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The poorly understood mechanisms of the seasonal maintenance of Anopheles spp.

mosquitoes through the dry season in Africa remain a critical gap in our knowledge of

Plasmodium disease transmission. While it is thought that adult mosquitoes remain in a

dormant state throughout this seven-month dry season, the nature of this state remains

unknown and has largely not been recapitulated in laboratory settings. To elucidate

possible life history traits allowing for this phenotype, the spatiotemporal change in the

microbiome of mosquitoes in the dry and wet seasons in Mali was analyzed by sequencing

the 16S ribosome bacterial region in whole bodies of adult mosquitoes collected from two

locations with varying water availability. These locations were a village near the Niger

River with year-round water sources (N’Gabakoro, “Riparian”), and an area closer to the

Sahara with highly seasonal breeding sites (Thierola Area, “Sahelian”). The 16S bacterial

data consisted of 2057 unique sequence variants in 426 genera across 184 families. With

these, we found several compositional differences that were seasonally and spatially

linked. Counter to our initial hypothesis, there was a more pronounced seasonal difference

in the bacterial microbiome in the Riparian than Sahelian area. These major seasonal shifts

were in Ralstonia, Sphingorhabdus, and Duganella spp. bacteria that are usually soil and

water-associated, indicating that these changes may be from bacteria acquired in the

larval environment, rather than during adulthood. In the Sahelian dry season mosquitoes,

there was a unique intracellular bacteria, Anaplasma, which likely was acquired through

non-human blood feeding. Coupled with this finding, cytochrome B analysis showed a

greater heterogeneity in host choice of An. coluzzii independent of season in the Thierola

area compared to N’Gabakoro (77.5% vs. 94.6% human-origin blood meal, respectively),

which may indicate a relaxation of anthropophily in some locations. This study highlights

the diversity present in the bacterial composition of individual mosquitoes, characterizes
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the spatial and seasonal differences in this composition, and indicates some possible

qualitative biomarkers in areas of intense seasonal change.
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9 Abstract:

10 The poorly understood mechanisms of the seasonal maintenance of Anopheles spp. 

11 mosquitoes through the dry season in Africa remain a critical gap in our knowledge of 

12 Plasmodium disease transmission. While it is thought that adult mosquitoes remain in a dormant 

13 state throughout this seven-month dry season, the nature of this state remains unknown and has 

14 largely not been recapitulated in laboratory settings. To elucidate possible life history traits 

15 allowing for this phenotype, the spatiotemporal change in the microbiome of mosquitoes in the 

16 dry and wet seasons in Mali was analyzed by sequencing the 16S ribosomal RNA gene tag in 

17 whole bodies of adult mosquitoes collected from two locations with varying water availability. 

18 These locations were a village near the Niger River with year-round water sources (N’Gabakoro, 

19 “Riparian”), and an area closer to the Sahara with highly seasonal breeding sites (Thierola Area, 

20 “Sahelian”). The 16S bacterial data consisted of 2057 unique sequence variants in 426 genera 

21 across 184 families. With these, we found several compositional differences that were seasonally 

22 and spatially linked. Counter to our initial hypothesis, there was a more pronounced seasonal 

23 difference in the bacterial microbiome in the Riparian than Sahelian area. These major seasonal 

24 shifts were in Ralstonia, Sphingorhabdus, and Duganella spp. bacteria that are usually soil and 

25 water-associated, indicating that these changes may be from bacteria acquired in the larval 

26 environment, rather than during adulthood. In the Sahelian dry season mosquitoes, there was a 

27 unique intracellular bacteria, Anaplasma, which likely was acquired through non-human blood 

28 feeding. Coupled with this finding, cytochrome B analysis showed a greater heterogeneity in 

29 host choice of An. coluzzii independent of season in the Thierola area compared to N’Gabakoro 

30 (77.5% vs. 94.6% human-origin blood meal, respectively), which may indicate a relaxation of 

31 anthropophily in some locations. This study highlights the diversity present in the bacterial 

32 composition of individual mosquitoes, characterizes the spatial and seasonal differences in this 

33 composition, and indicates some possible qualitative biomarkers in areas of intense seasonal 

34 change.

35  

36

37
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38 Introduction:

39 The mosquito microbiome still is a largely unknown variable in a range of processes that 

40 may contribute greatly to the ability of mosquitoes to spread disease. It has been noted that the 

41 microbiome can effect vector competence for arboviruses and parasites (Cirimotich et al., 2011; 

42 Cirimotich, Ramirez & Dimopoulos, 2011; Gendrin & Christophides, 2013; Bahia et al., 2014; 

43 Dennison, Jupatanakul & Dimopoulos, 2014; Jupatanakul, Sim & Dimopoulos, 2014; van Tol & 

44 Dimopoulos, 2016), and that this microbiome contains signatures which may link mosquito 

45 populations geographically (Buck et al., 2016). Recent work has shown there is some seasonal 

46 variation in primarily An. gambiae s.s. mosquito microbiota from the forest-savannah regions 

47 that maintain some breeding sites during the dry season (Akorli et al., 2016).  However, there has 

48 been no work to date that has characterized the variability present in the whole-body mosquito 

49 microbiome in areas with more distinct seasonality such as the Sahel where no larval habitat 

50 could be found during the dry season, and there have been  no studies of mosquito fungal or sub-

51 species level bacterial microbiome composition in these areas. This is pertinent as in these highly 

52 seasonal areas mosquitoes of the Anopheles gambiae s.l. complex have evolved cryptic strategies 

53 to cope with the harshness of the dry season, with An. coluzzii (M form) mosquitoes favoring 

54 aestivation (remaining with limited activity) and An. gambiae s.s. (S form) migrating to areas 

55 where larval sites are available year round (Dao et al., 2014). 

