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Abstract. Checking that models adequately represent data is an essential component1

of applied statistical inference. Ecologists increasingly use hierarchical Bayesian statistical2

models in their research. The appeal of this modeling paradigm is undeniable, as3

researchers can build and fit models that embody complex ecological processes while4

simultaneously controlling observation error. However, ecologists tend to be less focused on5

checking model assumptions and assessing potential lack-of-fit when applying Bayesian6

methods than when applying more traditional modes of inference such as maximum7

likelihood. There are also multiple ways of assessing the fit of Bayesian models, each of8

which has strengths and weaknesses. For instance, Bayesian p-values are relatively easy to9

compute, but are well known to be conservative, producing p-values biased toward 0.5.10

Alternatively, lesser known approaches to model checking, such as prior predictive checks,11
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cross-validation probability integral transforms, and pivot discrepancy measures may12

produce more accurate characterizations of goodness-of-fit but are not as well known to13

ecologists. In addition, a suite of visual and targeted diagnostics can be used to examine14

violations of different model assumptions and lack-of-fit at different levels of the modeling15

hierarchy, and to check for residual temporal or spatial autocorrelation. In this review, we16

synthesize existing literature to guide ecologists through the many available options for17

Bayesian model checking. We illustrate methods and procedures with several ecological18

case studies, including i) analysis of simulated spatio-temporal count data, (ii) N -mixture19

models for estimating abundance and detection probability of sea otters from an aircraft,20

and (iii) hidden Markov modeling to describe attendance patterns of California sea lion21

mothers on a rookery. We find that commonly used procedures based on posterior22

predictive p-values detect extreme model inadequacy, but often do not detect more subtle23

cases of lack of fit. Tests based on cross-validation and pivot discrepancy measures24

(including the “sampled predictive p-value”) appear to be better suited to model checking25

and to have better overall statistical performance. We conclude that model checking is an26

essential component of scientific discovery and learning that should accompany most27

Bayesian analyses presented in the literature.28

Key words: Bayesian p-value, goodness-of-fit, hierarchical model, model diagnostics,29

posterior checks30

Introduction31

Ecologists increasingly use Bayesian methods to analyze complex hierarchical models for32

natural systems (Hobbs and Hooten 2015). There are clear advantages of adopting a33
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Bayesian mode of inference, as one can entertain models that were previously intractable34

using common modes of statistical inference (e.g., maximum likelihood). Ecologists use35

Bayesian inference to fit rich classes of models to their datasets, allowing them to separate36

measurement error from process error, and to model features such as temporal or spatial37

autocorrelation, individual level random effects, and hidden states (Link et al. 2002, Clark38

and Bjørnstad 2004, Cressie et al. 2009). Applying Bayesian calculus also results in39

posterior probability distributions for parameters of interest; used together with posterior40

model probabilities, these can provide the basis for mathematically coherent decision and41

risk analysis (Link and Barker 2006, Berger 2013, Williams and Hooten 2016).42

Ultimately, the reliability of inference from a fitted model (Bayesian or otherwise)43

depends on how well the model approximates reality. There are multiple ways of assessing44

a model’s performance in representing the system being studied. A first step is often to45

examine diagnostics that compare observed data to model output to pinpoint if and where46

any systematic differences occur. This process, which we term model checking, is a critical47

part of statistical inference because it helps diagnose assumption violations and illuminate48

places where a model might be amended to more faithfully represent gathered data.49

Following this step, one might proceed to compare the performance of alternative models50

embodying different hypotheses using any number of model comparison or out-of-sample51

predictive performance metrics (see Hooten and Hobbs 2015, for a review) to gauge the52

support for alternative hypotheses or optimize predictive ability (Fig. 1).53

Non-Bayesian statistical software often include a suite of goodness-of-fit diagnostics54

that examine different types of lack-of-fit (Table 1). For instance, when fitting generalized55

linear (McCullagh and Nelder 1989) or additive (Wood 2006) models in the R56

programming environment (R Development Core Team 2017), one can easily access57
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diagnostics such as quantile-quantile, residual, and leverage plots. These diagnostics allow58

one to assess the assumed probability model, to examine whether there is evidence of59

heteroskedasticity, and to pinpoint outliers. Likewise, in capture-recapture analysis, there60

are established procedures for assessing overall fit and departures from specific model61

assumptions that are coded in user-friendly software such as U-CARE (Choquet et al.62

2009). Results of such goodness-of-fit tests are routinely reported when publishing analyses63

in the ecological literature.64

The implicit requirement that one conduct model checking exercises is not often65

adhered to when reporting results of Bayesian analyses. For instance, a search of Ecology66

in 2014 indicated that only 25% of articles employing Bayesian analysis on real datasets67

reported any model checking or goodness-of-fit testing (Fig. 2). There are several reasons68

why Bayesian model checking (hereafter, BMC) is uncommon. First, it likely has to do69

with momentum; the lack of precedent in ecological literature may lead some authors70

looking for templates on how to publish Bayesian analyses to conclude that model checking71

is unnecessary. Second, when researchers seek to publish new statistical methods,72

applications may be presented more as proof-of-concept exhibits than as definitive analyses73

that can stand up to scrutiny on their own. In such studies, topics like goodness-of-fit and74

model checking are often reserved for future research, presumably in journals with less75

impact. Third, all of the articles we examined did a commendable job in reporting76

convergence diagnostics to support their contention that MCMC chains had reached their77

stationary distribution. Perhaps there is a mistaken belief among authors and reviewers78

that convergence to a stationary distribution, combined with a lack of prior sensitivity,79

implies that a model fits the data. Finally, it may just be a case of fatigue: it takes80

considerable effort to envision and code complex hierarchical models of ecological systems,81

4

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.3390v1 | CC0 Open Access | rec: 3 Nov 2017, publ: 3 Nov 2017



and the extra step of model checking may seem burdensome.82

If we accept the premise that Bayesian models should be routinely checked for83

compatibility with data, a logical next question is how best to conduct such checks.84

Unfortunately, there is no single best answer. Most texts in ecology (e.g., King et al. 2009,85

Link and Barker 2010, Kéry and Schaub 2012) focus on posterior predictive checks, as86

pioneered by Guttman (1967), Rubin (1981, 1984), and Gelman et al. (1996) (among87

others). These procedures are also the main focus of popular Bayesian analysis texts (e.g.,88

Cressie and Wikle 2011, Gelman et al. 2014) and are based on the intuitive notion that89

data simulated from the posterior distribution should be similar to the data one is90

analyzing. However, “Bayesian p-values” generated from these tests tend to be91

conservative (biased toward 0.5) because the data are used twice (once to fit the model and92

once to test the model; Bayarri and Berger 2000, Robins et al. 2000). Depending on the93

data, the conservatism of Bayesian p-values can be considerable (Zhang 2014) and can be94

accompanied by low power to detect lack-of-fit (Yuan and Johnson 2012, Zhang 2014). By95

contrast, other less familiar approaches (such as prior predictive checks, sampled posterior96

p-values, cross-validated probability integral transforms, and pivot discrepancy measures)97

may produce more accurate characterizations of model fit.98

In this monograph, we collate relevant statistical literature with the goal of providing99

ecologists with a practical guide to BMC. We start by defining a consistent notation that100

we use throughout the paper. Next, we inventory a number of BMC procedures, providing101

pros and cons for each approach. We illustrate BMC with several examples; code to102

implement these examples are available in an accompanying R package, HierarchicalGOF.103

In the first example, we use simulation to study the properties of a variety of BMC104

procedures applied to spatial models for count data. In the second example, we apply105
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BMC procedures to check the closure assumption of N-mixture models, using both106

simulated data and data from northern sea otters (Enhydra lutris kenyoni) in Glacier Bay,107

Alaska, U.S.A. Finally, we apply BMC to examine attendance patterns of California sea108

lions (CSL; Zalophus californianus) using capture-recapture data from a rookery on San109

Miguel Island, California, U.S.A. We conclude with several recommendations on how model110

checking results should be presented in the ecological literature.111

Background and notation112

Before describing specific model checking procedures, we first establish common notation.113

Bayesian inference seeks to describe the posterior distribution, [θ|y], of model parameters,114

θ, given data, y. Throughout the paper, we use bold lowercase symbols to denote vectors.115

Matrices are represented with bold, uppercase symbols, while roman (unbolded) characters116

are used for scalars. The bracket notation ‘[. . .]’ denotes a probability distribution or mass117

function, and a bracket with a vertical bar ‘|’ denotes that it is a conditional probability118

distribution (Gelfand and Smith 1990).119

The posterior distribution is often written as120

[θ|y] =
[y|θ][θ]

[y]
, (1)

where [y|θ] is the assumed probability model for the data, given parameters (i.e., the121

likelihood), [θ] denotes the joint prior distribution for parameters, and [y] is the marginal122

distribution of the data. In Bayesian computation, the denominator [y] is frequently123

ignored because it is a fixed constant that does not affect inference (although it is needed124
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when computing Bayes factors for model comparison and averaging; Link and Barker125

2006). The exact mechanics of Bayesian inference are well reviewed elsewhere (e.g., King126

et al. 2009, Link and Barker 2010, Hobbs and Hooten 2015), and we do not attempt to127

provide a detailed description here. For the remainder of this treatment, we assume that128

the reader has familiarity with the basics of Bayesian inference, including Markov chain129

Monte Carlo (MCMC) as a versatile tool for sampling from [θ|y].130

In describing different model checking procedures, we often refer to data simulated131

under an assumed model. We use yrepi to denote the ith simulated dataset under the model132

that is being checked. In some situations, we may indicate that the dataset was simulated133

using a specific parameter vector, θi; in this case, denote the simulated dataset as yrepi |θi.134

We use the notation T (y,θ) to denote a discrepancy function that is dependent upon data135

and possibly the parameters θ. For instance, we might compare the discrepancy T (y,θ)136

calculated with observed data to a distribution obtained by applying T (yrep,θ) to multiple137

replicated data sets. Examples of candidate discrepancy functions are provided in Table 2.138

Model checking procedures139

Our goal in this section is to review relevant BMC procedures for typical models in ecology,140

with the requirement that such procedures be accessible to statistically-minded ecologists.141

As such, we omit several approaches that have good statistical properties but have been142

criticized (e.g., Johnson 2007b, Zhang 2014) as too computationally intensive, conceptually143

difficult, or problem-specific. For instance, we omit consideration of double sampling144

methods that may increase the computational burden of a Bayesian analysis by an order of145

magnitude (Johnson 2007b), including “partial posterior” and “conditional predictive”146
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p-values (see e.g., Bayarri and Berger 1999, Robins et al. 2000, Bayarri and Castellanos147

2007). A brief summary of the model checking procedures we consider is provided in Table148

3; we now describe each of these approaches in greater depth.149

Prior predictive checks150

Box (1980) argued that the hypothetico-deductive process of scientific learning can be151

embodied through successive rounds of model formulation and testing. According to his152

view, models are built to represent current theory and an investigator’s knowledge of the153

system under study; data are then collected to evaluate how well the existing theory (i.e.,154

model) matches up with reality. If necessary, the model under consideration can be155

amended, and the process repeats itself.156

From a Bayesian standpoint, such successive rounds of estimation and criticism can be157

embodied through posterior inference and model checking, respectively (Box 1980). If one158

views a model, complete with its assumptions and prior beliefs, as a working model of159

reality, then data simulated under a model should look similar to data gathered in the real160

world. This notion can be formalized through a prior predictive check, where replicate data161

yrep are simulated via162

θrep ∼ [θ] (2)

yrep ∼ [y|θrep]

and then compared to observed data y via a discrepancy function (Appendix A, Alg. 1).163

When the prior distribution [θ] is proper (i.e., integrates to 1.0), p-values from prior164

predictive checks are uniformly distributed under the null model. The main problem with165
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this approach is that prior distributions must be able to predict the likely range of data166

values; therefore, they require substantial expert opinion or data from previous studies. In167

our experience, when Bayesian inference is employed in ecological applications, this is not168

often the case. Still, prior predictive checks may be useful for hierarchical models that169

serve as an embodiment of current theory about a study system (e.g., population or170

ecosystem dynamics models). Alternatively, a subset of data (test data) can be withheld171

when fitting a model, and the posterior distribution [θ|y] can be substituted for [θ] in Eq.172

2. If used in this manner, prior predictive checks can be viewed as a form of173

cross-validation, a subject we examine in a later subsection (see Cross-validation tests).174

Prior predictive checks appear to have found little use in applied Bayesian analysis175

