
TED toolkit: a comprehensive approach for1

convenient transcriptomic profiling as a2

clinically-oriented application3

Thahmina Ali1, Baekdoo Kim1, Carlos Lijeron1, Olorunseun O.4

Ogunwobi1,2,3, Raja Mazumder5,6, and Konstantinos Krampis1,2,4
5

1Weill Cornell Medicine - Belfer Research Building, Hunter College of The City6

University of New York, New York, NY7

2Department of Biological Sciences, Hunter College of The City University of New York,8

NY9

3Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medical College,10

Cornell University, New York, NY11

4Department of Physiology and Biophysics, Institute for Computational Biomedicine,12

Weill Cornell Medical College, Cornell University, New York, NY13

5The Department of Biochemistry & Molecular Medicine The George Washington14

University Medical Center, Washington, DC15

6The McCormick Genomic and Proteomic Center, The George Washington University,16

Washington, DC17

Corresponding author:18

Konstantinos Krampis1,2,4
19

Email address: kk104@hunter.cuny.edu20

ABSTRACT21

In translational medicine, the technology of RNA sequencing (RNA-seq) continues to prove powerful, and
transforming the RNA-seq data into biological insights has become increasingly imperative. We present
the Transcriptomics profiler for Easy Discovery (TED) toolkit, a comprehensive approach to processing
and analyzing RNA-seq data. TED is divided into three major modules: data quality control, transcriptome
data analysis, and data discovery, with eleven pipelines in total. These pipelines perform the preliminary
steps from assessing and correcting the quality of the RNA-seq data, to the simultaneous analysis of five
transcriptomic features (differentially expressed coding, non-coding, novel isoform genes, gene fusions,
alternative splicing events, genetic variants of somatic and germline mutations) and ultimately translating
the RNA-seq analysis findings into actionable, clinically-relevant reports. TED was evaluated using
previously published prostate cancer transcriptome data where we observed previously studied outcomes,
and also created a knowledge database of highly-integrated, biologically relevant reports demonstrating
that it is well-positioned for clinical applications. TED is implemented on an instance of the Galaxy platform
( Galaxy page: http://galaxy.hunter.cuny.edu/u/bioitcore/p/transcriptomics-profiler-for-easy-discovery-ted-
toolkit, Documentation Manual: http://ted.readthedocs.io/en/latest/index.html) as intuitive and reproducible
pipelines providing a manageable strategy for conducting substantial transcriptome analysis in a routine
and sustainable fashion for bioinformatics and clinical researchers alike.
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INTRODUCTION38

The modern sequencing technology, next generation sequencing (NGS) has expanded the analytical39

possibilities of the transcriptome in complete depth, the method known as RNA-sequencing (RNA-seq).40

RNA-seq can precisely determine the abundance of transcripts expressed in any RNA sample of study.41

Moreover, given the emergence of RNA-seq applications in many biomedical research areas, there are42

significant efforts in standardizing the method (1) within clinical settings. In the clinical laboratory,43

investigating the transcriptome has uncovered invaluable information of genetic mechanisms within a44

RNA sample of a conditioned or diseased individual (2, 3). The thorough view of the transcriptome45
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offered by RNA-seq offers ways for identifying disease causing bio-molecules of an individual that can46

serve as potential diagnostic indicators. This is especially applicable to complex diseases like cancer,47

where multiple bio-molecules contribute to its abnormal state, and findings through RNA-seq can be used48

as a reliable resource for therapeutic targets. In parallel with the considerable RNA-seq applications in49

the clinic, analyzing the RNA-seq data is essential, but delivering the biological insights unraveled from50

the analysis in the most informative means has become just as crucial. There are various data analysis51

programs most notably the Galaxy biomedical research platform (4) that addresses challenges such as52

the issues of accessibility and reproducibility. The platform provides an intuitive web based interface53

that serves as a workspace for data analysis in which researchers can import their data sets, and apply54

bioinformatics tools that are made available from the Galaxy toolshed (5) panel. Galaxy tools can run55

as standalone or chained together to create larger analyses transforming entire bioinformatics pipelines56

into automated “Galaxy workflows”. By Galaxy offering the ability to create and perform automated57

analyses on a user interface fully operational on the web, bioinformatics analyses have become more58

approachable in doing all types of data analysis. Yet, there still does not exist a convenient framework59

mainstream enough to enable RNA sequencing analysis results in a way that readily lends itself to easy60

interpretation. The current approach of performing RNA sequencing analyses is difficult, especially for61

non-bioinformatics researchers for the following reasons: (i) analysis methods and protocols are organized62

in a non-uniformed manner; (ii) analysis methods dependencies, parameters or supporting data come63

across as undocumented (iii) analyses output is in raw file state that consist of incomprehensible results64

with no set process to interpret them. These aspects lead to prolonged complexity requiring a learning65

curve to understand and tackle them which in turn causes a distraction in performing the actual analysis,66

making standardizing RNA sequencing analysis as a diagnostic practice challenging.67

