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Abstract. One of the great challenges in ecology and evolutionary biology is to explain disease, 
whether caused by infectious agents such as parasites and pathogens, or by the deterioration or 
transformation of cellular behavior and function, a prime example of the latter being cancer. 
Decades of observation and research suggest that successfully treating disease requires insights 
into how the environment mediates the interactions between disease causing agents (DCAs) and 
diseased individuals. A major finding is that single factor, targeted therapies are not only likely to 
fail in controlling or eradicating many DCAs, but are also likely to select for resistance, reducing 
options for subsequent treatment attempts, and in cases of infectious DCAs, rendering therapeutic 
agents (e.g., antibiotics) obsolete.  

I argue that meeting the growing challenge of treating disease in agriculture and animal 
husbandry, in protected and domesticated species, wildlife, and in the human population will 
require a fundamental understanding of ecological interactions at sites of infection or disease. I 
discuss different ways in which components of such disease ecosystems mediate DCA and 
therapeutic dynamics and resistance evolution, and derive a very simple mathematical criterion 
for therapeutic success. I then touch on how fundamental insights as revealed by the processes of 
evolutionary rescue and competitive release can help understand why therapies succeed or fail. 
Finally, I present six “wedges” that can each contribute alone, or as part of multi-pronged 
approaches to successfully treating disease.   
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The Magic Bullet  

Despite remarkable progress in prevention and treatment, the impacts of diseases in agriculture 
and animal husbandry, and on protected and domesticated species, wildlife, and human health are 
likely to intensify into the 21st century. Humans in particular are increasingly in contact with each 
other and with wildlife, treated with drug regimens that select for resistance, and adopt life-styles 
or are exposed to environments that render them more susceptible to infectious diseases and more 
likely to get cellular diseases such as cancers. 

For many clinicians the Holy Grail is to discover the Ehrlichian “Magic Bullet”—a drug that will 
target the disease-causing agents (DCAs) and cure disease. Intuitively, the most effective way to 
reduce DCAs is to “hit hard and fast”. That is, more drug means more kill within the tolerance 
limits of the patient. Rapid administration of the drug means forestalling further DCA growth and 
associated symptoms, but also reducing the probability of the appearance of resistant mutant 
strains. Despite decades of research on pest and disease control (much of it with an ecological 
basis) this approach and the many alternatives described below remain highly controversial (e.g., 
[1]). 

The Magic Bullet may be shortsighted for another reason. What will cure most patients may not 
be optimal for the general population in which resistant variants may emerge and spread1. This 
problem is in many ways similar to the objectives of classical pest control [2], where short-term 
‘success’ is to attain economic targets for the treated area (e.g., an agricultural field), subject to 
meeting the global objective of slowing the spatial spread of resistance [3]. Although human 
cancers are not transmitted between individuals, the concept from pest control of spatial 
resistance management could apply to treating metastasis [4], and certain authors have argued 
that certain targeted therapies could be counterproductive to treatment success [5]. 
  
Curing Disease is an Ecological Problem 

Some of the diseases that present the greatest threats to human health are caused by 
microparasites, including viruses, bacteria, and protozoa, and macroparasites such as helminth 
worms. Microparasites in particular are characterized by very large populations and therefore 
considerable potential for rapid evolutionary responses. When a drug is applied to a large, diverse 
population, the response will be determined in part by the absolute (growth) and relative 
(selection) impacts on sensitive and resistant subpopulations. Given that resistance depends on 
(epi)gene expression, this means that environment, and more generally ecology, needs to be 
incorporated into our understanding of why chemotherapies (against microparasites, 
macroparasites or cancers) succeed or fail.  
Disease control within the organism is an ecological problem, but is rarely seen as such. Rather, 
research and application are overwhelmingly focused on the direct interaction between the 
therapy (typically a drug) and the DCA. Treatment success means that the drug contributed to 
clearing the DCA, whereas failure would suggest that the drug choice, dose, and/or schedule was 
in err, and/or that resistant strains were present. The major omission from this perspective is 
environment. Indeed, the very same interactions found in terrestrial and aquatic systems are 