(but see Dey et al. 1998), at least in the original form proposed by Box (1980). However,176

they are important as historical precursors of modern day approaches to Bayesian model177

checking. Further, several researchers have recently used discrepancy measures calculated178

on prior predictive data sets to help calibrate posterior predictive (e.g., Hjort et al. 2006)179

or joint pivot discrepancy (Johnson 2007a) p-values so that they have a uniform null180

distribution. These calibration exercises are not conceptually difficult, but do have a high181

computational burden (Yuan and Johnson 2012). The properties (e.g., type I error182

probabilities, power) of p-values produced with these methods also depend critically on the183

similarity of the real world data-generating process with the prior distributions used for184

calibration (Zhang 2014).185

Posterior predictive checks186

Posterior predictive checks are the dominant form of Bayesian model checking advanced in187

statistical texts read by ecologists (e.g., King et al. 2009, Link and Barker 2010, Kéry and188
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Schaub 2012, Gelman et al. 2014). Although sample size was small (n = 25), a survey of189

recent Ecology volumes indicated that posterior predictive checks are also the dominant190

form of BMC being reported in ecological literature (Fig. 2). Posterior predictive checks191

are based on the intuition that data simulated under a fitted model should be comparable192

to the real world data the model was fitted to. If observed data differ from simulated data193

in a systematic fashion (e.g., excess zeros, increased skew, increased variance, lower194

kurtosis), it indicates that model assumptions are not being met.195

Posterior predictive checks can be used to look at differences between observed and196

simulated data graphically, or can be used to calculate “Bayesian p-values” (Appendix A,197

Alg. 2). Bayesian p-values necessarily involve application of a discrepancy function,198

T (y,θ), for comparing observations to simulated data. Omnibus discrepancy functions199

help diagnose global lack-of-fit, while targeted discrepancy functions can be used to look200

for systematic differences in specific data features (Table 2). Posterior predictive checks201

involve cyclically drawing parameter values from the posterior distribution (i.e., θi ∼ [θ|y])202

and then generating a replicate dataset for each i, yrepi ∼ [y|θi], to compute the reference203

distribution for the discrepancy test statistic (Gelman et al. 2014, Appendix A, Alg. 2).204

Posterior predictive checks are straightforward to implement. Unfortunately, Bayesian205

p-values based on these checks tend to be conservative in the sense that the distribution of206

p-values calculated under a null model (i.e., when the data generating model and207

estimation model are the same) is often dome shaped instead of the uniform distribution208

expected of frequentist p-values (Robins et al. 2000). This feature arises because data are209

used twice: once to approximate the posterior distribution and to simulate the reference210

distribution for the discrepancy measure, and a second time to calculate the tail probability211

(Bayarri and Berger 2000). As such, the power of posterior predictive Bayesian p-values to212
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detect significant differences in the discrepancy measure is low. Evidently, the degree of213

conservatism can vary across data, models, and discrepancy functions, making it difficult to214

interpret or compare Bayesian p-values across models. In an extreme example, Zhang215

(2014) found that posterior predictive p-values almost never rejected a model, even when216

the model used to fit the data differed considerably from the model used to generate it.217

Another possible criticism of posterior predictive checks is that they rely solely on218

properties of simulated and observed data. Given that a lack of fit is observed, it may be219

difficult to diagnose where misspecification has occurred within the modeling hierarchy220

(e.g., priors, mean structure, choice of error distribution). Further, a poorly specified mean221

structure (e.g., missing important covariates) may still result in reasonable fit if the model222

is made sufficiently flexible (e.g., via random effects or covariance).223

These cautions do not imply that posterior predictive checks are devoid of value.224

Indeed, given that tests are conservative, small (e.g., < 0.05) or very large (e.g., > 0.95)225

p-values strongly suggest lack-of-fit. Further, graphical displays (see Graphical techniques)226

and targeted discrepancies (Table 2) may help pinpoint common assumption violations227

(e.g., lack of independence, zero inflation, overdispersion). However, it is often less clear228

how to interpret p-values and discrepancies that indicate no (or minor) lack-of-fit. In these229

cases, it seems necessary to conduct simulation-based exercises to determine the range of230

p-values that should be regarded as extreme, and to possibly calibrate the observed p-value231

with those obtained in simulation exercises (e.g., Dey et al. 1998, Hjort et al. 2006).232

Some practical suggestions may help to reduce the degree of conservatism of posterior233

predictive p-values. Lunn et al. (2013) suggest that the level of conservatism depends on234

the discrepancy function used; discrepancy functions that are solely a function of simulated235

and observed data (e.g., proportion of zeros, distribution of quantiles) may be less236
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conservative than those that also depend on model parameters (e.g., summed Pearson237

residuals). Similarly, Marshall and Spiegelhalter (2003) suggest reducing the impact of the238

double use of data by iteratively simulating random effects when generating posterior239

predictions for each data point, a procedure they term a “mixed predictive check” (also240

called “ghosting”). For an example of this latter approach, see Spatial models for count241

data.242

Sampled posterior p-values243

Posterior predictive checks rely on multiple draws from a posterior distribution.244

Alternatively, one can simulate a single parameter vector from the posterior, θ̃ ∼ [θ|y], and245

then generate replicate datasets conditional on this parameter vector alone (i.e.,246

yrepi ∼ [y|θ̃]), otherwise calculating the p-value in the same manner. This choice may seem247

strange because the resulting p-value can vary depending upon the posterior sample, θ̃, but248

a variety of theoretical arguments (e.g., Johnson 2004; 2007a, Yuan and Johnson 2012,249

Gosselin 2011) and several simulation studies (e.g., Gosselin 2011, Zhang 2014) suggest250

that it may be a preferable choice, both in terms of Type I error control and power to251

detect lack-of-fit. In fact, sampled posterior p-values are guaranteed to at least have an252

asymptotic uniform distribution under the null (Gosselin 2011). Sampled posterior p-values253

can also be calculated using pivotal discrepancy measures, reducing computational burden254

(i.e., eliminating the requirement that replicate datasets be generated). We describe an255

example of this approach in Spatial models for count data.256

12

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.3390v1 | CC0 Open Access | rec: 3 Nov 2017, publ: 3 Nov 2017



Pivotal discrepancy measures (PDMs)257

In addition to overstated power to detect model lack-of-fit, posterior predictive p-values are258

limited to examining systematic differences between observed data and data simulated259

under a hypothesized model. As such, there is little ability to examine lack-of-fit at higher260

levels of modeling hierarchy. One approach to conducting goodness-of-fit at multiple levels261

of the model is to use discrepancy functions based on pivotal quantities (Johnson 2004,262

Yuan and Johnson 2012). Pivotal quantities are random variables that can be functions of263

data, parameters, or both, and that have known probability distributions that are264

independent of parameters (see e.g., Casella and Berger 1990, section 9.2.2). For instance, if265

y ∼ N (µ, σ2)

then z = y−µ
σ

has a standard N (0, 1) distribution. Thus, z is a pivotal quantity in that it266

has a known distribution independent of µ or σ.267

This suggests a potential strategy for assessing goodness-of-fit; for instance, in a268

Bayesian regression model269

y ∼ N (Xβ, σ2I), (3)

where X represents a design matrix, β is a vector of regression coefficients, and I is an270

identity matrix, we might keep track of271

zij =
yi − x′iβj

σj
(4)
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for each of j ∈ 1, 2, . . . , n samples from the posterior distribution (i.e., drawing each (βj, σj)272

pair from [θ|y]). Systematic departures of zij from the theoretical N (0, 1) distribution can273

point to model misspecification. Although we have focused on the data model in Eq. 3,274

note that the same approach could be used at higher levels of the modeling hierarchy.275

The advantage of using PDMs is that the reference distribution is known and does not276

necessarily involve simulation of replicated datasets, yrep. In practice, there are several277

difficulties with using pivotal quantities as discrepancy measures in BMC. First, as with278

the sampled predictive p-value, p-values using PDMs are only guaranteed to be uniform279

under the null if calculated with respect to a single posterior parameter draw, θ̃ ∼ [θ|y].280

The joint distribution of PDMs calculated across i ∈ 1, 2, . . . , n samples from the posterior281

distribution are not independent because they depend on the same observed data, y282

(Johnson 2004). As with the Bayesian p-value calculated using a posterior predictive check,283

this latter problem can result in p-values that are conservative. Yuan and Johnson (2012)284

suggest comparing histograms of a pivotal discrepancy function T (y,θi) to its theoretical285

distribution, f , to diagnose obvious examples of model misspecification.286

A second problem is that, to apply these techniques, one must first define a pivotal287

quantity and ascertain its reference distribution. Normality assessment is relatively288

straightforward using standardized residuals (e.g., Eq. 4), but pivotal quantities are not289

necessarily available for other distributions (e.g., Poisson). However, Yuan and Johnson290

(2012), building upon work of Johnson (2004), proposed an algorithm based on cumulative291

distribution functions (CDFs) that can apply to any distribution, and at any level of a292

hierarchical model (Appendix A, Alg. 3). For continuous distributions, this algorithm293

works by defining a quantity wij = g(yij,θ) (this can simply be wij = yij) with a known294

CDF, F . Then, according to the probability integral transformation, F (w) should be295
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uniformly distributed if the the modeled distribution function is appropriate. Similarly, for296

discrete distributions, we can apply a randomization scheme (Smith 1985, Yuan and297

Johnson 2012) to transform discrete variables into continuously distributed uniform298

variates. For example, when yij has integer valued support, we can define299

wij = F (yij − 1|θ) + uijf(yij|θ),

where uij is a continuosly uniform random variable on (0,1) and F () and f() are the300

cumulative mass and probability mass functions associated with [y|θ], respectively. In this301

case, wij will be uniformly and continuously distributed on (0,1) if the assumed302

distribution is reasonable; deviation from uniformity can point to model misspecification.303

We have written the PDM algorithm in terms of the data distribution [y|θ] (Appendix304

A), but the algorithm can be applied to any level of a hierarchical model. Further, the305

algorithm can be applied separately to different categories of mean response (e.g., low,306

medium, or high levels of predicted responses). These advantages are extremely appealing307

in that one can more thoroughly test distributional assumptions and look for places where308

lack-of-fit may be occurring, something that can be difficult to do with posterior predictive309

checks. We apply this algorithm in Spatial models for count data and provide R code for310

applying this approach to generic MCMC data in the R package HierarchicalGOF311

accompanying this paper (see Software for more information).312

Cross-validation tests313

Cross-validation consists of leaving out one or more data points, conducting an analysis,314

and checking how model predictions match up with actual observations. This process is315

15

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.3390v1 | CC0 Open Access | rec: 3 Nov 2017, publ: 3 Nov 2017



often repeated sequentially for different partitions of the data. It is most often used to316

examine the relative predictive performance of different models (i.e., for model selection;317

see e.g. Arlot and Celisse 2010). However, one can also use cross-validation to examine318

model fit and determine outliers. The primary advantage of conducting tests in this fashion319

is that there is no duplicate use of data as with posterior predictive tests or those based on320

joint PDMs. However, cross-validation can be computationally intensive (sometimes321

prohibitively so) for complicated hierarchical models.322

One approach to checking models using cross-validation is the cross-validated323

probability integral transform (PIT) test, which has long been exploited to examine the324

adequacy of probabilistic forecasts (e.g., Dawid 1984, Früiiwirth-Schnatter 1996, Gneiting325

et al. 2007, Czado et al. 2009). These tests work by simulating data at a set of times or326

locations, and computing the CDF of the predictions evaluated at a set of realized data327

(where realized data are not used to fit the model). This can be accomplished in a328

sequential fashion for time series data, or by withholding data (as with leave-one-out329

cross-validation). In either case, divergence from a Uniform(0,1) distribution is indicative330

of a model deficiency. In particular, a U-shape suggests an underdispersed model, a dome331

shape suggests an overdispersed model, and skew (i.e., mean not centered at 0.5) suggests332

bias. Congdon (2014) provided an algorithm for computing PIT diagnostic histograms for333

both continuous and discrete data in Bayesian applications (see Appendix A, Alg. 4).334

Cross-validation can also be useful for diagnosing outliers in spatial modeling335

applications. For instance, Stern and Cressie (2000) and Marshall and Spiegelhalter (2003)336

use it to identify regions that have inconsistent behavior relative to the model. Such337

outliers can indicate that the model does not sufficiently explain variation in responses,338

that there are legitimate “hot spots” worthy of additional investigation (Marshall and339
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Spiegelhalter 2003), or both.340