The bioinformatics pipelines that have been developed on the Galaxy platform, have had a focus on68

automation and standardization, including several pipelines available for transcriptomic data analysis.69

For example, the Oqtans (6) workbench performs differential expression and enrichment analysis and70

the open pipelines for tumor genome profiling that consist of three separate analyses pipelines: exome,71

transcriptome and variant evaluation (7). In addition, the TRAPLINE pipeline (8) performs comparative72

transcriptomics analysis, identifying a set of differentially expressed genes and their corresponding protein-73

protein interactions. These Galaxy pipelines have accelerated the extensibility in the transcriptome data74

analysis, however, in order to visualize the outputs requires importing to external programs. For example,75

the TRAPLINE protein-protein interactions output requires the Cytoscape program for visualization, in76

which this method does not enable direct interpretation delivered straight from the analysis exclusively.77

There are other automated pipelines that are taking initiatives in striving to bring out the most informed78

data analysis, by way of a software application approach. RNAseq software methods such as RobiNA (9)79

which uses a biostatistical method and Grape (10), both of which provide an environment to analyze and80

visualize gene expression data but limited to solely performing differential gene expression analysis. The81

Chipster (11) platform houses a comprehensive collection of analysis tools that covers analysis other than82

gene expression, such as miRNA, methylation and others, yet has complicated installation procedures,83

as well as, technical navigation again requiring a learning curve for non-informatics individuals. There84

are methods that function on the web such as MeV (12) which is cloud based that is also limited to85

performing differential gene expression analysis and visualization and the functionalities offered stratify86

the data analysis with curations that consist of no annotative feature especially with biological content.87

Nevertheless, each of these applications still are contributors to the steps towards the potential for88

standardizing RNA sequencing within the reach of translational and diagnostic settings.89

We propose a highly-integrated set of bioinformatics pipelines designed in the form of automated90

workflows, which are implemented into the Galaxy platform. The workflows are configured to perform91

quality control and analysis on RNAseq data, while also providing beyond the standard analysis in order to92

provide data discovery functionality. The entire set of workflows is packaged as a resource toolkit, termed93

Transcriptome profiler for Easy Discovery, or TED. TED has three fundamental modules, summarized in94

Fig. 1. The first module provides quality control of the RNAseq data which are preprocessing steps, as95

well as, acquiring information about the reads such as read length, insert size etc. The second module96

carries out analysis of differentially coding, non-coding and novel isoform gene expression, gene fusions,97

alternative splicing events, and genetic variants of somatic and germline mutations of the RNAseq data.98

And lastly, the third module transforms the analysis results produced from the second module into99

detailed, biologically interpreted annotated reports. TED joins these three modules together creating a100
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knowledge database of prioritize biological outcomes, enabling users to obtain a comprehensive insight101

of the transcriptome analyzed from the RNA samples. TED becomes extensible to applications in clinical102

or diagnostic scenarios, allowing the user as a clinician or practitioner to leverage their experience to data103

mine the reports of analyzed results for discovery or indication of biological candidates to examine.104

We document an example use case of TED with previously published prostate cancer transcriptome105

data (13) . We have developed a methodology that can provide the components of data analysis of complex106

RNA-seq datasets through a toolkit interface that is easy to access, handle in addition to a comprehensive107

data processing solution that is reusable and practical for users without extensive bioinformatics expertise.108

Figure 1. Overview of the Transcriptomics Profiler for Easy Discovery (TED) toolkit

109

3/12

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.3385v1 | CC BY 4.0 Open Access | rec: 1 Nov 2017, publ: 1 Nov 2017



b) TED Transcriptome Data Analysis

Transcriptome Data Analysis (Fig.1b) is the second module of TED comprised of five data analysis
pipelines i) Alignment, ii) Novel Isoform, iii) Differential Gene Expression, iv) Isoform-activity
and v) Variant analysis. This module consist of 14 bioinformatics tools and 24 steps that will
analyze any number of paired-end RNA sequencing data samples from two conditions.