                                                
1  In the context of infectious disease, transmission and spread are to other hosts, whereas, in cancer (with the 
exception of transmissible cancers in dogs, Tasmanian devils, and certain bivalve species) spread is either through 
local or distant metastasis. 
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found within diseased hosts: intra- and interspecific competition, resource limitation, mutualism, 
facilitation, and predation. 
Here I argue for a framework integrating abiotic and biotic interactions involving DCAs and 
drugs within disease ecosystems. I briefly discuss the basis for this concept. I then present several 
mechanisms associated with therapeutic failure, all of which involve DCA clonal escape. A 
criterion for therapeutic success integrating clonal escape is then formalized in a very simple 
mathematical expression, and I discuss parallels with the concepts of evolutionary rescue and 
competitive release. Finally, I present six complementary strategies or ‘wedges’ towards 
improved control, their ecological basis, and why they should be considered in future theoretical 
developments. 
Table 1. Some basic challenges to treating patients and to disease management over the 
broader population for several important DCAs affecting the human population. 
  

DCA Individual patients Broader population 

Bacterial 
pathogens 
  

Large, diverse populations; hypermutator 
strains; protective biofilms; multidrug 
resistance 

Horizontal gene transfer of 
virulence factors and resistance 
from other bacterial species 

 
Plasmodium 

Evades host immune system; resistant 
strains transmitted to host; distinguishing 
Plasmodium species to determine specific 
treatment 

Difficulty in controlling the vector 

HIV High within-host population turnover and 
generation of antigen diversity; uses its 
enemy (white blood cells) to replicate 

Prevention through safe-sex and no 
needle sharing 

Cancer 
  

Large, diverse populations; genomic 
instability; dormancy; refractory cancer 
stem cells; limited drug amounts due to 
toxicity; evasion of immune system 

  
  

  
My approach is largely review, and I make reference where appropriate to individual treatment 
strategies coming from bacterial infections, Plasmodium, HIV and cancers. Table 1 presents a list 
of some of the basic factors associated with these DCAs that make them particularly challenging 
to treat in individuals and to control at a population level. Comparing and contrasting insights 
from these different literatures could lead to a greater fundamental understanding of disease 
ecosystems, how drugs affect them, and translation to clinics.  
 
The Disease Ecosystem 
Despite many differences between parasites and tumor cells, one broad similarity is that both live 
in disease ecosystems. The disease ecosystem encompasses birth, growth, survival and inter-
individual and inter-populational interactions such as predation (immune system), cooperation 
(cell-cell signals, tissue architecture, cell function), competition (both direct (as in the case of 
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many parasites) and indirect for limiting resources (host cells, glucose, oxygen)), resource 
replenishment (angiogenesis), detritivory (phagocytosis), and external intervention in the form of 
therapy. The latter is tempered by the idiosyncratic nature of information gathering and 
translation into a rational treatment. Related perspectives have recently been discussed for 
parasites [6], pathogenic bacteria (e.g., [7]), and cancer [8,9]. 

Figure 1 shows an oversimplified depiction of one type of disease ecosystem: the cancer 
microenvironment. Tumor growth depends importantly on resource flows through the 3-D mass 
of uncontrollably dividing, motile cells [10]. Cells that are only a few millimeters distance from 
the nearest capillary will experience hypoxic stress and lactic acid accumulation, due to deficits 
in oxygen and glucose. Cells tend to become increasingly hypoxic and anoxic towards the center 
 

 
 