For certain types of data sets and models it is possible to approximate leave-one-out341

cross-validation tests with a single sample from the posterior distribution. For instance, in342

random effects models, importance weighting and resampling can be used to approximate343

the leave-one-out distribution (Stern and Cressie 2000, Qiu et al. 2016). Similarly, Marshall344

and Spiegelhalter (2007) use a “ghosting” procedure to resample random effects and345

thereby approximate the leave-one-out distribution. When applicable, such approaches346

have well known properties (i.e., a uniform distribution of p-values under the null; Qiu347

et al. 2016).348

Residual tests349

Lunn et al. (2013) suggest several informal tests based on distributions of Pearson and350

deviance residuals. These tests are necessarily informal in Bayesian applications because351

residuals all depend on θ and are thus not truly independent as required in unbiased352

application of goodness-of-fit tests. Nevertheless, several rules of thumb can be used to353

screen residuals for obvious assumption violations. For example, standardized Pearson354

residuals for continuous data,355

ri =
yi − E(yi|θ)√

Var(yi|θ)
,

should generally take on values between -2.0 and 2.0. Values very far out of this range356

represent outliers. Similarly, for the Poisson and binomial distributions, an approximate357

rule of thumb is that the mean saturated deviance should approximately equal sample size358

for a well fitting model (Lunn et al. 2013).359
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For time series, spatial, and spatio-temporal models, failure to account for360

autocorrelation can result in bias and overstated precision (Lichstein et al. 2002). For this361

reason, it is important to look for evidence of residual spatio-temporal autocorrelation in362

analyses where data have a spatio-temporal index. There are a variety of metrics to363

quantify autocorrelation, depending upon the ecological question and types of data364

available (e.g., Perry et al. 2002). For Bayesian regression models, one versatile approach is365

to compute a posterior density associated with a statistic such as Moran’s I (Moran 1950)366

or Getis-Ord G* (Getis and Ord 1992) on residuals. For example, calculating Moran’s I for367

each posterior sample j relative to posterior residuals y − E(y|θj), a histogram of Ij values368

can be constructed; substantial overlap with zero suggests little evidence of residual spatial369

autocorrelation. Moran’s I is dependent upon a pre-specified distance weighting scheme,370

thus investigators can simulate a posterior sample of Moran’s I at several different choices371

of weights or neighborhoods to evaluate residual spatial autocorrelation at different scales.372

Graphical techniques373

Many of the previously described tests require discrepancy functions, and it may be374

difficult to formulate such functions for different types of lack-of-fit (e.g., Table 1).375

Displaying model checking information graphically may lead to more rapid intuition about376

where models do or do not fit the data. Alternative plots can be made for each type of377

model checking procedure (e.g., posterior predictive checks, sampled predictive checks, or378

even PDMs). For instance, Ver Hoef and Frost (2003) plotted posterior predictive χ2
379

discrepancy values for different sites where harbor seal counts had been performed. Models380

accounting for overdispersion clearly resulted in improved fit at a majority of sites. The381

consistency of predictions was clear in this case, whereas a single p-value one would not382
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effectively communicate where and how predictions were inaccurate.383

Gelman et al. (2014) argued that residual and binned residual plots are instructive for384

revealing patterns of model misspecification. In spatial problems, maps of residuals can be385

helpful in detecting whether lack-of-fit is spatially clustered. The types of plots that are386

possible are many and varied, so it is difficult to provide a comprehensive list in this space.387

However, we illustrate several types of diagnostic plots in the following examples.388

Computing389

We conduct all subsequent analyses using a combination of R (R Development Core Team390

2017) and JAGS (Plummer 2003). We used R to simulate data and to conduct model391

testing procedures; JAGS was used to conduct MCMC inference and produce posterior392

predictions. We developed an R package, HierarchicalGOF, that contains all of our code.393

This package is publicly available at394

https://github.com/pconn/HierarchicalGOF/releases, and will be published to a395

permanent repository following manuscript acceptance. The code is predominantly396

model-specific; however, it can be used as a template for ecologists conducting their own397

model checking exercises.398

Examples399

Spatial regression simulations400

We examined alternative model checking procedures for spatially explicit regression models401

applied to simulated count data. Such models are often used to describe variation in402
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animal or plant abundance over space and time, and can be used to map abundance403

distributions or examine trends in abundance (e.g., Sauer and Link 2011, Conn et al.404

2014). A common question when modeling count data is whether there is overdispersion405

relative to the commonly chosen Poisson distribution. In ecological data, several sources of406

overdispersion are often present, including a greater number of zero counts than expected407

under the Poisson (zero inflation; Agarwal et al. 2002), and heavier tails than predicted by408

the Poisson (Potts and Elith 2006, Ver Hoef and Boveng 2007). Another important409

question is whether there is residual spatial autocorrelation that needs to be taken into410

account for proper inference (Legendre 1993, Lichstein et al. 2002).411

In this simulation study, we generated count data under a Poisson distribution where412

the true mean response is a function of a hypothetical covariate, spatially autocorrelated413

error, and additional Gaussian noise. Data simulated in this manner arise from a spatially414

autocorrelated Poisson-normal mixture, and can be expected to be overdispersed relative to415

the Poisson, in much the same way that a negative binomial distribution (a Poisson-gamma416

mixture) is. We then examined the effectiveness of alternative model checking procedures417

for diagnosing incorrect model specification, such as when spatial independence is assumed.418

We also studied properties of model checking procedures when the correct estimation419

model is specified.420

For a total of 1000 simulation replicates, this study consisted of the following steps:421

1. Locate n = 200 points at random in a square study area A1, where A1 ⊂ A2 ⊂ IR2.422

Call the set of n = 200 points S.423

2. Generate a hypothetical, spatially autocorrelated covariate x using a Matérn cluster424

process on A2 (see Appendix B).425
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3. Generate expected abundance for all s ∈ S as µ = exp(Xβ + η + ε) where X is an426

(n× 2) design matrix, β are regression coefficients, η are spatially autocorrelated427

random effects (see Appendix B), and ε are iid Gaussian errors. The first column of428

X is a vector of all 1’s, and the second column consists of x.429

4. Simulate count data, yi|µi ∼ Poisson(µi), at each of the i ∈ {1, 2, . . . , 200} points.430

5. Fit a sequence of three models to each data set according to the following naming431

convention:432

• Pois0: Poisson model with no overdispersion433

Yi ∼ Poisson(exp(x′iβ))

• PoisMix: A Poisson-normal mixture with iid error434

Yi ∼ Poisson(exp(νi))

νi ∼ Normal(x′iβ, τ
−1
ε ),

where τ−1
ε is the error variance435

• PoisMixSp: The data-generating model, consisting of a Poisson-normal mixture436

with both independent and spatially autocorrelated errors induced by a437
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predictive process (cf. Banerjee et al. 2008):438

Yi ∼ Poisson(exp(νi))

νi ∼ Normal(x′iβ + ηi, τ
−1
ε )

ηi = w′iη̃

η̃ ∼ N (0,Σ)

6. Finally, a number of model checking procedures were employed on each simulated439

dataset.440

A depiction of the data generating algorithm (i.e., steps 1-4) is provided in Fig. 3;441

mathematical details of this procedure, together with a description of Bayesian analysis442

methods used in step 5 are provided in Appendix B. We now describe model checking443

procedures (step 6) in greater detail.444

Posterior predictive p-values445

For each dataset and statistical model, we calculated several posterior predictive p-values446

with different discrepancy measures. These included χ2, Freeman-Tukey, and447

deviance-based omnibus p-values, as well as directed p-values examining tail probabilities448

(Table 2). Tail probabilities were examined by comparing the 95% quantile of simulated449

and estimated data.450

For the Pois0 model, calculation of posterior predictive p-values was straightforward;451

posterior predictions (yrep) were simulated from a Poisson distribution, with an452

expectation that depends on posterior samples of [β|y]. For the other two models (i.e.,453
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PoisMix and PoisMixSp), it was less obvious how best to calculate posterior predictions.454

For instance, we identified at least three ways to simulate replicated data, yrep for455

PoisMixSp (Fig. 4). Initial explorations suggested similar performance of predictions456

generated via the schematics in Figs. 4A-B, but the approach in Fig. 4B was used in457

reported results. We also examined the relative performance of a “mixed predictive check”458

(Marshall and Spiegelhalter 2007, ; Fig. 4C) for the PoisMixSp model.459

To calculate some of the omnibus discrepancy checks (Table 2), one must also specify a460

method for calculating the expectation, E(yi|θ). As with posterior predictions, this461

calculation depends on what one admits to being a parameter (e.g., are the latent ν462

variables part of the parameter set, θ?). We opted to start with the lowest level parameters463

possible. For instance, for PoisMix we calculate the expectation relative to the parameter464

set θ ≡ {β, τε}; as such, the lognormal expectation is E(yi|θ) = exp(xiβ + 0.5τ−1
ε ). For465

PoisMixSp, we compute the expectation relative to θ ≡ {β, τε, τη}, so that466

E(yi|θ) = exp(xiβ + 0.5(τ−1
ε + τ−1

η )).467

Pivotal discrepancy measures468

We used Alg. 3 (Appendix A) to conduct PDM tests on each simulated data set and model469

type. For all models, we assessed fit of the Poisson stage; for the PoisMix and PoisMixSp470

models, we also applied PDM tests on the Gaussian stage (see e.g., Fig. 5). These tests471

produce a collection of p-values for each fitted model; one for each posterior parameter472

sample (i.e., one for each MCMC iteration). We used the median p-value from this473

collection to summarize overall PDM goodness-of-fit.474
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Sampled predictive p-values475

In addition to the median p-value from applying PDM tests, we also sampled a single PDM476

p-value at random from each MCMC run. This p-value was used as the sampled predictive477

p-value for each fitted model.478

K-fold cross-validation479

We used a cross-validation procedure to estimate an omnibus p-value for the PoisMix480

model, but did not attempt to apply it to the Pois0 or PoisMixSp models owing to high481

computational cost. To improve computational efficiency, we modified Alg. 4 (Appendix A)482

to use k-fold cross-validation instead of leave-one-out cross-validation. For each simulated483

dataset, we partitioned data into k = 40 “folds” of m = 5 observations each. We then fit484

the PoisMix model to each unique combination of 39 of these groups, systematically485

leaving out a single fold for testing (each observation was left out of the analysis exactly486

once). We then calculated an empirical CDF value for each omitted observation i as487

ui = n−1

n∑
j=1

I(yrepij < yi) + 0.5I(yrepij = yi).

Here, I(yrepij < yi) is a binary indicator function taking on the value 1.0 if the posterior488

prediction of observation i at MCMC sample j (yrepij ) is less than the observed data at i.489

The binary indicator function I(yrepij = yi) takes on the value 1.0 if yrepij = yi.490

According to PIT theory, the ui values should be uniformly distributed on (0, 1) if the491

model being tested does a reasonable job of predicting the data. For each simulated492

dataset, we used a χ2 test (with ten equally space bins) to test for uniformity; the493

associated p-value was used as an omnibus cross-validation p-value.494
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Posterior Moran’s I for spatial autocorrelation495

To test for residual spatial autocorrelation, we calculated a posterior distribution for the496

Moran’s I statistic on residuals for each model fitted to simulated data. For each of497

j ∈ 1, 2, . . . , n samples from the posterior distribution (e.g., for each MCMC sample),498

Moran’s I was calculated using the residuals y − E(y|θj). For Pois0, we set499

E(y|θj) = exp(Xβ); for PoisMix and PoisMixSp, we set E(y|θj) = exp(ν).500

Spatial regression simulation results501

Posterior predictive p-values were extremely conservative, with p-values highly clustered502

near 0.5 under the null case where the data generating model and estimation model were503

the same (Fig. 6). By contrast, an unbiased test should generate an approximately uniform504

distribution of p-values under the null. Tests using the median p-value associated with505

PDMs were also conservative, as were mixed predictive checks and those calculated relative506

to posterior Moran’s I statistics. At least in this example, the mixed predictive check507

actually appeared slightly more conservative than posterior predictive checks. Posterior508

predictive checks that depended on parameters in the discrepancy function (e.g, χ2,509

deviance based discrepancies) appeared to be slightly more conservative than those that510

depended solely on observed and simulated data properties (e.g., the ‘tail’ discrepancy511

comparing upper quantiles). In fact, the only p-values that appeared to have good nominal512

properties were sampled predictive p-values and cross-validation p-values. We did not513

explicitly quantify null properties of cross-validation p-values, but these should be uniform514

under the null because the data used to fit and test the model were truly independent in515

this case.516

For the Pois0 model, the mean directed posterior predictive p-value examining tail517
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probabilities was 0.09 over all simulated data sets; the means of all other p-values518

(posterior predictive and otherwise) were < 0.01 for the Pois0 model. As such, all model519

checking procedures had high power to appropriately detect the inadequacy of the basic520

Poisson model.521

For the PoisMix model, only the cross-validation test, the Moran I test, and tests based522

on PDMs of the Gaussian portion of the model had any power to detect model inadequacy523

(Fig. 6). Of these, the sampled predictive p-value had higher power than the p-value based524

on the median PDM. The remaining model checking approaches (notably including those525

based on posterior predictive checks) had no power to detect model inadequacy (Fig. 6).526

