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Abstract 
 

While biochemistry evidently affects the growth rate of cells, many biochemists routinely ignore 
population variation, just like population geneticists usually ignore causal details of biochemistry 
that underpin a change in growth rate caused by a mutation. A true EvoSysBio integration 
requires an explicit mechanism for how molecular reaction rates affect the reproduction rates 
that determine the fitness of an organism. Here we simulate a very simple and completely 
explicit Continuous-Time Markov Chain (CTMC) model of cancer cells whose growth rate is 
affected by the biochemical equilibrium between two molecular complexes. Approximately 70% 
of breast cancers are of a type that overexpress Estrogen Receptor-alpha (ERα). Cell growth in 
this type of cancer is inhibited by hormonal therapies that antagonize ERα function as a 
transcription factor. ERα is encoded by the ESR1 gene, which itself is a target of ERα mediated 
transcription. When activated by estrogen, ERα binds to the ESR1 promoter, repressing new 
synthesis of ERα protein. Estrogen binding also induces pathways that lead to degradation of 
ERα protein. This negative feedback loop is finely tuned to natural levels of estrogen and results 
in natural levels of growth. In breast cancer, the system is thrown off its natural course such that 
increased levels of ERα induce levels of cell growth that can lead to cancer. Thus, both genetic 
changes to the ESR1 promoter, ERα protein degradation, and biochemical changes in estrogen 
metabolism can effectively cause changes in cell growth rates, which can be seen as the 
‘fitness’ of a cancer cell. Predicting cancer cell growth in this system raises a conceptual multi-
level simulation problem, because the molecular aspects of this model need to compute the 
biochemistry in a way that influences growth rates at the cellular level, without resetting growth 
at each cell division. We present progress towards addressing this simulation challenge in pure 
mass-action models, which we implemented using the Evolvix model description language. We 
found that such models can be constructed in more than one way. We explored some candidate 
model properties that could aid efforts to develop abstractions for more efficiently simulating the 
common multi-level modeling problems behind many important biological questions. These 
efforts are ongoing and aim to find efficient ways of encoding and exploring such models in 
silico. In particular, we are investigating how architecting a new compiler for a general-purpose 
programming language for biology could improve the efficiency of analyzing the dynamic multi-
level simulation scenarios that characterize many questions in EvoSysBio. Progress can be 
followed at http://evolvix.org. 

                                               
* Corresponding author, email: Loewe@wisc.edu 
 
An earlier version of this abstract was presented as a poster at the 2017 Symposium on Evolutionary Systems 
Biology of Cells held at the International Conference of the Society for Molecular Biology and Evolution (SMBE), 2017 
July, 2-6th, Austin, Texas (see http://www.smbe2017.org/). Updates to this model will follow eventually. 
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Model M4: Over-Separated
Separate for these 4 cell types (Lo0↔ Lo1↔Hi2 ↔Hi3 ):