56 This exploratory study utilizes quantitative and qualitative measures to evaluate how the 

57 microbiome differs in an area in West Africa with highly seasonal water availability and 

58 mosquito abundance. We compare seasonal changes within and between locations, initially 

59 hypothesizing that we would find the greatest difference in mosquito microbiota found in 

60 Sahelian dry season due to this location having the clearest demarcation between physiological 
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61 states of reproductive vs. aestivating mosquitoes in the wet and dry seasons, respectively. 

62 Additionally, we compared how laboratory mosquitoes compare to these field-caught specimens 

63 in their microbial composition.

64 Methods:

65 Mosquito collection and field sites:

66 An. coluzzii species mosquitoes were collected via indoor aspiration in three locations, 

67 Zanga (Latitude 13.688050°, Longitude -7.221029°), M’Piabougou (13.599830°, -7.192859°), 

68 and N’Gabakoro (12.683870°, -7.840419°) in the Koulikoro region of western Mali from 

69 September 2009 to August 2010 (Fig. 1). Mosquitoes from each location were noted for blood 

70 fed status, had their thoraces punctured, and were added to 50 µl RNAlater stabilization solution 

71 (ThermoFisher Scientific, Waltham, MA, USA) for preservation. Fourteen additional laboratory 

72 reared An. coluzzii were also preserved in groups of young (3 days old, Samples 55-57) and old 

73 (14 days old, Samples 58-60) post emergence to compare microbiome development over time.

74 Mosquitoes were speciated to molecular form based on a direct PCR performed on two 

75 legs with a standard protocol (Fanello, Santolamazza & della Torre, 2002). DNA was extracted 

76 from mosquitoes with a DNeasy kit according to manufacturer instructions (Qiagen, Valencia, 

77 CA, USA), and eluted in 50 µl of the provided elution buffer.

78 Normalized Difference Vegetation Index (NDVI) analysis:

79 To further quantify the differences in seasonality between our Sahelian and riparian 

80 areas, we calculated the NDVI around the center point of each of the 3 field sampling locations 

81 with a ~5 km square on the NDVI output from the Metop-AVHRR S10 (“ENDVI10”, 1 km 

82 resolution, daily measurements with best composite image per dekad available) global satellite 

83 database (Accessed 5/1/2017, from: http://www.vito-
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84 eodata.be/PDF/portal/Application.html#Home, Borgne, Legendre & Marsouin, 2007). The 35 

85 measurements spanning the sampling collection period were downloaded for the African 

86 subcontinent in Erdas Imagine (IMG) format and were analyzed using the ‘raster’ library in R 

87 with a spatial grid cell size of 0.0025° defined with the ‘sp’ package (Pebesma & Bivand, 2005; 

88 Bivand, Pebesma & Gomez-Rubio, 2013; Hijmans, 2016). NDVI data was plotted for four 

89 representative time points using the ‘rasterVis’  package (Fig. 1A) and for each of the available 

90 NDVI images during the sampling period using the ‘ggplot2’ and ‘scales’ packages (Fig. 1B) 

91 (Wickham, 2009, 2016; Perpiñán & Hijmans, 2016). Shape files for Mali and the sampling 

92 regions are acquired from the Database of Global Administrative Areas (GADM) database with 

93 ‘raster’.

94 454 Sequencing:

95 Next-generation sequencing of the V1-V3 regions of 16S ribosomal RNA gene was 

96 performed by MR DNA (Shallowater, TX, USA) on a Roche 454 sequencer using the forward 

97 primer “27FMod”- 5’-AGRGTTTGATCMTGGCTCAG-3’ and the reverse primer 

98 “519Rmodbio” – 5’-GWATTACCGCGGCKGCTG -3’. Amplification and sequencing 

99 conditions used are described in full elsewhere (Dowd et al., 2008; Pirmohamed et al., 2010). 

100 Mosquitoes were sequenced either as individuals from 15ng of DNA, or from a pool of three 

101 mosquitoes (5ng from each) with concentrations being determined by NanoDrop 

102 (ThermoFisher).

103 Processing Pipeline:

104 The .fasta and .qual files with primers and barcodes removed are split using the 

105 split.libraries.py command in QIIME v1.9.0 using the –d flag to record quality scores (Caporaso 

106 et al., 2010). The output was then demultiplexed into individual fastq files in QIIME. FastQ files 
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107 are then imported into R version 3.4.0 using the RStudio IDE version 1.0.44 using the ‘dada2’ 

108 package (RStudio Team, 2015; Callahan et al., 2016a; R Core Team, 2016). Processing using 

109 this pipeline largely follows the Bioconductor workflow from Callahan et al. (Callahan et al., 

110 2016b). Briefly, data are trimmed/filtered with settings truncLen=325, truncQ=2, maxN=0, and 

111 maxEE=2. Sequencing error rates are learned on a random sample of n=25, with suggested 

112 parameters for 454 data of HOMOPOLYMER_GAP_PENALTY=-1 and BAND_SIZE=32. 

