evaluate the presence and quality of 354 

sustained auditory AEPs. Calculation of MI could be easily incorporated into most commercially 355 

available AEP systems similar to other statistical detection metrics already in place (e.g., F-test, Fsp, 356 

MSC). Future studies are warranted to assess the performance of MI in infant and threshold ASSR testing.  357 

 358 

  359 
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