METHODS110

Availability111

The TED toolkit is freely accessible on our local instance of the Galaxy platform via a url link:112

http://galaxy.hunter.cuny.edu/workflows/list_published or through our custom Galaxy page: http://galaxy.hunter.cuny.edu/u/bioitcore/p/transcriptomics-113

profiler-for-easy-discovery-ted-toolkit, that contains details of the RNAseq pipeline, datasets, and tutorials114

of the transcriptome analysis as well as described in our documentation manual: http://ted.readthedocs.io/en/latest/.115

A user can create an account (14) on our local Galaxy instance in order to have a private workflow116

workspace, then import and run the pipelines directly from the URL links above. Furthermore, for each117

new pipeline run, the results are saved in a separate Galaxy history (15) under the user’s account, which118

additionally offers a sharing option of the output through a simple web link. A virtual machine (VM) (16)119

including Galaxy with the TED toolkit is also provided, with the tools and software dependencies prein-120

stalled for download through the Data Libraries on our local Galaxy, under ‘TED Virtual Machine (VM)121

Application’: (http://galaxy.hunter.cuny.edu/library/list#folders/Fb56e686e7a485784) and instructions to122

set up and use the TED VM can be found in our documentation manual mentioned earlier.123

Data Source124

A total of 56 RNA-seq datasets were retrieved from the Array Express database of the European Bioin-125

formatics Institute (https://www.ebi.ac.uk/arrayexpress/experiments/E-MTAB-567/samples/, EBI). The126

files correspond to 14 sequenced transcriptomes from tumor tissue samples of prostate cancer human127

patients and a technical replicate for each sample (total 28) in addition to 14 sequenced matched sam-128

ples from the healthy tissue adjacent to the tumor tissue with replicates as well (additional 28). The129

samples were collected, prepared and sequenced as described in the study by Ren et al (13). For each130

tumor and healthy sample the dataset sequencing reads are paired-end, with replicates of each forward131

and reverse sequencing read data files also included in the analysis. The EBI RNA-seq datasets are132

also available for download through our local Galaxy Data Libraries, under ‘TED toolkit Data Source’:133

(http://galaxy.hunter.cuny.edu/library/list#folders/F862a7cb864998e85) as well as other supporting data134
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such as the reference genome and reference annotation files.135

Implementation136

The TED toolkit was implemented on our local instance of the Galaxy platform: http://galaxy.hunter.cuny.edu/137

and freely accessible via a url link as mentioned in the ‘Availability’ section above. The TED pipelines con-138

sist of distinct bioinformatics software components and utilities, in which they were either downloaded and139

installed to our Galaxy instance via the public Galaxy toolshed (https://toolshed.g2.bx.psu.edu/), or man-140

ually integrated (17) in our local Galaxy toolshed in which all of the necessary custom tool scripts and wrap-141

pers are published as a repository in the main Galaxy toolshed (https://toolshed.g2.bx.psu.edu/view/bioitcore/transcriptomics_easy_for_discovery_toolkit/5a3f5024ae07142

) as well as in our public code repository on Github (https://github.com/BCIL/TED). All of the pipelines143

were assembled on Galaxy’s workflow editor, by connecting the tools for the separate stages of the144

pipelines. In addition a virtual machine (VM) application was designed and build to include Galaxy145

with the TED pipelines, tools and software dependencies pre-installed for download and execution to the146

researcher’s machine (http://www.virtualbox.org).147

RESULTS148

TED is packaged as a toolkit that integrates eleven distinct pipelines, on the Galaxy workflow canvas (18)149

and currently supports analysis of paired-end RNA-seq datasets from the Illumina sequencing platform of150

the human organism and analyzes the transcriptomes of RNA-seq datasets from two conditions which151

outputs are available in the Galaxy history (15) for the user to view and use. Within TED, the set of152

pipelines are divided into three fundamental modules based on their functionality that includes Data153

Quality Control (Fig. 1a), Transcriptome Data Analysis (Fig. 1b), and Data Discovery (Fig. 1c). All of154

TED pipelines are available as published workflows on our Galaxy server mentioned in the ‘Availability’155

section and can be imported into the workspace of a public or private Galaxy instance by using the156

generated workflow links we provide, so that users have the option to run the analysis on their own server157