113 Chimeras are removed, and taxa is assigned with a naïve Bayesian classifier algorithm over 100 

114 bootstraps with a minimum bootstrap level of 50 (Wang et al., 2007), and taxonomy is assigned 

115 using the ‘silva_nr_v123_train_set’ for 16S rRNA or the UNITE database for ITS formatted for 

116 use in dada2 (Silva training set: https://zenodo.org/record/158958, UNITE database (General 

117 FASTA Release): https://unite.ut.ee/repository.php) (Quast et al., 2013; Callahan, 2016). For 16S 

118 this is based on a 325nt length amplicon and the ITS has a variable length amplicon with a 

119 minimum of 50 nt length. 

120 The sequences are aligned with the ‘DECIPHER’ package in R, output with the 

121 ‘phangorn’ package version 2.1.1 into FastTree 2 software for generation of a generalized time-

122 reversible (GTR) maximum-likelihood phylogenetic tree with rescaling of branch lengths and 

123 computation of Gamma20-based likelihood (Price, Dehal & Arkin, 2010; Schliep, 2011; Wright, 

124 2016). This tree is read back into R using the ‘ape’ package (Paradis, Claude & Strimmer, 2004), 

125 and then all the data are combined with the ‘phyloseq’ package for data manipulation and 

126 visualization (McMurdie & Holmes, 2013). After contaminant reads from eukaryotic sources 

127 were removed the Shannon index of richness is calculated for each mosquito.  Phylogenetic tree 

128 visualization is performed using the package ‘ggtree’ (Yu et al., 2017). 

129 Differential abundance testing and clustering analysis:
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130 Seasonal differences in microbial abundance were analyzed with the ‘DESeq2’ package 

131 on genus agglomerated data (Love, Anders & Hu-, 2016). This method creates a negative 

132 binomial generalized linear model (GLM) to estimate maximum likelihood for each genus’s 

133 count based on log2 fold changes between two conditions (i.e. Dry vs. Wet at that location), 

134 while accounting for size factors (differences in sequence depth between samples) and dispersion 

135 (between sample variance) using Bayesian shrinkage (Love, Huber & Anders, 2014; Weiss et al., 

136 2017).  We compared samples seasonally per location, and also all field vs. all laboratory 

137 samples. The p-value from the Wald’s test is then adjusted for a false discovery rate with the 

138 Benjamini-Hochberg approach and local smoothed dispersion fit (Benjamini & Hochberg, 1995). 

139 Shrunken (adjusted if they have high dispersion or low sampling coverage) log2 fold changes 

140 between seasons at each location are generated by contrasting “PermDry” to “PermWet”; 

141 “SahelDry” to “SahelWet”; and “Field” to “Lab” for the samples from the riparian, Sahelian, and 

142 field sites, respectively.

143 Hierarchical multiple testing, a procedure by which you incorporate the innate structure 

144 in the data (in this case the phylogenetic hierarchy) to adjust your false discovery rate and 

145 improve power in comparing count data (Yekutieli, 2008), was implemented in R with the 

146 ‘structssi’ package (Sankaran & Holmes, 2014). We defer the majority of details of this approach 

147 to the parent literature (Yekutieli, 2008), and to its implementation literature for microbiome data 

148 (Sankaran & Holmes, 2014; Callahan et al., 2016b). Briefly, we control the false discovery rate 

149 by organizing the hypotheses based on the phylogenetic tree of the data, and only testing for 

150 differential abundance if the parent hypothesis is found to be significant between groups at a 

151 coarse level of discrimination (a ‘hFDR’ rate of 0.75) (Callahan et al., 2016b). This analysis is 

152 performed on 16S sequence variant count data that has been variance stabilizing transformed by 
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153 ‘DESeq2’ and shifted so all values are positive. Genera with greater than 1.5 shrunken-log2fold 

154 change that are found to be significant at an adjusted p-value of less than 0.05 are presented.

155 Ordination plots were generated from prevalence filtered (must not be sample singletons) 

156 and rarefied data (rarefied to 500 reads) using ‘phyloseq’ and ‘vegan’ with principal coordinates 

157 analysis on Bray-Curtis similarity distances (Beals, 1984; Oksanen et al., 2017). Analysis of 

158 centroid (center point) differences between sample groups (Season and Location) were compared 

159 using a pairwise permutation multivariate analysis of variance test (PERMANOVA) with 9999 

160 permutations with Benjamini-Hochberg false discovery rate correction using the 

161 ‘RVAideMemoire’ package (Hervé, 2017).

162 Presence/absence analysis for seasonally indicative genera:

163 In addition to analysis of the variance in bacterial taxon abundance described above, we 

164 performed two analyses based on the presence/absence of bacterial taxa in mosquitoes, 

165 regardless of the abundance. In the first, we performed random forest supervised classification 

166 analysis on genus-level data using the ‘caret’ package in R (Breiman, 2001; Liaw & Wiener, 

167 2002; Kuhn et al., 2016). The proximity metric calculated during the random forest model 

168 generation was utilized to generate a multi-dimensional scaling plot (MDS) to evaluate the 

169 degree of difference and clustering between and within sample groups via PERMANOVA.  

170 Prevalence for each of the sample groups for the top 10 most important genera in the random 

171 forest classification model are presented.