Figure 1. Disease ecosystem for tumor growth. In this oversimplified representation of the tumor 
microenvironment, tumor cells can grow (green cells) as long as they have sufficient access to oxygen and glucose, 
and sufficient space. Tumor cells compete amongst each other and with surrounding healthy epithelial cells. The 
intensity of competition increases with cell-cell proximity and distance from the nearest blood capillary (not shown). 
In the absence of sufficient resources (toward the tumor core), cells become necrotic (black cells). Tumor cells may 
be predated by components of the immune response (phagocytes and lymphocytes). Fibroblasts (not shown) modify 
the disease ecosystem through the production of structural tissue (extracellular matrix) and growth factors, 
facilitating angiogenesis (pericyte and endothelial cell production), inflammation, immune evasion, tumor growth 
and metastasis. Tumor cells may escape the immune system (not shown) or therapies, the latter through, for example, 
genetic resistance (blue outlines) or limited drug contact (yellow outline). 
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of a tumor and under prolonged stress they form a necrotic core [11,12]. Stressed cells may send 
signals to the local vascular system to extend capillaries into the tumor (angiogenesis), which, if 
successful, promotes further tumor growth [13]. From a therapeutic point of view, the challenge 
is to arrest angiogenesis whilst promoting conditions for drug diffusion into the tumor (which 
increases with angiogenesis). Those cells experiencing insufficient doses of the drug or in a 
dormant state (Figure 1, yellow cell) may be the source of future relapse, as are cells receiving 
the full drug dose, but harboring chemoresistance mutations (Fig. 1, blue cells) (and see below). 
Little is known about how resource dynamics and cell-to-cell signaling involving DCAs and 
healthy cells determine the emergence and fates of refuge cells and resistant cells. Finally, the 
predators in the disease ecosystem are different components of the innate and adaptive immune 
responses that are most functional at the incipient stages of tumorigenesis, becoming less 
effective or failing in conjunction with tumor escape [9].  
Largely analogous reasoning holds for non-self DCAs (e.g., HIV, bacterial pathogens, 
Plasmodium), though each has its own spatial, behavioral and functional specificities. Moreover, 
the caricature in Figure 1 is centered on local interactions between DCAs, host cells and tissues, 
and drugs. A more realistic representation would include regional and global host interactions 
(e.g., immune, hormonal, other disease foci, impacts on host health and behavior), and in cases of 
infectious disease, interactions with the external environment. Understanding the differences and 
commonalities between different DCA ecosystems will form a part of developing theories and 
predictions for how diseases can be cured. 
  
DCA Escape 
Beyond misdiagnosis or misappropriations in the choice of (or patient intolerance to) drugs, the 
main generic cause for treatment failure is DCA escape. DCAs cause disease, morbidity and 
mortality in part because they either escape natural host controls or amplify them (e.g., cytokine 
storms). DCA escape from drugs bears limited resemblance with parasite escape from immune 
systems or pests escaping natural enemies in biological control. This is in part because drugs are 
non-adaptive, whereas the body has a wide array of checkpoints for detecting and destroying 
diseased cells, and the immune system for detecting non-self antigens and the subsequent 
disabling of parasites. 
DCA escape from chemotherapies can occur in one or more of several ways. First, DCAs may 
produce quiescent or dormant states. Examples include quiescent cancer stem cells [9] and 
persister bacterial cells [14]. Second, DCAs may be tolerant, whereby mechanisms such as 
reduced receptor sensitivity or density limit drug impact, as cases of drug tolerant cells in certain 
cancers [15]. Third, a DCA may directly resist a drug through a molecular change or a change in 
receptors and/or drug transport. For instance, bacteria may indirectly resist antibiotics through the 
upregulation of efflux pumps [16], or directly resist via drug modification or inactivation [17]. 
Fourth, some individual agents may be less attainable by the drug than others, either due to 
spatial refuges or active escape through plastic behaviors. An example is limited drug diffusion 
through tumors leading to spatial refuges and resistance [4,18]. Fifth, agents may naturally have 
high mutation rates, or be induced or selected to have increased mutation rates, such as in 
hypermutator bacteria [19], HIV [20], and certain cancers [21]. Tumors in particular are thought 
to contain numerous resistant variants by the time neoplasms are typically discovered [22]. The 
above five mechanisms are largely inferred from in vitro experiments; their detailed roles in 
treatment failures are largely unknown (e.g., [23]).  
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A Simple Criterion 

The primary objective of chemotherapy is to impact DCAs so as to durably allay or eliminate 
disease impacts on health. Outcomes are challenging to predict because the system is potentially 
very complex, involving how the DCA interacts amongst itself, with other DCAs (e.g., in co-
infections) and with healthy cells, but also with other ecosystem components such as resource 
availability (space, nutrients), habitat quality, the microbiome, and the immune system. The 
addition of one or more drugs potentially influence these interacting compartments either directly 
or indirectly, creating possible feedbacks, and in so doing will make predictions based on 
individual components in isolation, overly simplistic. 