(19). We also provide the TED toolkit, the Galaxy server and all of the required software dependencies158

preconfigured as a virtual machine image (Fig. 1d). This is to allow the entire TED toolkit components159

and units to operate on any type of physical machine and operating system, by loading and powering160

up its appliance image into a virtual machine application. In order to demonstrate the effectiveness and161

convenience of our comprehensive analysis toolkit for RNA-seq, TED was used to gain insight into the162

molecular pathogenesis of 14 human prostate cancer transcriptomes. Using the TED toolkit we identified163

a range of differentially expressed coding, non-coding, novel isoform genes, gene fusions, alternative164

splicing events, genetic variants of somatic and germline mutations in these datasets. The following results165

below will first describe the Transcriptome Data Analysis module to explain how TED analyzes RNA-seq166

datasets and present part of our results for the differentially expressed coding genes and produced from167

the Data Discovery pipeline.168
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Table 1. Quantitative Summary of Differentially Expressed Genes and Pearson Correlation Statistics

Transcriptome Data Analysis169

The Transcriptome Data Analysis (Fig.1b) is the second module of TED comprised of five data analysis170

pipelines i) Alignment, ii) Novel Isoform, iii) Differential Gene Expression, iv) Isoform-activity and v)171

Variant analysis. This module consist of 14 bioinformatics tools and 24 steps that will analyze any number172

of paired-end RNA sequencing data samples from two conditions.173

The Alignment (Fig. 1b.i.) pipeline uses the UCSC hg38 reference genome (20), with the HISAT2 (21)174

alignment program. HISAT2 uses an indexing technique to enable faster searches on the genome file,175

which consist of a global index that covers the whole genome and many other small indexes for regions176

that collectively cover the genome, to map whole reads entirely in the exons in which the Bowtie2 aligner177

handles many of the operations required to construct and search the genome indexes. HISAT2 identifies178

reads that span the exonic region as read alignments and the gaps between the spanning exonic regions as179

junction signals. The output from this step is a Binary Alignment file (BAM, (22)), containing the mapped180

exonic reads and their positions in the reference genome. To view the alignment file in text format, we a181

BAM-SAM conversion step is included in the pipeline. All parameters were left as default, except the182

minimum and maximum fragment length which are to be specified by the user that refers to the range183

of the fragment size of the sequencing reads. This information can be found in the Read Information184

pipeline that’s part of the TED’s first module Data Quality Control (not mentioned in this draft). Once the185

alignment step is complete, the pipeline proceeds in four different analyses paths, the first for the novel186

isoforms of the expressed genes, the second for differentially expressed genes (noncoding and coding),187

the third for alternative splicing events and gene fusions and lastly the fourth for genetic variants of the188

expressed genes.189

The Novel Isoform analysis pipeline consists of 3 bioinformatics tools performing 4 steps (Fig. 1b.ii.),190

with the Stringtie (23) software at its core, for reconstructing and quantifying the set of transcripts, and191

number of gene isoforms, from the aligned transcriptome read data with the annotations of the reference192

genome. The Stringtie assembler, uses as input the alignment file of mapped exonic reads produced from193

HISAT2. The approach this software takes is, it builds an alternative splice graph from overlapping reads194

in a given locus. This graph will contain nodes that corresponds to exons, and edges that corresponds to195
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reads which connects the exons. Stringtie will identify a path in the generated splice graph that has the196

largest number of reads on the edges (highest weight). This selected path will resemble an assembled197

transcript and because the edge weight equals to the number of reads, StringTie estimates the coverage198

level for this transcript that can be used to estimate the transcript’s abundance, thus performs assembly and199

quantification simultaneously for every identified transcript. After the procedure of associating the reads200

with the assembled transcripts completes, they are then removed and the graph will update to perform the201

iteration of the algorithm on the next transcript. Stringtie will generate a separate transcriptome assembly202

for each of the HISAT alignment input files in which will then merged together using the Stringtie merge203

software. This is to combine redundant transcript structures across the transcriptome assemblies and204

identify which transcript structure corresponds to which annotated transcript using a reference annotation205

file, from the UCSC hg38 reference annotations (20) in Gene Transfer Format (GTF) (24). The reference206

annotation file contains information about known genes and transcripts that will be used to annotate the207

origin and nature of each transcript in the transcriptome assemblies. Furthermore in our pipeline, the208

gffcompare utility (25) was used to determine the number of assembled transcripts in comparison to209

known transcripts in the merged transcriptome assembly. The gffcompare tool will use the same reference210

annotation file used in the Stringtie merge step and evaluate the assembled transcripts that matched with211

the annotated genes either fully, partially and which ones entirely novel for isoform discovery that are not212

annotated.213

The Differential Gene Expression Analysis pipeline consist of 2 bioinformatics tools and 3 steps (Fig.214