The need for closure: N-mixture models527

N -mixture models are a class of hierarchical models that use count data collected from528

repeated visits to multiple sites to estimate abundance in the presence of an unknown529

detection probability (Royle 2004). That is, counts yij are collected during sampling visits530

j = 1, . . . , J , at sites i = 1, . . . , n, and are assumed to be independent binomial random531

variables, conditional on constant abundance Ni and detection probability p;532

yij ∼ Binomial(Ni, p). Additionally, Ni is assumed to be an independent random variable533

with probability mass function [Ni|θ] (e.g., Poisson, negative binomial, Conway-Maxwell534

Poisson). The assumption of constant abundance Nij = Ni ∀j is critical for accurate535

estimates of Ni and p (Barker et al. 2017). In practice, this assumption implies that a536

population at site i is closed with respect to births, deaths, immigration, and emigration,537

for all replicate temporal surveys at the site. Violation of this assumption can lead to538

non-identifiability of the N and p parameters, or worse, posterior distributions that539

converge, but result in Ni being biased high and p being biased low (Kéry and Royle 2016,540
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Appendix C).541

The appropriateness of the closure assumption has often been determined by judgment542

of the investigators, who assess whether time between replicate surveys is short relative to543

the dynamics of the system, and whether individual movement is small, compared to the544

size of sample plots (e.g., Efford and Dawson 2012; but see Dail and Madsen 2011, for a545

frequentist test of this assumption using a model selection approach). As an alternative, we546

consider the utility of BMC to assess the closure assumption for N -mixture models. We547

first consider a brief simulated example where truth is known. We then examine real data548

consisting of counts of sea otters from aerial photographs taken in Glacier Bay National549

Park, southeastern Alaska. For additional model checking examples and other violations of550

assumptions of the N -mixture model, including zero-inflation, extra-Poisson dispersion,551

extra-binomial dispersion, unmodeled site covariates, and unmodeled detection covariates,552

see Kéry and Royle (2016, section 6.8).553

Simulation554

We examined the most common form of N -mixture model for ecological data,555

yij ∼ Binomial(Ni, pi),

Ni ∼ Poisson(λi),

log(λi) = x′iβ,

logit(pi) = w′iα,

(5)

where pi and the expected abundance λi depend on covariates wi and xi, respectively. We556

used Eq. (5) to simulate data, with one additional step to induce violation of the closure557
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assumption. We examined a series of eight cases where the closure assumption was558

increasingly violated by letting559

Nij ∼ Discrete-Uniform(Ni,j−1(1− c), Ni,j−1(1 + c)),

for j = 2, . . . , J , and c = {0, 0.05, 0.10, 0.15, 0.20, 0.25, 0.30, 0.35}, where c can be560

interpreted as the maximum proportion of the population that could move in or out of a561

site between j − 1 and j. For all values of c, we set β = (4, 1)′ and α = (1,−1)′,562

i = 1, . . . , n = 300, j = 1, . . . , J = 5. The covariate matrices X and W each had563

dimensions 300× 2, where the first column was all ones, and the second column was564

generated by sampling from a Bernoulli distribution with probability 0.5 for all i. We then565

fit Eq. 5 to the generated data using a MCMC algorithm written in R. Using the fitted566

model, we assessed the effectiveness of posterior predictive and sampled predictive p-values567

for diagnosing the closure assumption. When c = 0, the model used to generate the data568

was the same as the model used to fit the data, and our model checking procedures should569

indicate no lack of model fit. In all other cases, the closure assumption was violated, with570

the degree of violation proportional to the value of c. Annotated R code, results, and571

figures from the simulation are provided in Appendix C.572

Results573

When the closure assumption was met (c = 0), the estimated posterior distributions574

recovered true parameter values well, which was expected (Table 4, Appendix C). The575

posterior predictive p-value was 0.48, and the sampled predictive p-value was 0.27,576

suggesting no lack of model fit from either model checking proceedure (Table 4).577
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When the closure assumption was violated (i.e., c > 0), MCMC chains appeared to578

converge to stationary posterior distributions (Appendix C), and convergence was often579

supported by Gelman-Rubin diagnostics (Table 4). However, abundance was always580

overestimated when the closure assumption was violated, and the true abundance value581

used to simulate the data was always outside estimated 95% credible intervals (Table 4).582

The posterior predictive p-values did not suggest lack of model fit when c < 0.10, and583

suggested lack of model fit otherwise (Table 4). The sampled predictive p-value correctly584

identified violation in the closure assumption (assuming a type I error rate of 0.05) for all585

values of c, for this simulation (Table 4). The effective sample sizes of the MCMC chains586

were small due to the autocorrelation between abundance and detection probability in the587

N -mixture model (Table 4). Mean abundance estimates erroneously increased, with588

increased violation in the closure assumption, and confidence intervals failed to cover the589

true abundance value by allowing just 5% of the population to move in or out of a site590

between surveys.591

We note that assessing the closure assumption of N-mixture models using posterior592

predictive p-values and sampled predictive p-values may be challenging in some areas of593

the parameter space, because the biased parameter estimates obtained from fitting data594

from an open population can produce data yrepi ∼ [y|θbiased] that are almost595

indistinguishable (i.e., similar first and second moments) from the open population data.596

Further, other scientifically plausible models where Ni (or λi ) are not identifiable also lead597

to data that are indistinguishable from data generated under an N-mixture model (Barker598

et al. 2017). Thus, model-checking is an important step in evaluating a model, but is not a599

replacement for proper study design.600
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Estimating sea otter detection probability from aerial photographs601

Williams et al. (2017) describe a framework for using aerial photograph data to fit602

N -mixture models, where photographs are taken such that a subset of images overlap in603

space. The subset of overlapping images provide temporal replication of counts of604

individuals at spatial locations that can be used to estimate p in the N -mixture modeling605

framework. To assess the utility of their approach, Williams et al. (2017) conducted an606

aerial survey in Glacier Bay National Park, southeastern Alaska, in which they identified607

groups of sea otters at the surface of the ocean, flew over the groups of sea otters multiple608

times, and captured an image of the group of sea otters for each flight over the group. In609

their study, a primary observer operated the camera, and a secondary observer watched the610

groups of sea otters to ensure the closure assumption of N -mixture models was met. That611

is, whether sea otters dispersed out of, or into, the footprint of the photograph among612

temporal replicates. According to observer notes, 20 of the 21 groups of sea otters that613

were photographed multiple times did not appear to violate the closure assumption. For614

analysis, Williams et al. (2017) omitted the one site that appeared to violate the closure615

assumption. Here, we use Bayesian model checking as a formal method for assessing the616

closure assumption of two data sets that are used to fit the N -mixture model. The first617

data set is the complete set of 21 observations initially collected for Williams et al. (2017).618

The second data set is the data provided in Table 1 of Williams et al. (2017) which omits619

the problematic site. The full data set is provided in the R package HierarchicalGOF. As620

in our N -mixture model simulation study above, we used Bayesian p-values and sampled621
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posterior predictive values to check our model. We used each data set to fit the model622

yij ∼ Binomial(Ni, p),

Ni ∼ Poisson(λi),

λi ∼ Gamma(0.001, 0.001),

p ∼ Beta(1, 1),

using an MCMC algorithm written in R (Appendix C). The Bayesian p-value for the full623

data set (21 sites) was 0.048 and the sampled posterior predictive value was 0.059,624

suggesting potential lack of model fit. The Bayesian p-value for the restricted data set used625

in Williams et al. (2017) was 0.5630 and the sampled posterior predictive value was 0.823,626

suggesting no lack of model fit. Thus, model checking proceedures can provide a formal627

method for examining the closure assumption of N -mixture models for our example, and628

corroborates the auxillary information collected by the observers.629

Should I stay or should I go? Hidden Markov Models630

In this example, we present another assessment of goodness-of-fit for a model that is631

quickly becoming popular within the ecological community, the Hidden Markov Model632

(HMM; Zucchini and MacDonald 2009). HMMs are a general class of models for time633

series data that describe the dynamics of a process in terms of potentially unobserverable634

(latent) states that generate observable data according to state-dependent distributions.635

Using HMMs, ecologists can construct models that make inference to biologically relevant636

‘states’ (e.g., infection status, foraging/not foraging) even when data consist solely of cues637

(e.g., field observations, locations of satellite tags).638
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One implicit (and seldom tested) assumption of HMM models is that the amount of639

time spent within a state (the residence time) is geometrically distributed. The geometric640

distribution implies a strictly decreasing distribution of residence times, and may not be641

realistic for certain ecological time series. For instance, if a hidden state corresponds to642

“foraging,” one might expect a dome-shaped distribution of residence times.643

In this section, we use BMC to assess the assumption of geometrically distributed644

residence times in HMMs applied to California sea lion (CSL) rookery attendance patterns.645

We do this by comparing the fit of a Bayesian HMM, as well as the fit of an alternative646

Bayesian hidden semi -Markov model (HSMM) that allows more flexible residence time647

distributions.648

The HMM is formed by considering a time series of categorical variables, Z1, . . . , ZT649

that represent the hidden states. For each t, Zt ∈ {1, . . . , S}, where S is the number of650

latent states. The Zt process follows a Markov chain with transition matrix Γt in which the651

j, k entry is Γtjk = [Zt = k|Zt−1 = j]. The state process is hidden (at least partially), so,652

the researcher is only able to make observation yt with distribution [yt|Zt] and observations653

are independent given the hidden states. For n independent individual replications, the654

complete likelihood is655

[y,Z|ψ,Γ] =
n∏
i=1

T∏
t=1

[yit|Zit,ψt] [Zit|Zi,t−1,Γt],

where ψt is a parameter vector for the observation process. For Bayesian inference within656

an MCMC algorithm, we make use of the forward algorithm (see Zucchini and MacDonald657

2009) to integrate over the missing state process and evaluate the integrated likelihood658

[y|ψ,Γ], thus we can generate a posterior sample without having to sample Z in the659
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process.660

The CSL data are composed of a time series or capture-history of 66 females on San661

Miguel I., California over the course of 2 months (61 days) during the pupping season. It662

was noted whether or not a previously marked CSL female was seen on a particular day663

(i.e., yit = 1, 0, respectively, i = 1, . . . , 66 and t = 1, . . . , 61). The probability of observing a664

particular CSL female on a given day depends on her unobserved reproductive state: (1)665

pre-birth, (2) neonatal, (3) at-sea foraging, and (4) on-land nursing. The detection666

probability for CSL females in the pre-birth state is likely to be low because without a pup667

they are not attached to the rookery and can come and go as they please. In the neonatal668

state the female remains on shore for approximately 5–7 days to nurse the newborn pup.669

After this period, the female begins foraging trips where she feeds for several days and670

returns to nurse the pup. While the CSL female is at-sea she has a detection probability of671

0.0. For females that have just given birth, or are returning from a foraging trip, they will672

be tending to their pups and are more available to be detected.673

To make inference on the attendance patterns of the CSL we used an HMM with the674

state transition matrix675

Γt = Γ =



γ1 1− γ1 0 0

0 γ2 1− γ2 0

0 0 γ3 1− γ3

0 0 1− γ4 γ4


This allows the process to pass from each state to the next in the reproductive schedule676

with alternating (3) at-sea and (4) on-land states. Conditioning on the reproductive state,677
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the observation model is678

[yit|Zit] = Bernoulli(ψ(Zit)),

where the detection parameters are constrained as ψ(1) = ψ1, ψ(3) = 0, and679

ψ(2) = ψ(4) = ψ2. The parameters ψ1 and ψ2 represent pre-birth and after-birth detection680

probability.681

To assess model fit, we used the Tukey fit statistic682

T (y;ψ,Γ) =
∑
t

(√
dt −

√
E[dt]

)2

,

where dt is the number of observed detections on occasion t and E[dt] is the expected683

number of detections given by the HMM model. This statistic is less sensitive to small684

expected values, which are likely to occur early in the summer as detection probabilities for685

the pre-birth state are quite low leading to few expected detections. For day t, the686

expected number of detections is687

E[dt] = nδ′Γt−1ψ,

were δ = (1, 0, 0, 0)′, as all animals start in the pre-birth state, and ψ = (ψ1, ψ2, 0, ψ2)′688

Two versions of the HMM model were fit to the data, one in which ψ1 and ψ2 were689

constant through time and one in which they were allowed to vary with each occasion690

(shared additive time effect). For variable time ψ models, detection was parameterized691

logit (ψlt) = logit (ψl) + εt for l = 1, 2, t = 1, . . . , 61, and ε1 = 0 for identifiability. We used692

the following prior distributions in this analysis:693
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• [logit (γk)] ∝ 1694