The complexity summarized above indicates that simple criteria, such as reducing the DCA net 
population growth rate below zero, are probably not useful for understanding chemotherapeutic 
success and failure. Rather, a model incorporating the key phenomenon of DCA escape may 
provide significant insight into the basic control problem. The model can be modified to 
incorporate different features of the disease ecosystem. 
We assume n distinct asexual, haploid classes of DCA where, for phenotype i, the current 
population size, maximum growth rate, density dependent limitation (e.g., through competition 
and/or predation), and reductions in birth (or increases in mortality) from a chemotherapy are 
respectively Ni,t, λi, fi,t and ϕi. Note that ϕi encapsulates both the sensitivity of a strain to the drug 
(given inherent levels of tolerance or resistance), and the eventuality that the strain is also 
protected due to spatial refuges. 
Assuming a large initial population Ni,0 of the most frequent clone, such that population changes 
are dominated by deterministic rates, the population at a short time interval Δ into the future is 

Ni,t+Δ = λi ϕi fi,t{Ni,t} Ni,t. 

Further, assuming that density dependence (intra-population competition) in the DCA becomes 
negligible soon after the chemotherapy begins, and resistant or protected variants are initially 
rare, then after a treatment period xΔ, clone i is approximated by 

Ni,t+xΔ = (λi ϕi)x Ni,0. 

Clearly if ϕi < 1/ λi for all i, then some level of reduction in density is ensured. The criterion for 
achieving population control below a target density, T, predicted to result in success is therefore 

W = Σi (λi ϕi)x Ni,0 < T.                        (1) 

Importantly, the objective W<T may be initially met, simply because refuge populations are 
small and do not appreciably grow during the initial phases of the therapy. Should these 
populations not be sufficiently held in check thereafter, then eventually they will (re)emerge, and 
potentially falsify the success criterion (1). This may happen should subpopulations escape drug 
control and/or if the immune system is not sufficiently effective. 
Notice the following. First, because this is an exponential population process, the required ϕ to 
achieve control is highly sensitive to the multiplier λ. This reflects the compounding effect of 
insufficiently checked exponential growth. Second, meeting criterion (1) requires that all 
genotypes are sufficiently controlled; this sufficiency will depend on the densities, biological 
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characteristics of each clone present, and disease ecosystem interactions. Third, if a single 
resistant mutant is present at the beginning of the therapy, then, should it emerge, it takes a 
minimum of ln(T)/ln(λm) time units for criterion (1) to be rejected. And fourth, the immune 
system is an important factor that potentially intervenes to reduce λ, whereby therapy 
accompanied by immune responses are likely to be more effective than either alone in reducing 
non-self parasites. In contrast, by the time a cancer is discovered (e.g., poses a health threat), the 
tumor has likely escaped natural immune control and would require specific immunotherapies to 
contribute to DCA suppression beyond the effects of a chemotherapy (or radiation therapy). 
This model is clearly oversimplified and the inclusion of further realistic positive or negative 
density-dependent interactions such as competition between tumor cells and surrounding healthy 
cells could influence the therapeutic outcome. For example, Sottoriva et al. [24] considered the 
emergence and growth of competing clones in colorectal cancers. They showed that the initial 
appearance of a set of driver mutations resulted in the dominance of these clones in tumor 
growth, even when more fit strains subsequently emerged. This is because early emerging clones 
gain a priority effect (a ‘head-start’), and as the population carrying capacity is approached, 
clonal per capita growth rate and per capita beneficial mutation rate both decrease, resulting in 
slower clonal turnover. 
  