1b.iii.) to identify the transcripts that are differentially expressed between the two conditions of the215

RNA-seq experiment. This pipeline uses the htseq-count (26) tool from the HTSeq suite for counting the216

overlap of reads from the alignment files with annotation features, where each transcript is considered217

the union of all its exons. To count how many reads map to each transcript, the alignment files from218

HISAT2 are provided and the annotation file generated from the gffcompare tool which represents the219

transcripts present within the RNAseq datasets, as well as their location with non-redundant identifiers,220

and information regarding the origin. Then we will provide this information to DESeq2 (27) to generate221

normalized transcript counts (abundance estimates) and significance testing for differential expression.222

The Variant Analysis (Fig. 1b.iii.) includes five tools and performs six steps, with the SAMtools Mpileup223

program (28), VarScan Somatic tool (29) and SnpEff suite (30). The pipeline receives as input the224

BAM files produced from TopHat2 from the Data Groom and Alignment stage in addition to a reference225

human genome, in order for the SAMtools Mpileup to collect summary information the likelihood of226

each possible genotype is computed from the data and stored in a file for future reference, in addition227

to pileup of read base differences in a binary Variant Call Format (VCF) (31) file of each dataset. The228

variant caller tool VarScan Somatic reads the Mpileup output files and produces germline, somatic,229

and Loss of heterozygosity (LOH) events at positions where both normal and prostate cancer datasets230

have sufficient read coverage. All parameters were left as default for Mpileup and VarScan Somatic,231

except for p-value significance threshold set to 0.01 for VarScan Somatic, in order to enable a more232

sensitive first-pass algorithm in determining positional variants, that occurred in the supplied normal233

and prostate cancer mpileup’s. SnpEff is a variant annotation and effect prediction tool. It annotates234

and predicts the effects of genetic variants. The Isoform Level Analysis (Fig. 1b.iv.) pipeline consists235

of two bioinformatics tools and performs 4 steps that detect chimeric transcripts encoded by a fusion236

gene performed by the Chimerascan (32) tool and quantiying alternative splicing events performed by237

the SpliceTrap tool (33). The ChimeraScan tool in this pipeline aligns paired-end reads to a combined238

genome-transcriptome reference, to identify potential fusion breakpoints from fragments that align to239

distinct references, or distance genomic locations of the same reference which are referred to putative240

chimeric junction sequences. The junction sequences are then used as reference to realign candidate241

junction-spanning reads. Several output files will be produced and the key output file is a tabular text file242

named chimeras.bedpe. SpliceTrap detects alternative splicing in paired-end RNA-seq data by using a243

Bayesian inference approach, by quantifying for every exon the extent to which it is included, skipped or244

subjected to size variations due to alternative 3’/5’ splice sites or intron retention.245

Data Discovery246

The Data Discovery module consists of eleven pipelines and utilizes a highly structured approach for247

aggregating and summarizing the results produced from the transcriptome data analysis module for easy248

assessment, interpretation and downstream discovery. The eleven pipelines in this module generate249
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HyperText Markup Language (HTML) reports which can also be referred to as ‘actionable reports,’ that250

transforms the data results into thorough, concise and intuitive information reports, consist of differential251

coding gene expression (Fig. 1c.i.), differential non-coding gene expression (Fig. 1c.ii.), differential252

novel gene isoform expression (Fig. 1c.iii.), somatic genetic variants (Fig. 1c.iv.), germ line genetic253

variants (Fig. 1c.v.), comparison of genetic variants between samples (Fig. 1vi.), gene fusions (Fig.254

1vii.), comparison of gene fusions between samples (Fig. 1c.viii.), gene splicing events (Fig. 1c.ix.), and255

(Fig. 1c.x.) comparison of gene splicing events between samples. The following below will describe the256

differential expression reports showing an example report of differential coding gene expression in Figure257

2.258

Differential Expression Report259

Figure 2. TED Data Discovery Analysis Report: Differentially Expressed Coding Genes