172 Additionally, for field samples we enumerated taxa unique to the Sahelian dry season 

173 sample, found their relative frequency (in terms of mosquito hosts), and evaluated how unique 

174 taxa are to that sample group (“private” - i.e. found only in that sample group) in SAS 9.4 (SAS 

175 Institute Inc., Cary, NC, USA). Using “informative” taxa (excluding rare and ubiquitous taxa), 
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176 we sequentially tested if the frequency (prevalence) of any informative taxa differed between the 

177 dry and wet seasons in the Sahel, followed by testing that the Sahelian dry season differs from 

178 riparian dry season, and that it also differed from the riparian wet season in a consistent 

179 direction. These tests employed the sequential Fisher’s exact tests (with the last two being one-

180 way tests), only passing genera significant at p < 0.1 forwards to the next test. The final results 

181 only report those genera whose prevalence difference is in the same direction (i.e. higher in 

182 Sahel Dry compared to all other conditions). 

183 Cytochrome B bloodmeal analysis:

184 The mammalian host source of each mosquito and pool per location was analyzed via a 

185 size-discriminate multiplexed cytochrome B PCR developed by Kent and Norris (Kent & Norris, 

186 2005). This PCR allows for the identification of bloodmeals from pigs, humans, goat, dog and 

187 cows.  

188 Results:

189 Unlike the Sahelian villages, the proximity of N’Gabakoro to the Niger allows mosquito 

190 breeding year-round. To further assess the seasonal differential in aridity between the Sahelian 

191 and riparian villages, we analyzed the normalized difference vegetation index (NDVI, Fig. 1.). 

192 Due to its proximity to the Niger river, we found that there is a desiccation lag-period in which 

193 the vegetation index does not drop at the same rate in N’Gabakoro as it does in the two villages 

194 that have only rainfall as a water source (Fig. 1A top right, Fig. 1B). Additionally, while the 

195 vegetation minima are reached roughly at the same time in the dry season between sites (late 

196 March to early April), the overall NDVI remains higher in N’Gabakoro during the transition 

197 periods to and from this dry season low point. 

198 454 Sequencing:
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199 Of the 58 samples sent for 454 sequencing, 53 returned sequence for 16S and 26 returned 

200 sequence for ITS. For 16S sequencing 2643 sequence variants (SVs) were returned though a 

201 range of these variants aligned to likely contaminating eukaryotic reads in the SILVA database 

202 and were filtered, leaving 2057 sequence variants with 426 genera across 184 families. Many of 

203 these reads when searched against the ‘nr’ database using BLAST had hits to An. gambiae strain 

204 PEST sequence (Altschul et al., 1990). This could indicate some cross-reactivity of the primers 

205 with other ribosomal sequence, or mis-annotated reference sequence. The fungal internal 

206 transcribed spacer (ITS) region sequencing had a more limited success in amplification in terms 

207 of both average read counts per successful sample (755 vs. 4554 for ITS and 16S, respectively), 

208 and in the amount of coverage across locations/seasons. ITS failed to amplify from any samples 

209 in N’Gabakoro or the laboratory samples, and 5 samples only had reads that align in BLAST nr 

210 to Anopheles spp. ITS region sequence with no representation in the fungal UNITE database. 

211 Due to this, no comparisons were made between season or location on the fungal microbiome. 

212 All Anopheles ITS reads (63332/79195 total) were filtered. After filtering, the most abundant 

213 fungal genera were Aspergillus (20.7% of total reads without Anopheles) with presence in 12/21 

214 samples with fungal ITS reads followed by Malassezia, Cladosporium, and Phoma (15/21, 

215 13/21, 9/21 of samples, respectively, Fig. S1).

216 Characteristics of bacterial communities between sampling locations:

217 The most abundant genera across field-caught mosquitoes was Ralstonia (25.1% of all 

218 field reads, in 42/47 samples), and the most prevalent genera was Propionibacterium (46/47 

219 samples) (Fig. 2). Laboratory samples were largely dominated by reads to Asaia (62.9% of all 

220 laboratory reads), with this genus being the most prevalent taxa in 5/6 samples. There was no 

221 significant difference in the Shannon diversity between groups of field samples via Kruskal-
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222 Wallis chi-squared with Dunn’s multiple comparisons test, though the mean diversity of the 

223 laboratory samples was significantly lower than all field groups (Fig. S2A-C). While overall the 

224 dry season had the highest diversity, this difference was not significantly higher than the wet 

225 season overall (dry: 2.54, wet: 2.03, p=0.087, Fig. S2B). The mean number of sequence variants 

226 per sample varied from 42.5-65.13 in the field to 20 in the laboratory, with dry season samples 

227 from both field locations being significantly different than laboratory samples (Fig. S3A, 

228 p=0.0117, 0.0066 for Thierola Area and N’Gabakoro, respectively). The mean number of genera 

229 were also higher in the field than in the laboratory (27.36-42.13 in field, 14.83 in lab, Fig. S3B), 

230 again with the dry seasons being significantly higher than the laboratory samples (p= 0.0215, 

231 0.0119 for Thierola and N’Gabakoro, respectively). The Pearson correlation between the overall 

232 genus abundance and frequency (across mosquitoes) was moderate (r=0.42 and r=0.70, P<0.001, 

233 n=424 for native and log-transformed values), indicating that the genera more frequent across 

234 mosquitoes were more abundant (sequence reads). However, the majority of sequence variants 

235 and genera were sample singletons (91.9% and 43.7%, respectively), however the majority of 

236 reads were found in non-singletons (68.0% of sequence variant reads, 98.8% of genera-level 

237 reads) (Figs. S4A and S4B).  This would indicate there remains a high degree of heterogeneity 

238 between samples, though dominant species have some conservation between groups. Finally, 

239 there were higher mean amounts of group specific (private) sequence variants within the Sahel 

240 dry season (53.6 compared to 35.1, 47.5, 31.2, and 12.7 for Sahel Dry, Sahel Wet, Riparian Dry, 

241 Riparian Wet, and laboratory samples, respectively), though this difference was only 

242 significantly different between the laboratory samples and the two dry seasons (p = 0.0173 and 

243 0.0048 for Riparian dry and Sahel dry via Dunn’s test, respectively). 