Rescue and Release 

Before proposing a framework towards improved treatment outcomes that incorporates the 
dynamics of disease ecosystems, I describe two complementary phenomena that are useful in 
understanding treatment failures. 
In evolutionary rescue, the effects of a drug drive the sensitive population towards extinction, but 
resistant variants that are already present or emerge during the treatment ‘rescue’ the population 
[25]. The evolution of DCA resistance under high drug doses is a textbook example of 
evolutionary rescue, though not all cases of resistance evolution need involve evolutionary 
rescue. Specifically, drugs may only partially impact the sensitive subpopulation due to e.g., 
DCA plasticity, spatial refuges, or under-dosing. It is also possible that drug resistance evolves in 
situations where extinction would not have occurred in the first place (e.g., [26,27]). In the 
context of improving chemotherapies, if the initial DCA population is small and/or genetic 
variation low, then it may be best to treat with high doses until the DCA is cleared. This assumes 
that the therapy sufficiently decreases the rate of evolution (i.e., lowers the number of births and 
it is not mutagenic) and does not induce refuge behavior such as dormancy observed in some 
cancers [15]. 
In competitive release, populations compete for space or limiting resources, and the reduction of 
one or more competitors contributes to the growth of other, less impacted (e.g. resistant) 
populations [2]. Day and colleagues [28] differentiated competitive release from competitive 
suppression, the latter occurring when one competitor suppresses another through a shared 
density dependent response, such as an immune reaction or environmental degradation [29]. With 
a few exceptions, competitive release is not well understood in the context of disease ecosystems. 
For example, Wargo and coworkers [30] showed an effect of treatment duration on the magnitude 
of competitive release in Plasmodium. Pena-Miller and colleagues [31] used modeling and 
experiments of antibiotic combination therapies to show that failure by the first antibiotic 
strongly favors the growth rate and emergence of resistant clones, which, in turn evade control by 
a second drug. One of the dangers in competitive release (and indeed evolutionary rescue) is that 
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the expanding resistant population may evolve compensatory traits [32,33] or acquire other 
fitness-enhancing traits, such that proliferation potential is comparable or even greater than that 
of the original population, as has been hypothesized in certain cancer relapses [34]. 
  
Ecological and Evolutionary Wedges to Vanquish Disease 

As described above, the conventional wisdom in treating disease is to hit hard and fast. The main 
constraints on dose and duration are toxicity and treatment costs. The risk of this approach is 
treatment failure and, in the case of infectious DCAs, the spread of resistant strains to other 
individuals. 

Fundamental research aimed at understanding treatment outcomes needs to incorporate the dose 
debate into a more integrated framework based on the disease ecosystem. I describe six non-
mutually exclusive variables and strategies (‘wedges’) that could contribute to improved 
treatment outcomes (Table 2). 

1. Dosing. Growth inhibition and kill assays are mainstays of pharmacodynamics. However 
drugs are not static entities once introduced into the body: they are heterogeneously distributed, 
and may be modified or inactivated, and excreted (pharmacokinetics). For example, Foo and 
colleagues [35] studied combined evolutionary and pharmacokinetic models of the emergence of 
cell resistance to erlotinib in patients with epidermal growth factor receptor (EGFR)-mutant lung 
cancers. They found that pulsed dosing could control tumors with resistant clones, but that 
sufficiently long treatment holidays risked enabling the emergence of de novo resistant clones. 
Ankomah and Levin [36] employed models of pharmacodynamics, focusing on the dose and 
duration of antimicrobial therapies in systems with innate and adaptive immune responses. They 
found that high doses used until the immune response finished clearing the infection were 
superior to less intense strategies (but see [37] for contrasting findings). Akhmetzhanov and 
Hochberg [38] used computational models of tumor growth, based on empirical parameter 
estimates to derive minimal levels of continuous chemotherapy that would extend patient’s life 
expectancy compared to high dose therapies. They found that optimal dosing should no more 
than counteract the growth of the DCA clone with the highest fitness, otherwise fully resistant 
clones would likely emerge, resulting in possible treatment failure. 