• [ψl] = U(0, 1); l = 1, 2695

• [εt] ∝ exp{−|εt|/2}; t = 2, . . . , 61.696

The Laplace prior for εt was used to shrink unnecessary deviations to zero.697

A collapsed MCMC sampler using the forward algorithm to calculate [y|ψ,γ] was used698

so that the Zit process did not have to be sampled. Each sampler was run for 50,000699

iterations following burn-in. To calculate the reference distribution for the discrepancy700

function, replicated data were simulated at every 10th iteration. After fitting, the posterior701

predictive p-value for both models was ≈ 0, which strongly implies lack of fit. Although702

individual detection heterogeneity might be the source of fit issues, examination of Figure 7703

suggests a systemic positive bias in the initial days and a negative bias in the middle of704

season, indicating possible issues with basic model structure.705

The Markov assumption of the latent state process implies that, after landing in state706

k, the amount of time spent there is geometrically distributed with parameter 1− γk.707

Further, this implies that the most common (i.e., modal) amount of time spent is one time708

step. As γk approaches 1, this distribution flattens out, but retains a mode of 1. An709

alternative model that relaxes this assumption is the HSMM. In the HSMM, the residence710

time is explicitly modeled and at the end of the residence period a transition is made to711

another state with probability Γ̃jk. For an HSMM, Γ̃kk = 0 because remaining in a state is712

governed by the residence time model. This extra generality comes at a computational713

cost; however, Langrock and Zucchini (2011) provide a method for calculating an HSMM714

likelihood with an HMM algorithm, such that the forward algorithm can still be used for715

inference.716
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In terms of the CSL analysis, the off-diagonal elements of the HSMM transition matrix717

occur at the same locations as in the HMM but are all equal to 1 because after the718

residence time has expired, the animal immediately moves to the next stage in the719

reproductive schedule (alternating between at-sea and on-land at the end). The residence720

time was modeled using a shifted Poisson(λk), that is residence time minus 1 is Poisson721

distributed. We set prior distributions for residence time parameters as [log λk] ∝ 1. Prior722

distributions for the detection parameters remained the same as before. Using the “HSMM723

as HMM” technique of Langrock and Zucchini (2011), we sampled the posterior724

distributions using the same MCMC algorithm as in the HMM case.725

The p-value for the Tukey fit statistic under the constant time model was 0.09, so, it726

was an improvement over the HMM models, but still low enough to cause concern.727

However, for the time varying ψ HSMM model, the p-value was 0.82, indicating a728

substantial improvement in fit. By reducing the probability that an animal would729

transition from pre-birth to birth states immediately after the start of the study, the730

HSMM model was able to accommodate a similar average residence time to the HMM731

without maintaining a mode of 1 (Figure 7), producing a more biologically realistic model.732

Discussion733

Ecologists increasingly use hierarchical Bayesian models to analyze their data. Such models734

are powerful, allowing researchers to represent complex, and often dynamic, ecological735

processes. Under the Bayesian calculus, ecologists can partition observation error from736

process error, produce detailed predictions, and properly carry through uncertainty when737

making inferences. The ability to build complex models is exciting, but does not absolve us738
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of the need to check whether models fit our data. If anything, complicated models should739

be subject to more scrutiny than simple models, as there are more places where things can740

go wrong.741

One way to ensure a model fits the data is simply to build a sufficiently flexible model.742

To take an extreme example, a saturated model (one where there is a separate parameter743

for each datum) fits the data perfectly. No one would actually do this in practice; science744

proceeds by establishing generalities, and there is no generality implicit in such a model.745

Further, there is no way to predict future outcomes. Indeed, models with high complexity746

can fit the data well, but may have poorer predictive ability and inferential value than a747

model of lower complexity (Burnham and Anderson 2002, Hooten and Hobbs 2015).748

When unsure of the desirable level of complexity or number of predictive covariates to749

include in a model, one approach is to fit a number of different models and to average750

among the models according to some criterion (see, e.g., Green 1995, Hoeting et al. 1999,751

Link and Barker 2006). Still, unless one conducts model checking exercises, there is no752

assurance that any of the models fit the data. Further, there are costs to model averaging,753

especially in Bayesian applications where considerable effort is needed to implement an754

appropriate algorithm. In such cases, it may make more sense to iterate on a single model755

(Ver Hoef and Boveng 2015), and thus, model checking becomes even more important.756

We have described a wide variety of Bayesian model checking procedures with the aim757

of providing ecologists an overview of possible approaches, including strengths and758

limitations. Our intention is not to be prescriptive, but to guide ecologists into making an759

appropriate choice. For instance, using simulation, we showed that the popular posterior760

predictive p-value (and several other metrics) can have overstated power to “reject” the761

null hypothesis that data arose from the model. In the spatial regression example, the762
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Bayesian p-value often failed to reject models without spatial structure even when data763

were simulated with considerable spatial autocorrelation. This overstated power is because764

of the double use of data, which are used both to fit the model and also to calculate a tail765

probability. However, as shown in the sea otter and California sea lion examples, the766

posterior predictive p-value can be useful in diagnosing obvious cases of lack-of-fit and in767

producing more biologically realistic models. Other choices, such as those based on768

cross-validation, have better stated properties and would be preferable on theoretical769

grounds, but may be more difficult to implement. Regardless of the approach(es) chosen,770

ecologists can start incorporating BMC as a standard part of their analysis workflow (e.g.,771

Fig. 1).772

In ecology, simplistic processes are rare: we often expect heterogeneity among773

individuals, patchy responses, and variation that is partially unexplained by gathered774

covariates. Therein lies an apparent contradiction: we expect lack-of-fit in our models, but775

still want to minimize biases attributable to poor modeling assumptions. From our776

perspective, the goal of model checking should not be to develop a model that fits the data777

perfectly, but rather to probe models for assumption violations that result in systematic778

errors. Such errors can lead to biased inferences or misstated precision, which are779

problematic in applied conservation and for scientific enterprise in general. It is therefore780

vital that we do a better job of conducting and reporting the results of model checks when781

publishing research results.782
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Table 1. Types and causes of lack-of-fit in statistical models

Concept Description
Dependent
responses

Many statistical models assume independent response variables. Lack of
independence can have multiple causes, including behavioral coupling
and unmodeled explanatory variables, with the latter often inducing
residual spatial or temporal autocorrelation. The usual result is inflated
sample size, underestimated variance, and overdispersion relative to the
assumed model.

Kurtosis The sharpness of the peak of a probability distribution. Assuming a
probability distribution with too high a kurtosis can increase the impact
of outliers on an analysis.

Nonidentical
distribution

Statistical models often assume that responses are identically distributed
(i.e., have the same underlying probability distribution). However, this
need not be the case. For instance, Heteroskedasticity refers to the case
in which variance changes as a function of the magnitude of the response.

Outliers Outliers consist of observations that are surprisingly different than those
predicted by a statistical model. They can arise because of measurement
error, or because of model misspecification (particularly with regard to
kurtosis). Outliers can often have undue influence on the results of an
analysis (i.e., high leverage), and it may be advantageous to choose mod-
els that are robust to the presence of outliers.

Over-
parameterization

A model is overparameterized whenever two or more combinations of
parameters give the same, optimal solution given the data and assumed
model. If overparameterization is a function of the model only (i.e., could
not be resolved by collection of more data), a particular parameter set
is said to be non-identifiable. If it is overparameterized because data
are too sparse to discriminate between alternative solutions, a particu-
lar parameter set is said to be non-estimable. Overparameterization can
be studied analytically or (perhaps more commonly) through numerical
techniques such as singular value decomposition. It can be difficult to
diagnose in Bayesian applications because it typically results in a multi-
modal posterior distribution, and it can be difficult to discern whether
all the modes have been reached.

Overdispersion A condition where the statistical model is incapable of reproducing the
amount of variation observed in a data set. Three common types of
overdispersion in ecological data are (i) unmodeled heterogeneity, (ii)
dependent responses, and (iii) zero-inflation.

Skewness The amount of asymmetry of an assumed probability density about its
mean.
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Table 2. Discrepancy functions and pivotal quantities useful for hierarchical model checking.

Name Definition Comments
A. Omnibus discrepancy functions

χ2 T (y,θ) =
∑

i
(yi−E(yi|θ))2

E(yi|θ)
Often used for count data;
suggested by Gelman et al.
(2014) (among others).

Deviance (D) T (y,θ) = −2 log[y|θ] Used by King et al. (2009)

Likelihood ratio
statistic

T (y,θ) = 2
∑

i yi log( yi
E(yi|θ)

) Used by Lunn et al. (2013)

Freeman-Tukey
Statistic

T (y,θ) =
∑

i(
√
yi −

√
E(yi|θ))2 Less sensitive to small ex-

pected values than χ2; sug-
gested by Kéry and Royle
(2016) for count data.

B. Targeted discrepancy functions
Proportion of zeros T (y) =

∑
i I(yi = 0) Zero inflation check for

count data

Kurtosis checks T (y) = yp Using the pth quantile can
be useful for checking for
proper tail behavior.

C. Pivotal quantities
Y ∼ Exponential(λ) λȲ ∼ Gamma(n, n) Note n is sample size

Y ∼ N (µ, σ2) (Gaus-
sian)

Y−µ
σ
∼ N (0, 1) For mean µ and standard

deviation σ

Y ∼Weibull(α, β) βY α ∼ Exponential(1)

Y from any distribu-
tion

Z = Ȳ−µ
σ/
√
n

D−→ N (0, 1) For large sample size (n),
Z converges in distribution
to a standard normal (Slut-
sky’s theorem) and Z is
termed an “asymptotically
pivotal quantity.”
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Table 3. A summary of Bayesian model checking approaches. For each method, we describe
whether each method (1) tends to be “conservative” (i.e., has overstated power to detect goodness-
of-fit), (2) whether all levels of the modeling hierarchy can be evaluated (“all levels”), (3) whether
out-of-sample data are used to assess lack-of-fit (“out-of-sample”), and (4) computing cost (“cost”).

Method conservative all levels out-of-sample cost
Pivotal discrepancy Yes Yes No medium
Posterior predictive check Yes No No low
Prior predictive check No Yes No low
Predictive PIT tests No No Yes high
Sampled predictive p-value No Maybe No low
Graphical Maybe Maybe No low

Table 4. Results of one simulation for examining the effect of the closure assumption on model
fit in the sea otter example. The notation c represents the maximum proportion of the population
that could move in or out of a site between j − 1 and j, p-value is the posterior predicitive p-value
using a χ-squared goodness-of-fit statistic, sppv is the sampled predictive p-value using the sum
of variance test statistic, Abundance is the mean of the marginal posterior distribution for total
abundance at the 300 sites, the 95% CRI are the 95% credible intervals, GR is the multi-variate
Gelman-Rubin convergence diagnostic, and ESS is the effective sample size of 1,000,000 MCMC
iterations.

c p-value sppv Abundance (truth=50,989) 95% CRI GR ESS
0.00 0.48 0.27 51,200 (49,295, 53,481) 1.00 3,420
0.05 0.40 1.00 60,047 (56,605, 63,868) 1.00 3,260
0.10 0.00 1.00 81,299 (75,223, 89,601) 1.01 3,194
0.15 0.00 1.00 97,066 (89,149, 104,360) 1.13 3,199
0.20 0.00 0.02 117,624 (108,825, 127,007) 1.03 3,184
0.25 0.00 0.01 119,397 (110,477, 125,992) 1.06 3,206
0.30 0.00 0.00 133,797 (124,194, 141,117) 1.10 3,195
0.35 0.00 0.00 139,951 (133,351, 147,086) 1.00 3,213
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FIGURE CAPTIONS951

FIGURE 1. A decision diagram describing the steps to adopt when reporting the952

results of Bayesian analyses in the literature, particularly when results will be used for953

conservation and management or to inform ecological theory. The first step is to formulate954

reasonable ecological models, ensuring that the model(s) and associated software is free of955

errors and that convergence to the posterior distribution can be achieved (using Markov956

chain Monte Carlo, for instance). Following this step, models should be checked against957

observed data to diagnose possible model misspecification (the subject of this article).958

Assuming no obvious inadequacies, various model comparison or averaging techniques can959

be used to compare the predictive performance of alternative models that embody different960

ecological hypotheses. Finally, we suggest conducting robustness analyses (prior sensitivity961

analyses, simulation analyses where model assumptions are violated) to gauge the962

importance of implicit parametric assumptions on ecological inference.963

FIGURE 2. Type of model checking procedures used in n = 31 articles published in the964

journal Ecology during 2014 and 2015. Articles were found via a Web of Science for articles965

including the topic “Bayesian” (search conducted 10/1/2015). Six articles were determined966

to be non-applicable (N/A) because they either (1) were simulation studies, or (2) used967

approximate Bayesian computation, which is conceptually different than traditional968