244 Differential abundance testing of seasonality:
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245 We tested differences in genera abundance between seasons at each location, and 

246 between field and laboratory samples. In Sahelian locations near Thierola, five bacterial species 

247 were found to be abundant at an un-adjusted p-value of < 0.05 with Anaplasma, Bacillus, 

248 Arthrobacter spp. being more abundant in the dry season individual samples (Fig. S5A, log2 fold-

249 change: 4.79, 3.89, and 3.01), and Acinetobacter and Brevundimonas spp. being less prevalent in 

250 the dry season samples (Fig. S5A, log2 fold-change: -3.48 and -3.11). In riparian site 

251 (N’Gabakoro), we found that reads of Ralstonia spp. was significantly reduced in mosquitoes 

252 (Fig. S5B, log2 fold-change: -5.10, Benjamini-Hochberg adjusted p-value: 3.33e-04). As with the 

253 Sahelian group, the Riparian dry season had some bacterial species that did not pass the false 

254 discovery rate adjusted p-value cutoff (Ideonella and Enterobacter). Comparing all field to all 

255 laboratory samples found six genera to be differentially expressed at p-adj < 0.05, with the 

256 laboratory samples being biased towards Asaia genera, and having the presence of 

257 Gluconobacter bacteria that were absent from all field samples (Fig. S5C).

258 In effort to improve discriminative power, additional analysis was performed using 

259 hierarchical multiple testing on sequence variants to determine which SVs were differentially 

260 abundant between seasons and locations. For the Thierola area, only one Anaplasma sequence 

261 variants was found to be differentially expressed in the dry season compared to wet (log2 fold-

262 change: 3.50, p-adj: 0.027, Fig. 3A). Seven sequence variants were found to be differentially 

263 expressed between seasons in the permanent water location, with one more abundant in the wet 

264 season (Fig. 3B, Ralstonia, log2 fold-change: -4.91, p-adj: 1.4e-03), and six more abundant in the 

265 dry (Sphingorhabdus, two Duganella SVs, Janthinobacterium, Xenophilus, Pseudomonas, and a 

266 Cyanobacteria; log2 fold-change 1.63-3.94, p-adj: 3.19e-02 to 3.91e-05). In the laboratory versus 

267 field comparison, six sequence variants were found to be significant (Fig. 3C, Asaia, 

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.3391v1 | CC0 Open Access | rec: 3 Nov 2017, publ: 3 Nov 2017



268 Elizabethkingia, two Gluconobacter SVs, Alcaligenes, and Ralstonia, log2 fold-change 2.97-

269 4.11, p-adj: 1.4e-03 to 5.61e-15). 

270 Seasonal and temporal discrimination using ordination: 

271 After rarefaction to a depth of 500 reads and filtering of sequence variants present in only 

272 a single sample, 164 sequence variants and 48 samples were used for ordination analysis. 

273 Ordination of the samples via principal coordinates analysis (PCoA) on the Bray-Curtis 

274 dissimilarity distance showed clustering of the five seasonal and location based groupings, with 

275 differing levels of between-group spread (Fig. 4A). Testing of the group centroid locations via a 

276 pairwise PERMANOVA found that the group composition of laboratory and ‘permdry’ samples 

277 differed from all other groups, while ‘saheldry’ differed from ‘permwet’ and ‘sahelwet’ at an 

278 adjusted p-value < 0.10 (Fig. 4B).

279 Qualitative presence/absence analysis:

280 As abundance testing found limited seasonal differences for each location, we also 

281 investigated whether supervised learning approaches could discriminate dry vs. wet season 

282 samples based on the differences in presence/absence of bacteria between groups. We again 

283 found that the seasonal samples from the permanent water clustered separately more strongly 

284 than the Sahelian locations into two populations (Fig. S6A), though all groups other than the wet 

285 season locations were found to have significantly different center points via PERMANOVA 

286 (Fig. S6C). 

287 To further compare the nature of the uniqueness present in the microbiome of possibly 

288 aestivating mosquitoes in the Sahelian dry season, we employed sequential testing between 

289 groups. Firstly, we tested for genera that showed significant differences between the dry and wet 

290 seasons in the Sahel. Secondly, we tested for differences between the Sahelian and Riparian dry 
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291 season, within the subset of genera identified earlier. Thirdly, we tested for differences between 

292 the Sahelian dry and Riparian wet season within the subset that passed the first tests. In each 

293 step, we employed exact tests that accommodated sample size at the individual test level (the 

294 second and third tests were one-sided, as dictated by the direction of the difference in the first 

295 test. see methods). A total of 14 genera exhibited difference between the Sahelian dry and wet 

296 season at P<0.1 (with highest significance for Bacillus, Anaplasma, and Microvirga (P<0.00004, 

297 <0.0026, 0.007, respectively). In the subsequent tests, only Anaplasma which was exclusively 

298 present in the Sahelian dry season (54% vs. 0%, p=0.009), Bacillus (90.9% vs. 7-38%, p=0.020), 

299 Intestinibacter (45.4% vs. 0-7%, p = 0.022) and Microvirga (63.6% vs. 7-14%, p=0.029) were 

300 considered putatively “characteristic” of the Sahelian dry season. 

