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Abstract

While biochemistry evidently affects the growth rate of cells, many biochemists routinely ignore
population variation, just like population geneticists usually ignore causal details of biochemistry
that underpin a change in growth rate caused by a mutation. A true EvoSysBio integration
requires an explicit mechanism for how molecular reaction rates affect the reproduction rates
that determine the fitness of an organism. Here we simulate a very simple and completely
explicit Continuous-Time Markov Chain (CTMC) model of cancer cells whose growth rate is
affected by the biochemical equilibrium between two molecular complexes. Approximately 70%
of breast cancers are of a type that overexpress Estrogen Receptor-alpha (ERa). Cell growth in
this type of cancer is inhibited by hormonal therapies that antagonize ERa function as a
transcription factor. ERa is encoded by the ESR1 gene, which itself is a target of ERa mediated
transcription. When activated by estrogen, ERa binds to the ESR1 promoter, repressing new
synthesis of ERa protein. Estrogen binding also induces pathways that lead to degradation of
ERa protein. This negative feedback loop is finely tuned to natural levels of estrogen and results
in natural levels of growth. In breast cancer, the system is thrown off its natural course such that
increased levels of ERa induce levels of cell growth that can lead to cancer. Thus, both genetic
changes to the ESR1 promoter, ERa protein degradation, and biochemical changes in estrogen
metabolism can effectively cause changes in cell growth rates, which can be seen as the
‘fitness’ of a cancer cell. Predicting cancer cell growth in this system raises a conceptual multi-
level simulation problem, because the molecular aspects of this model need to compute the
biochemistry in a way that influences growth rates at the cellular level, without resetting growth
at each cell division. We present progress towards addressing this simulation challenge in pure
mass-action models, which we implemented using the Evolvix model description language. We
found that such models can be constructed in more than one way. We explored some candidate
model properties that could aid efforts to develop abstractions for more efficiently simulating the
common multi-level modeling problems behind many important biological questions. These
efforts are ongoing and aim to find efficient ways of encoding and exploring such models in
silico. In particular, we are investigating how architecting a new compiler for a general-purpose
programming language for biology could improve the efficiency of analyzing the dynamic multi-
level simulation scenarios that characterize many questions in EvoSysBio. Progress can be
followed at http://evolvix.org.
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An earlier version of this abstract was presented as a poster at the 2017 Symposium on Evolutionary Systems
Biology of Cells held at the International Conference of the Society for Molecular Biology and Evolution (SMBE), 2017
July, 2-6th, Austin, Texas (see http://www.smbe2017.org/). Updates to this model will follow eventually.
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Introduction
Nested replicators are central to biology: cells replicate
in organisms, molecules replicate in cells. Each replicator
is dynamically changing. This complicates predictions of
what will happen next in biological systems.

Mathematical models’ importance for the study of
dynamic, multi-level, biological systems has grown, but
models currently rarely span more than one level.

Biochemistry affects growth rates of cells yet many
biochemical models ignore population consequences.

In turn, most population models ignore biochemical
details that affect growth and are changed by mutations.>
EvoSysBio fitness landscapes require full integration.5-8

Cancer Background
About 70% of breast cancers are ERa-positive, hinting
at overexpression of Estrogen Receptor-alpha. Cell
growth in this type of cancer is inhibited by hormonal
therapies that antagonize ERa'’s function as a
transcription factor. ERa is encoded by the ESR1 gene,
which itself is a target of ERa-mediated transcription.
When activated by estrogen, ERa binds to the ESR1
promoter, repressing new synthesis of ERa protein.
Estrogen binding also induces pathways that lead to
degradation of ERa. This negative feedback loop is finely
tuned to natural levels of estrogen and results in natural
levels of growth. In breast cancer, the system is thrown
off its natural course such that increased levels of
ERa induce levels of cell growth that lead to cancer.
Thus, genetic changes to the ESR1 promoter, ERa
protein degradation, and biochemical changes in estrogen
metabolism can effectively change the rate of cell growth,
which can be seen as the ‘fitness’ of a cancer cell.

Modeling
Our basic models track the relative molecular abundance
of the ERa transcription factor. When overabundant, ERa
can stimulate cell growth and cells become cancerous’.

We use the Evolvix modeling language?® (Free Prototype 0.3.1).
It allows us to efficiently explore diverse models and
focus on the biology instead of model construction.