Bayesian inference (see e.g., Beaumont et al. 2002). Of the remaining 25, 20 did not report969

any model checking procedures. Five articles reported specific model checking procedures,970

which included a combination of Bayesian cross-validation (Cross.val, ), frequentist971

software (Non-Bayes), posterior predictive p-values (Pp.pval), and posterior predictive972

graphical checks (Pp.gc). Some articles also investigated prior sensitivity which can be973

regarded as a form of model checking, but we do not report prior sensitivity checks here.974
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FIGURE 3. A depiction of how simulated count data are generated. First, a spatially975

autocorrelated covariate is generated using a Matérn cluster process (A) over a region A2.976

Second, a spatially autocorrelated random effect is simulated according to a predictive977

process formulation (B), where the parent process occurs at a knot level (C; open circles).978

The covariate and spatial random effect values combine on the log scale to generate979

expected abundance (C). Sampling locations (C; small points) are randomly placed over a980

subregion, A1 of the study area, where A1 is defined by the inner box of knot values.981

Finally, counts are simulated according to a Poisson distribution (D). Note that counts are982

simulated in A1 ⊂ A2 to eliminate possible edge effects.983

FIGURE 4. Three possible ways of simulating replicate data to calculate posterior984

predictive p-values for the spatial regression simulation study. Solid boxes indicate985

parameters or latent variables that occur in the directed graph for observed counts, while986

dashed boxes indicate posterior predictions. In (A), replicate data (yrepi ) for a given987

observation i depend only upon the latent variable νi, posterior samples of which are988

available directly from MCMC sampling. In (B), replicate values of νi are simulated (νrepi )989

prior to generating posterior predictions. In (C), an example of a “mixed predictive check,”990

spatially autocorrelated random effects are also resimulated (ηrepi ), conditional on the991

values of random effects at other sites, η−i, and parameters describing spatial992

autocorrelation (i.e., precision τη and exponential decay φ).993

FIGURE 5. Example computation of a χ2 discrepancy test using a CDF pivot for a994

single posterior sample of a Normal-Poisson mixture model (without spatial995

autocorrelation) fit to simulated count data. In this case, the test focuses on the fit of the996

the latent variable ν to a Gaussian distribution with mean given by the linear predictor997

(i.e., Xβ) and precision τ as specified in the PoisMix model. The test we employed998
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partitions the linear predictor based on 20%, 40%, 60%, and 80% quantiles (solid lines),999

and assesses whether the Gaussian CDF in these ranges is uniformly distributed within five1000

bins. If modeling assumptions are met, there should be a roughly equal number of1001

observations in each bin. For the data presented here, there appears to underpredictions at1002

low and high values of the linear predictor.1003

FIGURE 6. Histogram bin heights showing the relative frequency of 1000 p-values as1004

obtained in the spatial regression simulation study (histograms have 10 bins). The dashed1005

line represents the case where the simulation and estimation model were the same1006

(PoisMixSp). An unbiased test should have a roughly uniform distribution in this case,1007

whereas concave distributions indicate that the test is conservative. A greater frequency of1008

low p-values (e.g., < 0.1) under PoisMix (solid lines) indicate a higher power of rejecting1009

the PoisMix model, a model that incorrectly omits the possibility of residual spatial1010

autocorrelation. The following types of p-values were calculated: k-fold cross-validation1011

(‘Cross.val’; PoisMix model only), a mixed predictive p-value using the Freeman-Tukey1012

discrepancy (‘Mixed.FT’; PoisMixSp model only), posterior Moran’s I (‘Moran’), median1013

pivot discrepancy on the Gaussian (‘Pivot.Gauss’) and Poisson (‘Pivot.Pois’) parts of the1014

model, a posterior predictive p-value with a χ2 discrepancy function (‘PP.ChiSq’),1015

posterior predictive p-values using a deviance-based discrepancy calculated relative to the1016

Poisson (‘PP.Dev.Pois’) and Gaussian (‘PP.Dev.Gauss’) portions of the likelihood, a1017

posterior predictive p-value calculated with the Freeman-Tukey discrepancy (‘PP.FT’), a1018

posterior predictive p-value using a 95th quantile discrepancy (‘PP.Tail’), and sampled1019

predictive p-values relative the Gaussian (‘Sampled.Gauss’) and Poisson (‘Sampled.Pois’)1020

parts of the model.1021

FIGURE 7. Observed and expected values for the number of detected animals that1022
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were previously marked. Light and dark blue envelopes represent the 50 and 90th highest1023

probability density interval for the expected number of detections under the HMM model,1024

respectively. The red envelopes represent the equivalent intervals for the HSMM model1025

with shifted Poisson residence time distributions for each state. The gaps in the envelopes1026

represent days in which resighting did not occur and detection probabilities were fixed to 0.1027
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Fig 2
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Appendix A: Algorithms for model checking procedures

Algorithm 1 Prior predictive check algorithm for computing a Bayesian p-value, P using
m samples from the posterior distribution. A selection of discrepancy measures T (y,θ) are
provided in Table 2 of the main article text.
P ← 0
for i ∈ 1 : m do

Draw θi ∼ [θ]
Draw yrep

i ∼ [y|θi]
Calculate T rep

i = T (yrep
i ,θi)

Calculate T obs
i = T (yi,θi)

if T obs
i < T rep

i then
P ← P + 1

end if
end for
P ← P/m
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Algorithm 2 Posterior predictive check algorithm for computing a Bayesian p-value, P using
m samples from the posterior distribution. A selection of discrepancy measures T (y,θ) are
provided in Table 2 of the main article text.

P ← 0
for i ∈ 1 : m do

Draw θi ∼ [θ|y]
Draw yrep

i ∼ [y|θi]
Calculate T rep

i = T (yrep
i ,θi)

Calculate T obs
i = T (yi,θi)

if T obs
i < T rep

i then
P ← P + 1

end if
end for
P ← P/m
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Algorithm 3 Algorithm for conducting a pivotal discrepancy check to assess the distri-
bution of modeled quantities. If distributional assumptions are reasonable, the cumulative
distribution function associated with modeled quantities should be uniformly distributed
(Johnson 2004, Yuan and Johnson 2012). Note that n denotes sample size and m denotes
the number of posterior samples utilized. This method relies on binning the pivotal quantity
(wij = g(yij,θi) into K × L bins, where K and L are fixed by the investigator (bins should
be chosen to achieve reasonable sample size in each of the KL bin combinations). We use Θ
to denote the cumulative distribution function for the distribution of the pivotal quantity.
Specific examples of g() and Θ are provided in the text. As written, this algorithm assesses
the fit of the data distribution [y|θ]; however, note that it can be applied to other levels of
a hierarchical model.

Set bl ← l/L for l = 0, 1, . . . , L
Set Oikl ← 0 ∀ i ∈ 1 : m, k ∈ 1 : K, l ∈ 1 : L
Set nik ← 0 ∀ i ∈ 1 : m, k ∈ 1 : K
for i ∈ 1 : m do

Draw θi ∼ [θ|y]
for j ∈ 1 : n do
µij ← E(yj|θi)
wij ← g(yij,θi)

end for
Set q0 ← −∞, qK ← ∞, and qh ← quantileh/K∗100%(µij) for h ∈ 1 : (K − 1) and the
quantile is taken over j ∈ 1 : n)
for k ∈ 1 : K do
for j ∈ 1 : n do
if qk−1 ≤ µij < qk then
rij ← k
nik ← nik + 1

end if
end for
for l ∈ 1 : L do
if Θ(wij) ∈ (bl−1, bl] & rij = k then
Oikl ← Oikl + 1

end if
end for
Set Tik(y,θi)←

∑L
l=1

(Oikl−nikL
−1)2

nikL−1

end for
Set Ti(y,θi)←

∑K
k=1 Tik(y,θi)

end for
Test Tik(y,θi) ∼ χ2

L−1 for targeted lack-of-fit
Test Ti(y,θi) ∼ χ2

K(L−1) for omnibus lack-of-fit
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Algorithm 4 Algorithm for conducting predictive probability integral transform (PIT)
checks, as described by e.g., Früiiwirth-Schnatter (1996). This approach requires having
“test” data; here we assume that a “leave-one-out” procedure is used, although other ap-
proaches are certainly possible (and may be preferable, especially when sample sizes are
large). To this end, we define y−i as the set of data for which the ith observation is missing,
m to be the total number of observations, and n to be the number of posterior samples that
are analyzed for each data set. The indicator function I(A) takes on the value 1.0 if the
statement A is true, and is 0.0 otherwise.

Set uj = 0 ∀ j ∈ {1, 2, . . . , n}
for i ∈ 1 : m do
for j ∈ 1 : n do

Simulate a draw θij from the posterior distribution [θ|y−i] ∝ [y−i|θ][θ]
Simulate a posterior prediction yrepij from the predictive density (or mass function),
[yi|θij]

end for
if yi has continuous support then

Set ui = n−1
∑

j I(yrepij ≤ yi)
end if
if yi has nonnegative integer support (i.e. for count data) then

Set ui = n−1
∑

j I(yrepij < yi) + 0.5I(ỹij = yij)
end if
if yi has binary support then

Set ui = n−1
∑

j I(yrepij = yij)
end if

end for
Divergence from a Uniform(0,1) distribution is indicative of lack of fit. Very high or very
low values may indicate outliers.
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Appendix B: Simulation and estimation procedures for spatial regression example

1 Data generating procedure

For each of 1000 simulation replicates, we generated a spatial count data set at a set of n = 200,

randomly selected points in space. We generated data in several steps.

1. Locate n = 200 points at random in a square study area A1, where A1 ⊂ A2 ⊂ IR2. Call the

set of n = 200 points S = {s1, s2, . . . , sn}.

2. Generate a hypothetical, spatially autocorrelated covariate x using a Matérn cluster process

on A2. Note that the covariate is generated over a larger space than A1 to minimize any

boundary effects with how the covariate is constructed. The Matérn cluster process was

simulated using the rMatClust function in the spatstat package (Baddeley et al. 2015) of

the R programming environment (R Development Core Team 2017). This function requires

three arguments: κ, r, and µ, which represent the intensity of the Poisson process of cluster
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centers, the radius of the clusters, and the mean number of points per cluster, respectively.

These values were set to 12, 0.25, and 100, respectively. Next, a 2-dimensional Gaussian

kernel density estimate was fitted to the simulated point pattern on a 100× 100 grid (call

the realized density at each grid cell j Zj). Finally, the covariate x was constructed as

x = WZ, where W is a matrix where entries wij give the Euclidean distance between si

and Zj . The covariate was then standardized by dividing it by its mean.

3. Generate spatially autocorrelated random effects, η. We generated random effects using a

predictive process formulation (Banerjee et al. 2008), where spatially autocorrelated

random effects are generated on a reduced dimensional subspace. To start, we generated

spatial autocorrelated random effects on a 9× 9 grid of “knots” placed regularly over A2

(see Fig. 3 in main article text) as η̃ ∼ MVN(0,Σ), where Σ is a covariance matrix with

entries σij = ρij/τη. The random effects η are then generated as η = Σ∗Σ−1η̃, where Σ∗ is

a cross-covariance matrix between observed spatial locations S and the knot locations

(Banerjee et al. 2008). For all simulations, we set τη = 1.0 and used an exponential

correlation function with a decay of θ = 2.0 to set the values of ρij .

4. Generate expected abundance for all s ∈ S as µ = exp(Xβ + η + ε), where X is a

two-column design matrix specifying a linear effect of x, η are spatially autocorrelated

random effects, and εs ∼ Normal(0, τ−1ε ) are iid Gaussian errors. For each simulation, we

used τε = 5 and β = [2.00.75]′.

5. Simulate count data, yi|µi ∼ Poisson(µi), at each of the i ∈ {1, 2, . . . , 200} points.

2 Hierarchical modeling framework

For each simulated data set, we fit a sequence of three models following naming convention:

• Pois0: Poisson model with no overdispersion

Yi ∼ Poisson(exp(x′iβ))
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• PoisMix: A Poisson-normal mixture with iid error

Yi ∼ Poisson(exp(νi))

νi ∼ Normal(x′iβ, τ
−1
ε )

• PoisMixSp: The data-generating model, consisting of a Poisson-normal mixture with iid

and spatially autocorrelated errors induced by a predictive process (cf. Banerjee et al. 2008):

Yi ∼ Poisson(exp(νi))

νi ∼ Normal(x′iβ + ηi, τ
−1
ε )

ηi = w′iη̃

η̃ ∼ N (0,Σ)

Here, the w consists of the predictive process “design matrix,” ΣskΣ
−1 (see Data generating

procedure, step 4). Even with the dimension reduction afforded by the predictive process

formulation, computation in JAGS was still quite slow for the PoisMixSp model. To speed it up

further, we implemented a “blocky” predictive process formulation. In particular, we discretized

the parameter space for the exponential decay parameter, θ, to the set

{0.4, 0.8, 1.2, 1.6, 2.0, 2.4, 2.8, 3.2, 3.6, 4.0} (recall that the true value was 2.0). Specifying a discrete

uniform prior on this set, we could then calculate all possible combinations of correlation, cross

correlation, and inverse correlation matrices needed for predictive process calculations and input

them directly into JAGS (i.e. there was no need for computing extra matrix inverse calculations

during MCMC). This greatly decreased execution times.