301 Comparison of Sequence Variants (SV) against Operational Taxonomic Units (OTU):

302 With the DADA2 denoising algorithm, sequencing errors can be parsed from true 

303 sequence variants in the 16S rRNA sequenced region. For interpretability in display, the 16S SVs 

304 and OTUs for the top 19 most prevalent genera were placed on a phylogenetic tree to 

305 demonstrate the loss in information from clustering sequences with >97% nucleic acid identity 

306 compared to maintaining variants with as little as one nucleotide difference (Figs. S7A and S7B). 

307 There were 35.8% more SVs than OTUs across all genera (2057 and 1515, respectively), with 

308 79.7% more SVs than OTUs in the top 19 most abundant genera. 

309 Cytochrome B analysis of blood feeding host preference:

310 The Anaplasma spp. reads found to be more prevalent during the dry season were blasted 

311 against the nr database were found to align to Anaplasma ovis (99-100% identity based on 

312 strain), a pathogen of goats, sheep, and wild ruminants (de la Fuente et al., 2007). To define the 

313 source of these reads we performed polymerase chain reaction to determine bloodmeal origin 
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314 and the rate of anthropophily seasonally and by location. We found that areas of seasonal water 

315 availability had a slight decrease in the degree of anthropophily overall (Fig. 5 left side, 77.5% to 

316 94.6%, comparing “Human” to all others, p=0.0490 with Two-tailed Fisher’s exact test). 

317 Additionally, the Thierola area had a statistically significantly higher proportion of zoophily in 

318 the dry season compared to the dry season in N’Gabakoro (28.6% mixed or non-human blood-

319 feeding compared to 0%, p=0.0318).

320 Discussion:

321 The mosquito microbiome varies considerably throughout its development (Wang et al., 

322 2011; Coon et al., 2014), and has been previously shown to have distinct bacterial characteristics 

323 due to its location and seasonal environment (Akorli et al., 2016; Buck et al., 2016). In this 

324 study, we analyzed how the microbiome changes in An. coluzzii collected from areas with 

325 differing degrees of seasonality in Mali. This variation in seasonality in our sampling locations 

326 was due to several factors. The first is that due to being lower in latitude, the areas around 

327 N’Gabakoro do not dry out as rapidly as the more northerly areas neared to the Sahel. 

328 Additionally, the presence of the Niger River provides the possibility for year round 

329 development of larvae in the Southern area that is likely not possible in the North. Our main 

330 hypothesis was that large seasonal differences between Sahelian dry and wet season will be 

331 present due to the  unique physiological state of Sahelian An. coluzzii mosquitoes during 

332 aestivation (Huestis et al., 2012; Yaro et al., 2012; Dao et al., 2014; Huestis & Lehmann, 2014). 

333 If confirmed, aestivation-specific microbiome taxa might be used as a predictor of this state in 

334 populations where both aestivators and reproductive adults coexist. 

335 Counter to our initial hypothesis that dry season Sahelian mosquitoes would have the 

336 most distinct microbiome composition, we found that dry season mosquitoes from areas with 
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337 year-round breeding (N’Gabakoro) were, overall, the most different among our mosquito groups 

338 (below). The Sahelian dry season did exhibit some unique characteristics including high 

339 microbial diversity with highest number of private sequence variants, and had slight differences 

340 in overall microbial composition (Figs. 3), though these differences were not as pronounced as 

341 those between seasons in permanent water locations. Additionally, several bacterial genera were 

342 significantly elevated in the Sahelian DS including Anaplasma (exclusively present in the 

343 Sahelian DS), Bacillus (90.9% in Sahel dry vs. 7-37.5% in others), Microvirga (63.6% vs. 7-

344 14%), and Intestinibacter (45.4% vs. 0-7%). We also note that three of these genera (Anaplasma, 

345 Bacillus, and Microvirga) were also found to be important to the random forest classification 

346 model (Figs. S6B and S6D). Only Anaplasma was found to be significantly different based on 

347 read count abundance (log2 fold-change: 3.50, p-adj: 0.027, Fig. 3). The putative route of 

348 acquisition of Anaplasma is described in depth below, but the most likely route of acquisition of 

349 Bacillus, Microvirga, and Intestinibacter would be through the larval environment or possibly 

350 plant feeding due to their soil/water association (Table S1). As no private genera were present in 

351 all Sahelian dry season mosquitoes, if bacterial biomarkers of aestivation exist, it may indicate 

352 not all mosquitoes in this period are in this state. Independent studies are necessary to test 

353 whether these putative differences are indeed “characteristic” of the Sahelian dry season and has 

354 relevance to aestivation.

355 The riparian dry season sample was characterized by a reduction of Ralstonia species 

356 reads, with an increase in Duganella, Janthinobacterium, and Sphingomonas spp. reads as 

357 determined by hierarchical multiple testing, DESeq2, and ordination (Figs 3, 4, and Fig. S5B). 