Although there is considerable empirical work on how drug dosing potentially affects treatment 
outcome (for literature survey, see [37]), it does not provide a clear signal as to whether “hit 
hard” approaches are superior to alternative dosing schedules [39]. For example, Negri and 
coworkers [39,40] demonstrated how strains of E. coli with different levels of resistance to the 
antibiotic cefotaxime persisted at different drug doses. They identified the “selective window”: 
doses that eliminate sensitive strains and favor relatively resistant ones. Work on Plasmodium has 
shown sensitivity to treatment dose [29], and Wargo and colleagues [30] demonstrated an effect 
of treatment duration on the emergence of resistance. A corollary to dosing (intensity, schedule 
and duration) is whether the therapy should actually kill DCAs (cytotoxic) or rather render them 
unable to proliferate (cytostatic). Theory shows that these alternatives can have contrasting 
effects on dynamics (e.g., [41]), suggesting that interactions with other components in the disease 
ecosystem, such as resource competition or predation by the immune system, may result in 
different therapeutic outcomes depending on the extent to which therapy kills cells or arrests 
cells. 
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2. Combination therapies. Employing two or more therapeutic agents to treat a disease has 
shown promise for certain cancers [42], bacterial diseases [43] and HIV [44] (see also examples 
in [45]). The basis is two-fold. First, combination therapies can be devised to foil one or more 
escape responses, including spatial refuges, effect pathways, and resistance genes (e.g., [46]). The 
underlying idea is that total population coverage by two or more therapies is greater than any one 
alone. For example, Komarova and Wodarz [47] parameterized mathematical models to show 
how the number of drugs and probabilities of resistance to each inform on how many drugs are 
necessary to successfully treat cancers. Examples of combined approaches also abound in the 
antimicrobial literature, for example, the use of multiple phage types or combinations of phages 
and antibiotics against certain pathogenic bacteria ([48,49], but see [50]). Second, the order, 
schedule, and dose of each anti-DCA can be adjusted for maximal effect [51]. ‘Maximal effect’ is 
a complex quantity that integrates the impact on DCA numbers, the probability of resistance, and 
allaying disease severity, whilst avoiding toxicity issues (especially for cancer therapies). 

Scheduling can be an important parameter in achieving maximal effect, for instance when 
therapeutic agents interfere with one another if administered together. For example, Torres-
Barcelo and coworkers [51] showed how the delay between additions of a bacteriophage and an 
antibiotic is key in maximizing impact and minimizing resistance in populations of P. 
aeruginosa. This is due in part to the density dependent nature of phage multiplication and 
impact on bacterial hosts. Roemhild and colleagues [52] demonstrated how the order of sub-
lethal doses of antibiotics could have substantial effects on bacterial populations and resistance 
(see also [31]). Combination therapies may also exploit characteristics of the disease ecosystem 
and of DCAs themselves. Examples include the sequential use of chemotherapy and 
immunotherapy [53], and polyADP ribose polymerase (PARP) inhibitors capitalizing on 
synthetic lethality in certain breast and ovarian cancers [54]. 
3. Increasing the costs of resistance. One underexplored approach to improve treatment 
outcomes is to increase the costs of resistance. The idea is to use specific interventions so that 
sensitive DCAs competitively control or even eliminate resistant populations. Enriquez-Navas 
and coworkers [55] have recently argued that for some cancers, chemotherapies could be 
alternated with “fake drugs” that serve only to tip the competitive balance in favor of sensitive 
cells. This idea has considerable appeal, but the argument could be made that rapid treatment 
with a fake drug should be initiated before the real chemotherapy is even applied. The reasoning 
is as follows. The resistant cell population is expected to be at its lowest numbers before 
treatment, either should resistance have an intrinsic cost relative to sensitive cells, or should it 
have no cost, but emerged only once the tumor attained large cell numbers. The sensitive cell 
population will be at its maximum numbers and competitive impact on resistant cells before 
treatment. Increasing the cost of resistance through a fake drug will further tip the balance in 
favor of sensitive DCAs. This paves the way for the administration of a bolus of the real drug to 
clear the infection or the cancer, or if not completely successful, to follow the real drug with 
cycling fake drug treatments, as in ref. [55]. 