The following prior distributions were used in all MCMC runs:

• [β] = Normal(0, τ = 100)
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• [τε] = [τη] = gamma(1.0, 0.01).

The parameters of the gamma prior lead to an approximately flat distribution near the origin

with reasonable mass on plausible parameter values.
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1 Simulation Study

1.1 Summary
This section describes the simulation study used for assessing the closure assumption of N-mixture
models in the manuscript A guide to Bayesian model checking for ecologists.

1.2 Setting up the R workspace
Run the following script to install and load required packages and functions needed for the analysis.

rm(list=ls())

required.packages=c("coda",
"devtools",
"mcmcse",
"parallel",
"purrr",
"roxygen2",
"xtable"
)

## install.packages(required.packages)
lapply(required.packages,library,character.only=TRUE)

## Source the MCMC algorithm
source(paste("~/MCMCAlgorithmParallel.R",

sep=""))

## Wrapper for parallel processing
## Also found in HierarchicalGOF package
run.chain.2pl.list=function(models,

Y.list,
X,
W,
n.iter,
checkpoint,
thin,
name.l,
starting.values
){

chain.list=mclapply(models,
function(m){

## Set the seed for this core
this.Y=Y.list[[m]]
this.start=starting.values.l[[m]]
this.name=name.l[[m]]
## Run the chain on this core
this.chain=run.Nmixmcmc.parallel(this.Y,
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X,
W,
n.iter,
checkpoint,
thin,
this.name,
this.start
)

## Return the chain from this core
return(this.chain)

},
mc.cores=min(length(models),detectCores())
)

## Save the initial random seed as the name of the chain
names(chain.list)=models
return(chain.list)

}

1.3 Simulate data for each value of c

###
### Simulate data
###

Y.list=list()
c.val=rep(seq(0,0.35,length.out=8),each=2)
seed=rep(1:(length(c.val)/2),each=2)
n=300
J=5
alpha=c(1,-1)
w1=rep(1,n)
w2=rbinom(n,1,0.5)
W=cbind(w1,w2)
p=exp(W%*%alpha)/(1+exp(W%*%alpha))
beta=c(4.5,1)
x1=rep(1,n)
x2=rbinom(n,1,0.5)
X=cbind(x1,x2)
lambda=exp(X%*%beta)
N.true=matrix(,n,J)
N.true[,1]=rpois(n,lambda)
for(i in 1:length(c.val)){

set.seed(seed[i])
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for(j in 2:J){
N.true[,j]=mapply(

rdunif,
1,
round(N.true[,j-1]*(1+c.val[i])),
round(N.true[,j-1]*(1-c.val[i])))

}
Y.list[[i]]=matrix(rbinom(J*n,N.true,p),n,J)

}
starting.values.l=list()
for(i in 1:length(c.val)){

if((i/1)%%1==0){
starting.values.l[[i]]=list(alpha+0.1,

beta+0.1,
apply(Y.list[[i]],1,max))

}
if((i/2)%%1==0){

starting.values.l[[i]]=list(alpha-0.1,
beta-0.1,
apply(Y.list[[i]],1,max))

}
}

name.l=list()
for(i in 1:length(c.val)){

name.l[[i]]=paste("~/SimExample",i,".RData",sep="")
}
save.image(paste("~/SimulatedData.RData",sep=""))

1.4 Run MCMC algorithms
In this example, 16 MCMC algorithms are run in parallel to fit 16 different models (two chains
for each of 8 values of c) which requires 16 cores. If 16 cores are not available, models must be fit
sequentially using a smaller number of cores. This may take a while.

###
### Run algorithm
###

n.iter=10000000
checkpoint=100000
thin=1
models=1:16

MCMCOutput=run.chain.2pl.list(models,
Y.list,
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X,
W,
n.iter,
checkpoint,
thin,
name.l,
starting.values.l
)

## Save model fitting results
save(MCMCOutput,file=paste("~/MCMCOutput.RData",sep=""))

1.5 Summarize results

##
## Load output and calculate results
##

load(paste("~/SimulatedData.RData",
sep=""))

##
## Create empty containers for output
##

GR.Diag=numeric(8)
ESS=numeric(8)
Status=numeric(8)
Bayes.p=numeric(8)
Mean.N=numeric(8) # Truth = 50989
LB=numeric(8)
UB=numeric(8)

##
## Calculate summaries for each of 8 model fits with different c values
##

for(i in 1:8){

w1=new.env()
load(paste("~/SimExample",

i*2-1,
".RData",sep=""),

envir=w1)
w2=new.env()
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load(paste("~/SimExample",
i*2,
".RData",sep=""),

envir=w2)
status=sum(!is.na(w2$out[,1]))
thin=1000 # large thinning value required due to autocorrelation
burn=100000
ind=seq(burn+1,status,thin)
length(ind)
N.tot1=w1$out[ind,5]
N.tot2=w2$out[ind,5]
Mean.N[i]=mean(w1$out[ind,5])
LB[i]=quantile(w1$out[ind,5],0.025)
UB[i]=quantile(w1$out[ind,5],0.975)

##
## Gelman Rubin Diagnostic
##

chain1=mcmc(w1$out[1:status,1:4])
chain2=mcmc(w2$out[1:status,1:4])
out.list=mcmc.list(chain1,chain2)
GR.Diag[i]=gelman.diag(out.list,confidence = 0.95,

transform=FALSE,autoburnin=TRUE)[2]

##
## Effective sample size
##

ESS[i]=min(ess(chain1))
Status[i]=status

##
## Bayesian p-value
##

T.mcmc.chi2=w1$out[ind,6]
T.data.chi2=w1$out[ind,7]
Bayes.p[i]=sum(T.mcmc.chi2>=T.data.chi2,na.rm=TRUE)/length(ind)

}

##
## Sampled posterior predictive value
##

sppv=rep(NA,8)
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for(i in 1:8){
w1=new.env()
load(paste("~/SimExample",

i*2-1,
".RData",sep=""),

envir=w1)
w2=new.env()
load(paste("~/SimExample",

i*2,
".RData",sep=""),

envir=w2)
(status=sum(!is.na(w2$out[,1])))
thin=100
burn=100000
ind=seq(burn+1,status,thin)
length(ind)

param.vec.id=sample(ind,1)
param.vec=w1$out[param.vec.id,1:4]
alpha.sppv=param.vec[1:2]
p.sppv=exp(W%*%alpha.sppv)/(1+exp(W%*%alpha.sppv))
beta.sppv=param.vec[3:4]
lambda.sppv=exp(X%*%beta.sppv)
N.sppv=matrix(,n,1)
reps=1000
T.mcmc.sppv.chi2=numeric(reps)
T.data.sppv.chi2=numeric(reps)
N.sppv[,1]=rpois(n,lambda.sppv)
for(k in 1:reps){

N.sppv[,1]=rpois(n,lambda.sppv)
y.sppv=matrix(rbinom(J*n,N.sppv,p.sppv),n,J)
T.mcmc.sppv.chi2[k]=sum(apply(y.sppv,1,var))
T.data.sppv.chi2[k]=sum(apply(Y.list[[i]],1,var))

}
sppv[i]=sum(T.mcmc.sppv.chi2>=T.data.sppv.chi2)/reps

}

1.6 Model checking results table for simulated data

##
## Create a table of results
##

GR=unlist(GR.Diag)
p.value=Bayes.p
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c=unique(c.val)
xtable.data=cbind(c,p.value,sppv,Mean.N,LB,UB,GR,ESS)
print(xtable(xtable.data), include.rownames=FALSE)

c p-value sppv Abundance (truth=50,989) 95% CRI GR ESS
0.00 0.48 0.27 51,200 (49,295, 53,481) 1.00 3,420
0.05 0.40 1.00 60,047 (56,605, 63,868) 1.00 3,260
0.10 0.00 1.00 81,299 (75,223, 89,601) 1.01 3,194
0.15 0.00 1.00 97,066 (89,149, 104,360) 1.13 3,199
0.20 0.00 0.02 117,624 (108,825, 127,007) 1.03 3,184
0.25 0.00 0.01 119,397 (110,477, 125,992) 1.06 3,206
0.30 0.00 0.00 133,797 (124,194, 141,117) 1.10 3,195
0.35 0.00 0.00 139,951 (133,351, 147,086) 1.00 3,213

Table 1: Results of one simulation for examining the effect of the closure assumption on
model fit. The notation c represents the maximum proportion of the population that could
move in or out of a site between j − 1 and j, p-value is the posterior predicitive p-value
using a χ-squared goodness-of-fit statistic, sppv is the sampled predictive p-value using the
sum of variance test statistic, Abundance is the mean of the marginal posterior distribution
for total abundance at the 300 sites, the 95% CRI are the 95% credible intervals, GR is the
multi-variate Gelman-Rubin convergence diagnostic, and ESS is the effective sample size of
10,000,000 MCMC iterations.

1.7 Plot MCMC output
The script used for plotting MCMC output is provided for one simulation (c = 0), below.

##
## Figures c=0
##

w1=new.env()
load(paste("~/SimExample",

1,
".RData",sep=""),

envir=w1)
w2=new.env()
load(paste("~/SimExample",

2,
".RData",sep=""),

envir=w2)

par(mfrow=c(5,2),mar=c(3,4,0,1))
plot(w1$out[ind,1],type='l',
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ylim=c(min(w1$out[ind,1]),max(1,max(w1$out[ind,1]))),
ylab=expression(alpha[0]))

lines(w2$out[ind,1],col=3)
abline(h=1,col=2)
plot(density(w1$out[ind,1]),

xlim=c(min(w1$out[ind,1]),max(1,max(w1$out[ind,1]))),
main='')

abline(v=1,col=2)
plot(w1$out[ind,2],type='l',

ylim=c(min(-1,min(w1$out[ind,2])),max(w1$out[ind,2])),
ylab=expression(alpha[1]))

lines(w2$out[ind,2],col=3)
abline(h=-1,col=2)
plot(density(w1$out[ind,2]),

xlim=c(min(-1,min(w1$out[ind,2])),max(w1$out[ind,2])),
main='')

abline(v=-1,col=2)
plot(N.tot1,type='l',

ylim=c(min(min(N.tot1),sum(N.true[,1])),max(N.tot1)),
ylab='N')

lines(N.tot2,col=3)
abline(h=sum(N.true[,1]),col=2)
plot(density(N.tot1),main='',

xlim=c(min(min(N.tot1),sum(N.true[,1])),max(N.tot1)))
abline(v=sum(N.true[,1]),col=2)
plot(w1$out[ind,3],type='l',

ylim=c(min(4.5,min(w1$out[ind,3])),max(w1$out[ind,3])),
ylab=expression(beta[0]))

lines(w2$out[ind,3],col=3)
abline(h=4.5,col=2)
plot(density(w1$out[ind,3]),main='',

xlim=c(min(4.5,min(w1$out[ind,3])),max(w1$out[ind,3])))
abline(v=4.5,col=2)
plot(w1$out[ind,4],type='l',

ylab=expression(beta[1]))
lines(w2$out[ind,4],col=3)
abline(h=1,col=2)
plot(density(w1$out[ind,4]),