358 The most abundant genera was Ralstonia that was present in most wild-caught samples (present 

359 in 40/47, dominant taxa in 24/47), and had little representation in laboratory mosquitoes (1/6 
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360 samples with 10 reads). This genus has been seen previously in wild-caught Anopheles from 

361 Cameroon (Boissière et al., 2012) and Aedes aegypti (Apte-Deshpande et al., 2012), and is 

362 believed to be largely soil and water associated (Gilligan et al., 2003; Ryan, Pembroke & Adley, 

363 2006). Additionally, we found that the majority of 16S sequence variants were unique to an 

364 individual sample (91.9%, Fig. S4), indicating that there is a high degree of heterogeneity 

365 between mosquitoes. However these sequence variants were relatively low in abundance, only 

366 accounting for 32.0% of reads. These sequence variants also demonstrate the additional sub-

367 species level heterogeneity that the more commonly used operational taxonomic units (OTUs) 

368 may miss (Fig. S6).

369 As it has been previously reported in Aedes aegypti that most of the adult gut flora is 

370 acquired trans-stadially from larval stages to adults (Coon et al., 2014), this may help explain 

371 why there were limited seasonal differences in mosquitoes in the northern Sahel. Due to the 

372 prolonged dry season, there are no known larval sites available during this period (Dao et al., 

373 2014). Thus, the mosquitoes present would have been larvae in the same rainfall-linked transient 

374 water sources that the wet season mosquitoes would have, and any changes present in the 

375 microbiome would be due to incorporation of new flora from environmental conditions, or 

376 blood/sugar sources. This homogeneity in larval environments is contrasted in the available 

377 larval habitat near N’Gabakoro that changes broadly throughout the year, from fresh rain puddles 

378 to ground and river water in rock and other pools near the Niger River that develop as flooded 

379 areas recede (Edillo et al., 2002; Coulibaly et al., 2007), or from standing water present in the 

380 more urban area of Bamako nearby (though these pools are likely unsuitable for Anopheles spp. 

381 growth). This hypothesis may explain why the dry season Sahelian samples had the most 

382 pronounced difference in genera that are likely acquired through blood feeding, and the Riparian 
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383 areas had the largest differences in bacteria that are predominantly soil and water associated 

384 (Table S1). This may also explain why the previous analysis of seasonality in a wetter climate of 

385 Ghana showed limited seasonal differences in Anopheles coluzzii (Akorli et al., 2016). Another 

386 difference between the studies is related to the Ghanaian study use of day 1 post emergence 

387 mosquitoes that were collected as larvae in differing seasonal water sources and were non-

388 bloodfed (Akorli et al., 2016). This may then limit effects of the adult environment upon the 

389 microbiome. Future studies should compare water samples from collection locations to further 

390 refine what is the main route of acquisition of these genera, and whether this shift is consistent 

391 between years.

392 The overall uniqueness of the laboratory samples was also found to be pronounced in our 

393 samples contrary to other studies that find high degree of similarity between field and laboratory 

394 samples (Wang et al., 2011; David et al., 2016). We found all bacterial community compositions 

395 from each field location/season different from the laboratory samples via pairwise 

396 PERMANOVA (Figs 4, S6). At the genus level, the Asaia spp. that dominated in all laboratory 

397 samples (highest abundance in 5/6 samples, found in 6/6) was found sparingly in samples from 

398 all field locations (5/47) and was the dominant genera in none (Fig. 2). This genus has been seen 

399 in previous studies of mosquito microbiota from several mosquito genera (Osei-Poku et al., 

400 2012; Minard et al., 2013). Its absence in most field mosquitoes may indicate it is not a 

401 ubiquitous part of the Anopheles flora throughout Africa, and that the less-diverse, Asaia 

402 dominated mosquito flora in colony mosquitoes may poorly recapitulate the wild state of 

403 mosquitoes in all natural areas. Additionally, as it was postulated that Asaia’s colonization limits 

404 wide-spread Wolbachia presence (Hughes et al., 2014; Rossi et al., 2015), it may explain why 

405 Wolbachia has been found in mosquitoes in Burkina Faso with limited prevalence of Asaia 
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406 (Favia et al., 2007; Baldini et al., 2014; Buck et al., 2016). However, we found no Wolbachia 

407 reads in any samples, though as these reads are difficult to amplify it may be below the limit of 

408 detection (Baldini et al., 2014). Additionally, the presence of Gluconobacter spp. bacteria in 

409 laboratory mosquitoes (but no field mosquitoes) may point to other ways in which the artificial 

410 nature of the laboratory environment (i.e. sugar feeding on Karo syrup) could impact the 

411 microbial composition, and possibly additional metrics such as vector competence.

412 A caveat to our microbiome composition data is that the sampling and next-generation 

413 sequencing in this study was performed prior to the knowledge that there can be contaminant 

414 “kitome” DNA present from DNA extraction kits, molecular water, and cross-over 

415 contamination on machines (Salter et al., 2014). Due to this, we do not have control samples 

416 from each of these items, and due to the time since processing, these kits are no longer available 

417 to be sequenced. The issues of contamination have been reported to be more severe with samples 

418 of low-bacterial abundance (Salter et al., 2014). We hope that in our samples this contamination 

419 is limited due to whole-body sampling which would increase bacterial reads, and through finding 

420 that there were no significant negative correlations between read count and presence of known 

421 kitome genera (two-tailed Pearson’s r, Table S2). This lack of correlation should not imply there 

422 is no contamination possibility in our samples, but is the best assessment we can provide 

423 retrospectively that presence of these genera is not linked to low-biomass in our samples. 