4. Dynamic agents. Drug specificity is one of the mainstays of Ehrlichian magic bullets. 
However, it is also a shortcoming since, as discussed above, targeting one or a small number of 
vulnerable traits can select for resistance [5]. An alternative is to capitalize on the diversity of 
“living” agents and their potential to overcome the evolution of resistance in situ, or in treating 
previously evolved multi-drug resistant pathogens. Examples include lytic phages against 
pathogenic bacteria [56,57] and oncolytic viruses [58]. For example, Wodarz and Komarova [59] 
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developed and analyzed mathematical models to show that tumor control by oncolytic viruses 
depended importantly on virus growth and diffusion to refuge cancer cell populations. Others 
have argued for a “Trojan Horse” strategy, whereby avirulent DCA variants could be used to 
control more virulent strains [60] and greatly reduce the risks of resistance evolution. An 
interesting related development is to employ bacteriophages as adjuvants to select for increased 
sensitivity to antibiotics [61]. 
A prime advantage of dynamic agents, and bacteriophages in particular, is self-amplification and 
adaptation to resistant hosts in situ. Because the diversity of phages is virtually limitless, they can 
be combined into cocktails to maximize overall strain coverage and impact on the target 
bacterium [48]. Bacteriophage can either treat established infections, or be used prophylactically 
(‘lying in wait’) so as to prevent pathogens from colonizing incisions or wounds [62]. When 
bacterial densities are low (such that phage self-amplification is limited) or difficult to attain, the 
phage inoculum can be increased, functioning more like a conventional antimicrobial drug. 

5. Tweaking different interactions in the disease ecosystem. As introduced above, one of the 
cornerstones of ecology—that individuals interact with each other and the environment—is all 
but neglected in chemotherapies. There are many possible interventions into the disease 
ecosystem that could increase impacts on DCAs. For instance, immune systems (‘predators’) can 
be harnessed to combat malignant cells (e.g., [63]). Empirical work shows that one way to 
accomplish this is through dynamic agents [64], whereas other immune stimulations prevent 
DCAs from becoming established in the first place [65]. Other study shows how healthy cells 
may help suppress neighboring tumors [66], or the evolutionary rates and adaptability of DCAs 
may be slowed [67], or how factors as diverse as resource bases, virulence factors, host tolerance, 
microbiomes, and cell-cell cooperation may be targeted to improve therapeutic outcomes [68–
70]. 
6. Adapt to the situation. The conventional approach of treating disease is to employ 
information based on symptoms, eventual identification of the DCA, and patient characteristics to 
devise a one-off strategy with the objective of improvement or cure. A different approach is to 
use early-warning signs, and initial and on-going information to predict disease dynamics and 
adapt treatments so as to manage or eradicate the DCA. For example, ‘adaptive therapy’ has the 
dual objectives of an acceptable cancer burden and minimal resistance evolution (recently 
reviewed in [71]). In the context of phage therapy, Pirnay and colleagues [56] distinguished 
general or prêt à porter strategies and more personalized sur mesure approaches. One example of 
the latter is adaptive “phage training”, whereby lytic phages are evolved before or during a 
therapy in the laboratory, so as to improve their impact on particular bacterial strains, extend the 
spectrum of hosts attacked, or anticipate bacterial resistance [72,73] (see also [71] for a related 
discussion of “steering evolution”). Once training is complete, the trained isolates are then 
(re)introduced into the disease ecosystem. 

More generally, assessing possible ‘Plan B’ strategies before a treatment actually begins is not 
only sensible, but may also influence the choice of Plan A. Forecasts of ecology and evolution in 
the disease ecosystem should guide such choices. For example, the use of a risky Plan A with no 
Plan B should Plan A fail (e.g., the treatment of a multidrug-resistant bacterium with a last resort 
antibiotic), may be inferior to the employment of a less aggressive, slower-acting Plan A (the use 
of a phage cocktail) that has an ecologically and evolutionarily-sensible Plan B (adaptively 
trained bacteriophage) should Plan A be partially successful or fail. 
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Table 2. Opportunities and potential risks in treating disease associated with each of the 6 
wedges. 
  