• Set Counts of PreGrowCells and PreDiviCells 

• ERα Element Counts in all PreGrow, PreDivi

• Loss of ERα cell locations, but cell type is kept

• Change Set and El counts at LifeCycleEvents

References:   1. Tian et al. (2015), A kinetic model identifies phosphorylated estrogen receptor-α (ERα) as a critical regulator of ERα dynamics in breast cancer. FASEB J. 29.5: 2022-2031.   --- 2. Barber, et al. (2005), GAPDH as a housekeeping gene: analysis of GAPDH mRNA expression in a panel of 72 human tissues. Physiol. Genom. 21.3 : 389-395.   --- 3. Poola
et al. (1998), Quantitation of estrogen receptor mRNA copy numbers in breast cancer cell lines and tumors. Analyt. Biochem. 258.2 : 209-215.   --- 4. Reese & Katzenellenbogen. (1992), Examination of the DNA-binding ability of estrogen receptor in whole cells: implications for hormone-independent transactivation and the actions of antiestrogens. Mol. Cell. Biol. 12.10 : 
4531-4538.   --- 5. Loewe & Hill (2010), Introduction: The population genetics of mutations: good, bad and indifferent. Phil. Trans. Roy. Soc. B Biol. Sci. 365(1544):1153-67.   --- 6. Loewe (2009),  A framework for evolutionary systems biology. BMC Syst.Biol. 3:27.   --- 7. Loewe (2015), EvoSysBio in 10 Slides. http://dx.doi.org/10.6084/m9.figshare.1427128   --- 8. Loewe 
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speeding up stochastic simulations. J. Chem. Phys. 141(20):204109. --- 11. Gillespie DT (2007), Stochastic simulation of chemical kinetics. Annu. Rev. Phys. Chem 58:35-55. --- 12. Gillespie, et al. (2013) Perspective: Stochastic algorithms for chemical kinetics. J. Chem. Phys. 138:170901.    --- 13. On Biocuration and its growing importance, see relevant sections in: 
Scheuer KS et al. (2017), Watching the clock for 25 years in FlyClockbase: Variability in circadian clocks of Drosophila melanogaster as uncovered by biological model curation. BioRxiv.org,  https://doi.org/10.1101/099192    --- 14. Markvoort et al. (2014), Computer simulations of cellular group selection reveal mechanism for sustaining cooperation. J.Theor.Biol. 357:123-33.   
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Model M3: Simplistic Replication
Simplest 2-level model. Two biochemical states 

affect cell division rate, but after replication, the 

new cell resets into a shared transient state.

No reset of parent cell. Partial resetting means: 

More work to do, as our main question remains.

Model M2: ERα after treatment1

Basic 1-level model of molecular interactions 

representing cell states after treating the cell line 

with estrogen. Shows interactions of the ERα 

regulatory system. Estrogen treatment degrades 

ERα to non cancer levels. No cell division. 

Model M1: Steady State1

Basic 1-level model of molecular interactions 

representing steady state of ERα-positive breast 

cancer cell line MCF-7. Determines level of 

ERα, which is an important switch for cell 

growth. Cell division not modeled. No treatment.
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Cancer Background
About 70% of breast cancers are ERα-positive, hinting 

at overexpression of Estrogen Receptor-alpha. Cell 

growth in this type of cancer is inhibited by hormonal 

therapies that antagonize ERα’s function as a 

transcription factor. ERα is encoded by the ESR1 gene, 

which itself is a target of ERα-mediated transcription. 

When activated by estrogen, ERα binds to the ESR1 

promoter, repressing new synthesis of ERα protein. 

Estrogen binding also induces pathways that lead to 

degradation of ERα. This negative feedback loop is finely 

tuned to natural levels of estrogen and results in natural 

levels of growth. In breast cancer, the system is thrown 

off its natural course such that increased levels of 

ERα induce levels of cell growth that lead to cancer. 

Thus, genetic changes to the ESR1 promoter, ERα 

protein degradation, and biochemical changes in estrogen 

metabolism can effectively change the rate of cell growth, 

which can be seen as the ‘fitness’ of a cancer cell. 

Methods & Materials
List anything here that you have used to produce your work 

(except references, to be cited below). Please specify the versions 

of the software you used and other details of importance for 

reproducibility...but try to avoid getting stuck in too many details. 

In any case provide an overview...

The Nesting Problem
Why is it so difficult to consider biochemical changes 

in the context of replicating cells? 

Let's consider the count of ERα in a simplified cancer cell 

model in which nothing else mattered. We can then 

distinguish different cells as being in different states if they 

contain different counts of ERα. Since this could be 

thousands of molecules, our small nested example already 

has thousands of different "types of cells". However, these 

"cell types" only differ by one molecule more or less from 

their neighboring types. This suggests that very similar 

states could be lumped together if their behavior is indeed 

identical. If true, we can reduce the problem of 'too many 

types of cells' by combining cells with similar phenotypes 

into 'collective types'.

Remaining problem: the dynamics of molecules inside of 

cells is ultimately determined by their biochemistry, which 

is not necessarily reset by cell division. This can lead to 

many complicated dependencies that may last for 

generations. Thus, two daughter cells might be in the 

same biochemical state as their ancestor cell, just by 

physical continuity. Such states remain stable, until the 

relevant biochemistry is changed again. Thus, we have a 

complex multi-level system, in which the growth of cell 

types depends on their respective biochemical state inside. 