For each of the pipelines generating differential coding gene, non-coding gene, and novel gene isoform260

expression reports takes inputs the output data produced from the HTseq tool and Deseq2 tools of the261

transcriptome data analysis module and generates three html reports Uppregulated Genes, Downregulated262

and Total regulated genes. Figure 2a illustrates an example of the total regulated html report for differential263

coding gene expression of two sample RNAseq datasets (one sample for each condition), in which the264
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pipeline will populate the report with the following information in 8 parts: i) total number of differentially265

expressed coding genes (Fig. 2a.i.), ii) total number of significant genes (Fig. 2a.ii.), iii) Pearson266

correlation statistic between the genes (Fig. 2a.iii.), iv) the gene with the highest upregulated differential267

fold change in FPKM (Fig. 2a.iv.), v) the gene with the lowest upregulated differential fold change in268

FPKM (Fig. 2a.v.), vi) the gene with the lowest downregulated differential fold change in FPKM (Fig.269

2a.vi.), vii) the gene with the highest differential fold change in FPKM (Fig. 2a.vii.), and the viii) list270

of all the identified differentially expressed genes (Fig. 2a.viii.). The information of the gene with the271

highest differential fold changes, the lowest differential fold changes, and the list of all the differentially272

expressed genes are arranged in 14 columns (Fig. 2b). The 14 columns specify, i) the gene name (Fig.273

2b.i), ii) link to GeneCards (34) a database of predicted human genes that provides concise genomic274

related information, iii) the chromosomal location in which the gene resides, iv) the gene length, v) link to275

UCSC Genome Browser (35) displaying the genomic location and other genomic data, vi) gene transcript276

description name, vii) link to NCBI nucleotide database (36) providing gene and transcript data from277

several sources, viii) list of genes involved in interaction with the differentially expressed gene ix) link to278

StringDB (37) database of known and predicted gene pathway networks displaying direct and indirect279

interactions x) read count of gene for sample 1 in normal condition xi) read count of gene for sample 1280

for experimental condition xii) mean read count of the gene from both samples of both conditions xiii)281

fold change of gene between the conditions and xiv) significant statistic in pvalue.282

In our study of analyzing the 14 prostate cancer transcriptomes, we identified from the generated283

reports, differentially expressed genes between paired prostate tumor and normal samples based on two284

separate criteria’s: pvalue <=0.05 and pvalue <=0.01 (Table 1). We analyzed at both pvalue cutoffs of285

<=0.01 and <=0.05 patients 1, 3, 8, 10, 11, 12, and 14, exactly half of the patients of the study group,286

portrayed more up regulated genes expressed than down regulated genes at an exhibited correlation287

coefficient of 0.85< for each of the upregulated genes and downregulated genes. This observation288

emphasizes past findings in differential gene expression prostate cancer studies of the distribution of289

upregulated genes being larger than downregulated genes (38, 39).290
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DISCUSSION291

Compared to other RNA-seq and transcriptome analysis resources (6–9, 11, 12) that has its capabilities292

of reaching to a vast number of different scientific settings, the TED toolkit offers potential to reaching293

largely to a translational and diagnostic setting searching for a starting point of a preliminary overview of294

their RNAseq data that will lead to a discovery process with at most ease and minimal effort. In many295

clinical perspectives, RNA-seq delivers specific and sensitive genomic signatures but due to the lack of296

easy-to-use pipelines that can process in a transparent and streamlined fashion is limiting the expansion of297

RNA-seq from becoming a clinical diagnostic tool. Thus, the TED toolkit was intentionally designed as a298

Galaxy webserver since it allows inexperienced users to easily access advanced analysis tools processing299

the complex transcriptome analysis that will prepare unified outputs on a versatile workbench. Aside300

from TED being hosted on an accessible and intuitive system, it is also framed as a discovery platform301

that will structure the analysis results in html reports with analytical statistics and prioritization set with302

annotations and resource links to extremely comprehensive databases of disease and non-disease related303

information. This methodology offers a basic assessment of a RNA-seq study with initial details that304

are coherent as shown earlier with the differential gene expression results and can aid in the direction305

of a targeted discovery process to help come further to a conclusive clinical interpretation. Therefore,306

the TED toolkit holds strength to be a reliable, convenient and central protocol covering the majority307

aspects of transcriptome analytical results that is suitable to cater well within the reach of translational308

and diagnostic settings.309
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