424 Additionally, no reads were broadly found in all samples, and only the laboratory samples were 

425 collected in different time periods than the others. Future studies should include these controls, 

426 and assessment of aquatic bacterial species from the larval sites to limit these possible 

427 confounders. Additional use of newer versions of next-generation sequencing approaches could 
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428 also help to improve sequencing coverage, allowing for more efficient filtering of these low 

429 prevalence reads.

430 The presence of Anaplasma ovis bacteria in the Sahelian dry season samples was 

431 unexpected, but has some precedence in the literature. A. ovis 16S sequence has been found 

432 previously in Anopheles gambiae and An. funestus collected in western Kenya (Lindh et al., 

433 2005), and it remains unknown if this finding has any relevance to the disease’s transmission or 

434 is simply related to it being an intracellular pathogen of the blood that could be inadvertently 

435 picked up during feeding. Anaplasma phagocytophilum has been shown to modulate Ixodes tick 

436 microbiota, though the effects of Anaplasma species on mosquito microbiota has not been 

437 studied to our knowledge (Abraham et al., 2017). This pathogen is also in the same order as the 

438 Wolbachia genus bacteria that have achieved considerable attention as an Aedine symbiont and 

439 possible vectorial-competence modifying species (Cirimotich, Ramirez & Dimopoulos, 2011; 

440 Hughes et al., 2014; Minard et al., 2014). 

441 To expand upon this finding of a zoonotic pathogen reads present in these classically 

442 anthropophilic mosquitoes (Besansky, Hill & Costantini, 2004), the analysis of host-choice PCR 

443 with cytochrome B allowed us to refine the biting characteristics of each population across 

444 seasons. We found that the relaxation of strict anthropophily in the seasonal areas (Fig. 5) which 

445 may follow what has been reported previously in areas of low host-availability (Lefèvre et al., 

446 2009). Due to the climactic severity during the dry season in the Sahel, the acquisition of blood 

447 from the nearest source is likely less taxing than feeding on the preferred host. Though as there is 

448 not an increase in zoophily in the N’Gabakoro samples in March-April in the dry season (when 

449 conditions are similar between locations) and there is some zoophily in the wet season, there may 

450 be an innate degree of zoophily in all An. coluzzii even in favorable conditions. 
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451 Conclusions:

452 This study of the seasonal microbiome of An. coluzzii indicates some unique aspects that 

453 illuminates some behavioral characteristics during this cryptic and poorly understood time 

454 period. It is largely characterized by mosquitoes in areas of higher seasonality exhibiting a 

455 reduction in anthropophily, likely due to the unique environmental pressures seen in these areas, 

456 and a higher overall diversity during the dry season regardless of the presence of permanent 

457 water. Furthermore, it appears that the mosquito larval environment may be performing a 

458 seeding function for the adult microbiome, and suggests minor evidence for the occurrence of 

459 aestivation. Future analysis of the seasonality of host-choice could help to refine these findings, 

460 and to show possible impacts towards transmission. 
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Figure 1

Sampling locations in the Koulikoro District of Mali overlaid over seasonal Normalized

Difference Vegetation Index data (panel A) and at each location throughout the

sampling period (panel B).

The villages of M'Piabougou and Zanga in the area of Thierola with higher seasonality and

lower water availability are compared to N'Gabakoro, a village near Bamako and the Niger

River. Examples of wet season (top left, bottom right of panel A), transitional (top right of

panel A), and dry season (bottom left panel A) are presented. Microbial sampling dates per

village are marked with vertical dashed lines (panel B).
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Figure 2

Stacked bar plot (top) and within-sample Shannon diversity (bottom) comparing the 19

most abundant agglomerated microbial genera between dry and wet seasons.

All other taxa are grouped in the “other” category. Sample numbers and whether it is a

pooled sample (“P”) are marked above and below bar plots, respectively. Only the top 19

genera are shown here for ease of interpretation, all analyses between groups are performed

with all sequence variants or taxa.

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.3391v1 | CC0 Open Access | rec: 3 Nov 2017, publ: 3 Nov 2017



Figure 3

Hierarchical Multiple Testing (HMT) of differentially abundant 16s rRNA sequence

variants.

Log2 fold changes calculated via DESeq2 greater than 1.5-fold that are significant at an

adjusted p-value < 0.05 are presented for each location. HMT is a false discovery rate

adjusting methodology that arranges tested hypotheses via their phylogeny, testing sub-

hypotheses only if their parent hypothesis is significant.
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Figure 4

Principal Coordinates Analysis of Bray-Curtis dissimilarity.

(A) 16s sequence variants that are filtered to only those present in > 1 sample, and that

have been rarefied to an even depth of 500 reads are compared via two clustering

methodologies. Significance of sample group centroids (center points of each

Season/Location grouping) are compared via a pairwise permutation-based multivariate

ANOVA (pairwise.PERMANOVA) (Panel B). All p-values listed have been adjusted via

Benjamini-Hochberg for false discovery rate control.
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Figure 5

Host-choice preference determined via Cytochrome B PCR.

Significant difference between "human" and "other" bloodmeals for each location and season

determined via a contingency table and two-tailed Fisher's exact test.
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