The same principle allows for transmitting information on 

DNA; only that DNA is stabilized in many ways, while most 

biochemical states are not. 

Results
Here we investigate a simplified breast cancer cell 

model informed by observed data1, which indicates 

that the growth rate of such a cell is affected by its 

molecular state. We use this model as a basis for 

investigating our main question from different angles.

Chance or necessity? System dynamics are stochastic or 

deterministic, as governed by how many parts are 

available for each relevant action. In deterministic models

even tiny fractions of a part can interact as if thousands 

existed; if the latter is true for each important part, such 

models work well. In contrast, stochastic models insist that 

actions only occur if all required parts exist as requested, 

leading to random waiting times and chance events.

We bio-curated13 the amount of average ERα mRNA per 

cell and found about 800 molecules per cell2,3,4. The cutoff 

for ERα-negative cells becoming ERα-positive3 was about 

80. These intermediate amounts justify analyzing our 

model using deterministic and stochastic simulations.

Discussion
ERα is a key regulator in normal physiology, as well as 

disease development. To improve our understanding of the 

ERα regulation system, we need to model more of what 

ERα does in the cell. This includes dimerization, binding to 

estrogen response elements in target genes, and 

activating or repressing gene expression. The impact of 

ERα on cell growth requires better multi-level models for 

understanding cancer. How to simulate these models is an 

active area of research14-17, and of crucial importance for 

the EvoSysBio goal of constructing fitness landscapes6-8. 

Modeling
Our basic models track the relative molecular abundance 

of the ERα transcription factor. When overabundant, ERα 

can stimulate cell growth and cells become cancerous1. 

We use the Evolvix modeling language9 (Free Prototype 0.3.1).

It allows us to efficiently explore diverse models and 

focus on the biology instead of model construction.

It simulates pure mass-action systems observing amounts 

of interacting parts. It uses known methods9-12 to simulate 

Continuous-Time Markov Chains using various methods. 

Introduction
Nested replicators are central to biology: cells replicate 

in organisms, molecules replicate in cells. Each replicator 

is dynamically changing. This complicates predictions of 

what will happen next in biological systems. 

Mathematical models’ importance for the study of 

dynamic, multi-level, biological systems has grown, but 

models currently rarely span more than one level.

Biochemistry affects growth rates of cells yet many 

biochemical models ignore population consequences. 

In turn, most population models ignore biochemical 

details that affect growth and are changed by mutations.5

EvoSysBio fitness landscapes require full integration.6-8

Main Question
How can we simulate dynamic, multi-level systems without 

losing or resetting relevant lower-level biochemical states 

when upper-level actions occur at the cell level, and thus 

change, duplicate, or destroy the very container in which 

the lower-level states have been defined?
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Modeling Conclusions
M1 & M2 time series match published simulations1 fitted to 

observed relative molecular amounts (Fig.1-2). M3 cells 

quickly switch between 2 biochemical states with longer / 

shorter waits for cell division. Passing through a rare brief

transient state (Fig.3, pink) shared by new cells is enough 

to force mixing of both life history cycles; unlikely for mitotic 

cancer cells, maybe relevant for strong anisogamy models.

M4 has 4 complete life-history cycles for all 4 ERα counts 

allowed in its Lo / Hi growth cells (Fig.5). These could be 

independent, but are linked here in ERα incr-/decreasing 

transitions (Fig.6). Cell and ERα counts change separately.

Fig.5 Life-history cycle in M4. Cells divide / grow, starting
from states PreDivide / PreGrow. Growth is slowest, so

switching to other states or death occurs here.

Fig.6
Abstraction:

cellèset; moleculeèelement.
cells in M4 transition between along a

sequence of four life-history cycles by degrading or synthesizing ERα 
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ERa
Lo0 = Yellow
Lo1 = Grey
Hi2 = Green
Hi3 = Blue

Cells:
Lo0 = Black
Lo1 = Red
Hi2 = Cyan
Hi3 = Pink
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