It simulates pure mass-action systems observing amounts
of interacting parts. It uses known methods®-'2 to simulate
Continuous-Time Markov Chains using various methods.
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Main Question
How can we simulate dynamic, multi-level systems without
losing or resetting relevant lower-level biochemical states
when upper-level actions occur at the cell level, and thus
change, duplicate, or destroy the very container in which
the lower-level states have been defined?
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The Nesting Problem
Why is it so difficult to consider biochemical changes
in the context of replicating cells?

Let's consider the count of ERa in a simplified cancer cell
model in which nothing else mattered. We can then
distinguish different cells as being in different states if they
contain different counts of ERa. Since this could be
thousands of molecules, our small nested example already
has thousands of different "types of cells". However, these
"cell types" only differ by one molecule more or less from
their neighboring types. This suggests that very similar
states could be lumped together if their behavior is indeed
identical. If true, we can reduce the problem of 'too many
types of cells' by combining cells with similar phenotypes
into 'collective types'.

Remaining problem: the dynamics of molecules inside of
cells is ultimately determined by their biochemistry, which
is not necessarily reset by cell division. This can lead to
many complicated dependencies that may last for
generations. Thus, two daughter cells might be in the
same biochemical state as their ancestor cell, just by
physical continuity. Such states remain stable, until the
relevant biochemistry is changed again. Thus, we have a
complex multi-level system, in which the growth of cell
types depends on their respective biochemical state inside.
The same principle allows for transmitting information on
DNA,; only that DNA is stabilized in many ways, while most
biochemical states are not.

ER Interactions
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Results
Here we investigate a simplified breast cancer cell
model informed by observed data’, which indicates
that the growth rate of such a cell is affected by its
molecular state. We use this model as a basis for
investigating our main question from different angles.

Chance or necessity? System dynamics are stochastic or
deterministic, as governed by how many parts are
available for each relevant action. In deterministic models
even tiny fractions of a part can interact as if thousands
existed; if the latter is true for each important part, such
models work well. In contrast, stochastic models insist that
actions only occur if all required parts exist as requested,
leading to random waiting times and chance events.

We bio-curated' the amount of average ERa mRNA per
cell and found about 800 molecules per cell234. The cutoff
for ERa-negative cells becoming ERa-positive® was about
80. These intermediate amounts justify analyzing our
model using deterministic and stochastic simulations.

Modeling Conclusions

M1 & M2 time series match published simulations? fitted to
observed relative molecular amounts (Fig.1-2). M3 cells
quickly switch between 2 biochemical states with longer /
shorter waits for cell division. Passing through a rare brief
transient state (Fig.3, pink) shared by new cells is enough
to force mixing of both life history cycles; unlikely for mitotic
cancer cells, maybe relevant for strong anisogamy models.
M4 has 4 complete life-history cycles for all 4 ERa counts
allowed in its Lo / Hi growth cells (Fig.5). These could be
independent, but are linked here in ERa incr-/decreasing
transitions (Fig.6). Cell and ERa counts change separately.

Discussion
ERa is a key regulator in normal physiology, as well as
disease development. To improve our understanding of the
ERa regulation system, we need to model more of what
ERa does in the cell. This includes dimerization, binding to
estrogen response elements in target genes, and
activating or repressing gene expression. The impact of
ERa on cell growth requires better multi-level models for
understanding cancer. How to simulate these models is an
active area of research'#-17, and of crucial importance for
the EvoSysBio goal of constructing fitness landscapes®-8.
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Model M1: Steady State’
Basic 1-level model of molecular interactions
representing steady state of ERa-positive breast
cancer cell line MCF-7. Determines level of
ERa, which is an important switch for cell
growth. Cell division not modeled. No treatment.

Model M2: ERa after treatment’
Basic 1-level model of molecular interactions
representing cell states after treating the cell line
with estrogen. Shows interactions of the ERa
regulatory system. Estrogen treatment degrades
ERa to non cancer levels. No cell division.

Model M3: Simplistic Replication
Simplest 2-level model. Two biochemical states
affect cell division rate, but after replication, the
new cell resets into a shared transient state.

No reset of parent cell. Partial resetting means:
More work to do, as our main question remains.

Model M4: Over-Separated
Separate for these 4 cell types (Lo0gLo1cHi2 gHi3):
« Set Counts of PreGrowCells and PreDiviCells
« ERa Element Counts in all PreGrow, PreDivi
« Loss of ERa cell locations, but cell type is kept
« Change Set and El counts at LifeCycleEvents

2 1. Tian et al. (2015), A kinetic model

in breast cancer. FASEB J. 29.5: 2022-2031. —
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