Wedge Opportunities Potential risks (Comments) 

1. Dosing 
  

Hit hard, fast and sufficiently long 
if probabilities of sensitive DCA 
elimination are high; resistance 
low; immune system completes 
clearance 

Toxicity and selection for 
resistance (Modulate dose and 
schedule or manage using one or 
more of Wedges 2-6) 

2. Combinations 
  

Break through refuges 
(phenotypic, dormancy, spatial, 
resistance); not only reduces 
DCAs compared to any drug used 
separately, but also may control 
drug resistance; combinations can 
be pre-evaluated for their synergy 
and used at lower doses than 
either drug separately 

The development of multiple 
resistances (Choose agents, doses 
and schedules whereby one agent 
is the principal treatment and the 
other acts as a supplement or 
adjuvant - Wedge 4) 
  

3. Increasing 
resistance costs 
  

Targets the cause of many 
chemotherapeutic failures by 
reducing or eliminating resistant 
phenotypes before a therapy 
commences 

Pre-therapy clinical side effects or 
causing significantly delays in 
administration of the drug 
(Alternate with chemotherapies - 
Wedges 2, 6) 

4. Dynamic agents 
  

Particularly useful as targeted 
therapies, to grow and persist in 
disease ecosystem, and counter 
evolved DCA resistance 

Host range expansion to 
commensal microorganisms 
(bacteriophage); removal by the 
immune system; more time 
required for success (Combine 
with more traditional drugs - 
Wedge 2 - or natural components 
of disease ecosystem - Wedge 5)  

5. Harnessing 
immune responses 
and quenching 
resources 

Harness immune system, 
competition (public good 
quenching, nutrient limitation), 
and altering environmental 
stresses (reduced inflammation) 

Autoimmune reactions (also risks 
in Wedge 4) (Most promising if 
used in combination with other 
therapies - Wedge 2) 

6. Adapting 
  

Potential when the DCA can be 
directly or indirectly monitored 
and treatments be modified in 
type or dose, or adapted in 
parallel (e.g., phage training) 

Inability to manage or eradicate 
infection 
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The Greater Community  

The approaches presented above focus on the disease ecosystem within the individual patient. For 
infectious diseases, one must also consider the larger population for at least two reasons. First, in 
the short term, failure to sufficiently control an infection may result in the transmission of 
sensitive, or even worse, resistant strains. Second, in the longer term, the continued use of a 
single antimicrobial over a sufficiently large population will invariably select for the emergence 
and spread of resistance. Heesterbeek and colleagues [74] presented a framework that reveals the 
complexity of managing infectious disease systems, whereby models (based on predictive 
epidemiological parameters, such as the basic reproductive rate), data and policy are integrated 
into a plan of action, and improved iteratively. These models have the objective of control (whilst 
preventing or delaying resistance) or, if possible, eradication. Application of one or more of the 
wedges proposed here should form part of disease control and eradication policies since, by 
reducing the probability of resistance emergence, they may prevent or attenuate the spread of 
epidemics in the wider population. Nevertheless, more research is needed to understand how 
attempting to cure individual patients is or is not optimal for the population, and inversely, how 
optimal population-level programs may result in some patients not being cured, whereas they 
would have been in a patient-centered approached. The 6 wedges presented here, when used 
singly or in combination may provide a way forward to optimize both individual outcomes and 
population-level outcomes. 
  
Conclusions 

The complexity of the disease ecosystem provides numerous opportunities for the employment of 
novel therapeutic approaches. Real disease ecosystems and the mechanisms of DCA escape are 
evidently much more complex than presented here (see e.g., Table 2 in [75]), meaning that 
compromises are necessary between sufficient realism and conceptual and computational 
tractability. This will be particularly challenging in situations where rapid decisions are needed 
and for which accurate, rich information about the DCA is difficult to obtain or difficult to 
process [76]. Nevertheless, the six wedges proposed here, based on a fundamental understanding 
of ecology and evolution in the disease ecosystem, provide a robust armory, which can be used 
singly or in combination to cure disease. 
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