main='')
abline(v=1,col=2)
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Figure 1: Trace plots and marginal posterior distributions of parameters in N -mixture model
when c = 0 (i.e., the population was closed). Using a Gelman-Rubin diagnostic, there is no
evidence that the model failed to converge (GR=1.00), and posterior distributions recovered
true parameter values well. Both the posterior predictive p-value (0.48) and the sampled
predictive p-value (0.27) suggested no lack of model fit. 10,000,000 MCMC iterations were
conducted and thinned to every 1,000 iteration.
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Figure 2: Trace plots and marginal posterior distributions of parameters in N -mixture model
when c = 0.05 (i.e., up to 5% of Ni,j−1 was allowed to leave or enter the population at time
j). Using a Gelman-Rubin diagnostic, there is no evidence that the model failed to converge
(GR=1.00), but posterior distributions did not recover true parameter values well. The
posterior predictive p-value (0.40) suggested no lack of model fit, but the sampled predictive
p-value (1.00) suggested lack of model fit. 10,000,000 MCMC iterations were conducted and
thinned to every 1,000 iteration.
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Figure 3: Trace plots and marginal posterior distributions of parameters in N -mixture model
when c = 0.10 (i.e., up to 10% of Ni,j−1 was allowed to leave or enter the population at time
j). Using a Gelman-Rubin diagnostic, there is no evidence that the model failed to converge
(GR=1.01), but posterior distributions did not recover true parameter values well. Both
the posterior predictive p-value (0.00) and the sampled predictive p-value (1.00) suggested
lack of model fit. 10,000,000 MCMC iterations were conducted and thinned to every 1,000
iteration, with a 100,000 burn-in period.
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Figure 4: Trace plots and marginal posterior distributions of parameters in N -mixture model
when c = 0.15 (i.e., up to 15% ofNi,j−1 was allowed to leave or enter the population at time j).
The model did not appear to converge (Gelman-Rubin diagnostic=1.13). Both the posterior
predictive p-value (0.00) and the sampled predictive p-value (1.00) suggested lack of model
fit. 10,000,000 MCMC iterations were conducted and thinned to every 1,000 iteration, with
a 100,000 burn-in period.
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Figure 5: Trace plots and marginal posterior distributions of parameters in N -mixture model
when c = 0.20 (i.e., up to 20% of Ni,j−1 was allowed to leave or enter the population at time
j). Using a Gelman-Rubin diagnostic, there is no evidence that the model failed to converge
(GR=1.03), but posterior distributions did not recover true parameter values well. Both
the posterior predictive p-value (0.00) and the sampled predictive p-value (0.02) suggested
lack of model fit. 10,000,000 MCMC iterations were conducted and thinned to every 1,000
iteration, with a 100,000 burn-in period.
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Figure 6: Trace plots and marginal posterior distributions of parameters in N -mixture model
when c = 0.25 (i.e., up to 25% ofNi,j−1 was allowed to leave or enter the population at time j).
Using a Gelman-Rubin diagnostic, there is some evidence that the model failed to converge
(GR=1.06). Both the posterior predictive p-value (0.00) and the sampled predictive p-value
(0.01) suggested lack of model fit. 10,000,000 MCMC iterations were conducted and thinned
to every 1,000 iteration, with a 100,000 burn-in period.
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Figure 7: Trace plots and marginal posterior distributions of parameters in N -mixture model
when c = 0.30 (i.e., up to 30% ofNi,j−1 was allowed to leave or enter the population at time j).
The model did not appear to converge (Gelman-Rubin diagnostic=1.10). Both the posterior
predictive p-value (0.00) and the sampled predictive p-value (0.00) suggested lack of model
fit. 10,000,000 MCMC iterations were conducted and thinned to every 1,000 iteration, with
a 100,000 burn-in period.
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Figure 8: Trace plots and marginal posterior distributions of parameters in N -mixture model
when c = 0.35 (i.e., up to 35% of Ni,j−1 was allowed to leave or enter the population at time
j). Using a Gelman-Rubin diagnostic, there is no evidence that the model failed to converge
(GR=1.00), but posterior distributions did not recover true parameter values well. Both
the posterior predictive p-value (0.00) and the sampled predictive p-value (0.00) suggested
lack of model fit. 10,000,000 MCMC iterations were conducted and thinned to every 1,000
iteration, with a 100,000 burn-in period.
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2 Sea Otters

2.1 Summary
This section describes the sea otter study used for assessing the closure assumption of N-mixture
models in the manuscript A guide to Bayesian model checking for ecologists.

2.2 All data
In what follows we conduct model checking using 21 sites sea otters were observed at in Glacier Bay
National Park, including one site where observers noted a violation of the closure assumption. In
the next section, we remove the site and conduct model checking.

rm(list=ls())

name="~/MCMCOutputAllDataChain1.RData"

source(paste("~/Dropbox/MCMCAlgorithms/NMixtureModel/",
"SpatialVaryingNMixtureModel/MCMCAlgorithm.R",
sep=""))

## Load Data
load(paste("~/Dropbox/GitHub/HierarchicalGOF/",

"HierarchicalGOF/data/SeaOtterData.RData",sep=""))

## Use all the data including the 19th row of data where sea otters
## were observed violating the closure assumption
Y=SeaOtterData

## Priors
q.p=1
r.p=1
alpha=0.001
beta=0.001
n.iter=10000000
thin=1
checkpoint=1000000

2.3 Run MCMC algorithm
Fit a simple N -mixture model with no covariates.

## Run algorithm
Nmixmcmc(Y=Y,q.p,r.p,alpha,beta,n.iter,checkpoint,name,thin)
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2.4 Summarize results using all data

##
## Load output and calculate results
##

w1=new.env()
load(paste("~/MCMCOutputAllDataChain1.RData",

sep=""),
envir=w1)

w2=new.env()
load(paste("~/MCMCOutputAllDataChain2.RData",

sep=""),
envir=w2)

(status=sum(!is.na(w2$out[[1]][,1])))

## [1] 10000000

thin=1000 # large thinning value required due to autocorrelation
burn=100000
ind=seq(burn+1,status,thin)
length(ind)

## [1] 9900

N.tot1=w1$out[[4]][ind]
N.tot2=w2$out[[4]][ind]
Mean.N=mean(N.tot1)
LB=quantile(N.tot1,0.025)
UB=quantile(N.tot1,0.975)

##
## Gelman Rubin Diagnostic
##

mcmc1.tmp=cbind(w1$out[[1]][1:status,],w1$out[[3]][1:status,])
mcmc2.tmp=cbind(w2$out[[1]][1:status,],w2$out[[3]][1:status,])
chain1=mcmc(mcmc1.tmp)
chain2=mcmc(mcmc2.tmp)
out.list=mcmc.list(chain1,chain2)
(GR.Diag=gelman.diag(out.list,confidence = 0.95,

transform=FALSE,autoburnin=TRUE)[2])

## $mpsrf
## [1] 1.030395

##
## Effective sample size
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##

(ESS=min(ess(chain1)))

## [1] 3210.614

##
## Bayesian p-value
##

T.mcmc.chi2=w2$out[[5]][ind]
T.data.chi2=w2$out[[6]][ind]
(Bayes.p=sum(T.mcmc.chi2>=T.data.chi2,na.rm=TRUE)/length(ind))

## [1] 0.04787879

##
## Sampled posterior predictive value
##

n=dim(Y)[1]
J=dim(Y)[2]
param.vec.id=sample(ind,1)
p.sppv=w1$out[[1]][param.vec.id]
lambda.sppv=w1$out[[3]][param.vec.id,]
N.sppv=w1$out[[2]][param.vec.id,]
Expected.Y=matrix(N.sppv*p.sppv,dim(Y)[1],dim(Y)[2])
reps=100000
T.mcmc.sppv.chi2=numeric(reps)
T.data.sppv.chi2=numeric(reps)
for(k in 1:reps){

y.sppv=matrix(rbinom(n*J,N.sppv,p.sppv),n,J)
y.sppv[is.na(Y)]=NA
## T.mcmc.sppv.chi2[k]=sum(apply(y.sppv,1,var,na.rm=TRUE))
## T.data.sppv.chi2[k]=sum(apply(Y,1,var,na.rm=TRUE))
T.mcmc.sppv.chi2[k]=sum(((y.sppv-Expected.Y)^2)/Expected.Y,na.rm=TRUE)
T.data.sppv.chi2[k]=sum(((Y-Expected.Y)^2)/Expected.Y,na.rm=TRUE)

}
(sppv=sum(T.mcmc.sppv.chi2>=T.data.sppv.chi2)/reps)

## [1] 0.0696

2.5 Plot MCMC output
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par(mfrow=c(2,2))
plot(w1$out[[1]][ind,1],type='l',col=1,main="",

xlab="MCMC iteration",ylab="p")
lines(w2$out[[1]][ind,1], col=3)
plot(density(w1$out[[1]][ind,1]),main="",xlab="p",

ylab="Density")
plot(w1$out[[4]][ind],type='l',col=1,main="",

xlab="MCMC iteration", ylab="N")
lines(w2$out[[4]][ind], col=3)
plot(density(w1$out[[4]][ind]),main="",

xlab="N", ylab="Density")
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2.6 Removing the site where the closure assumption was violated

rm(list=ls())

name="~/MCMCOutputModifiedlDataChain1.RData"

source(paste("~/Dropbox/MCMCAlgorithms/NMixtureModel/",
"SpatialVaryingNMixtureModel/MCMCAlgorithm.R",
sep=""))

## Load Data
load(paste("~/Dropbox/GitHub/HierarchicalGOF/",

"HierarchicalGOF/data/SeaOtterData.RData",sep=""))
Y=SeaOtterData

## Remove the 19th row of data where sea otters
## were observed violating the closure assumption
Y=Y[-19,]

## Priors
q.p=1
r.p=1
alpha=0.001
beta=0.001
n.iter=10000000
thin=1
checkpoint=1000000

2.7 Run MCMC algorithm
Fit a simple N -mixture model with no covariates.

## Run algorithm
Nmixmcmc(Y=Y,q.p,r.p,alpha,beta,n.iter,checkpoint,name,thin)

2.8 Summarize results using partial data

##
## Load output and calculate results
##

w1=new.env()
load(paste("~/MCMCOutputModifiedDataChain1.RData",

sep=""),
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envir=w1)
w2=new.env()
load(paste("~/MCMCOutputModifiedDataChain2.RData",

sep=""),
envir=w2)

(status=sum(!is.na(w2$out[[1]][,1])))

## [1] 10000000

thin=1000 # large thinning value required due to autocorrelation
burn=100000
ind=seq(burn+1,status,thin)
length(ind)

## [1] 9900

N.tot1=w1$out[[4]][ind]
N.tot2=w2$out[[4]][ind]
Mean.N=mean(N.tot1)
LB=quantile(N.tot1,0.025)
UB=quantile(N.tot1,0.975)

##
## Gelman Rubin Diagnostic
##

mcmc1.tmp=cbind(w1$out[[1]][1:status,],w1$out[[3]][1:status,])
mcmc2.tmp=cbind(w2$out[[1]][1:status,],w2$out[[3]][1:status,])
chain1=mcmc(mcmc1.tmp)
chain2=mcmc(mcmc2.tmp)
out.list=mcmc.list(chain1,chain2)
(GR.Diag=gelman.diag(out.list,confidence = 0.95,

transform=FALSE,autoburnin=TRUE)[2])

## $mpsrf
## [1] 1.003851

##
## Effective sample size
##

(ESS=min(ess(chain1)))

## [1] 3465.526

##
## Bayesian p-value
##
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T.mcmc.chi2=w2$out[[5]][ind]
T.data.chi2=w2$out[[6]][ind]
(Bayes.p=sum(T.mcmc.chi2>=T.data.chi2,na.rm=TRUE)/length(ind))

## [1] 0.5633333

##
## Sampled posterior predictive value
##

set.seed(2017)
n=dim(Y)[1]
J=dim(Y)[2]
param.vec.id=sample(ind,1)
p.sppv=w1$out[[1]][param.vec.id]
lambda.sppv=w1$out[[3]][param.vec.id,]
N.sppv=w1$out[[2]][param.vec.id,]
Expected.Y=matrix(N.sppv*p.sppv,dim(Y)[1],dim(Y)[2])
reps=100000
T.mcmc.sppv.chi2=numeric(reps)
T.data.sppv.chi2=numeric(reps)
for(k in 1:reps){

y.sppv=matrix(rbinom(n*J,N.sppv,p.sppv),n,J)
y.sppv[is.na(Y)]=NA
## T.mcmc.sppv.chi2[k]=sum(apply(y.sppv,1,var,na.rm=TRUE))
## T.data.sppv.chi2[k]=sum(apply(Y,1,var,na.rm=TRUE))
T.mcmc.sppv.chi2[k]=sum(((y.sppv-Expected.Y)^2)/Expected.Y,na.rm=TRUE)
T.data.sppv.chi2[k]=sum(((Y-Expected.Y)^2)/Expected.Y,na.rm=TRUE)

}
(sppv=sum(T.mcmc.sppv.chi2>=T.data.sppv.chi2)/reps)

## [1] 0.96377

2.9 Plot MCMC output

par(mfrow=c(2,2))
plot(w1$out[[1]][ind,1],type='l',col=1,main="",

xlab="MCMC iteration",ylab="p")
lines(w2$out[[1]][ind,1], col=3)
plot(density(w1$out[[1]][ind,1]),main="",

xlab="Detection Probability")

plot(w1$out[[4]][ind],type='l',col=1,main="",
xlab="MCMC iteration", ylab="N")
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lines(w2$out[[4]][ind],col=3)
hist(w1$out[[4]][ind],main="",

xlab="Abundance",breaks=100)
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