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2 Carlson

It’s easy to think that as a result of the extinction of the dodo, we are now sadder and wiser,
but there’s a lot of evidence to suggest that we are merely sadder and better informed.

– Douglas Adams, Last Chance to See

1 Introduction

Most species, like most living organisms on Earth, have a finite lifespan. From the
origin of a species onward, every species changes and adapts to its environment.
Some species exist longer than others, but all eventually face extinction (or, are
replaced by their descendants through evolution). Currently, there are approximately
8.7 million eukaryote species alone. But in the history of Earth, it is estimated that
there have been a daunting 4 billion species altogether, and at least 99 percent of
them are now gone.1

How long can a species exist? Of the species currently on Earth, some are deeply
embedded in the geological record and have changed very little over the span of
million years, such as coelacanths or ginkgo trees. Most species persist for a few
millions of years or more, and in periods of environmental stability, extinctions typ-
ically occur at a low and steady baseline rate. But at various points in the history
of the Earth, extinction rates have suddenly accelerated for brief and eventful peri-
ods that biologists term mass extinction events. In 1982, based on the marine fossil
record, David Raup and Jack Sepkoski suggested that five of these mass extinctions
have occurred over the past half billion years.2 In all five, more than half of all con-
temporary species disappeared,3 each sufficiently drastic to be considered the end
of a geological era: the Ordovician 444 million years ago (mya), Devonian 375 mya,
Permian 251 mya, Triassic 200 mya and Cretaceous 66 mya.

But in recent years, ecologists have reached the consensus that the biosphere
is currently experiencing, or at the very least entering, the sixth mass extinction.4

Unlike the previous five, which were caused by planetary catastrophes and other
changes in the abiotic environment, the sixth mass extinction is the undeniable prod-
uct of human activities. While anthropogenic climate change is one of the most sig-
nificant contributors, a number of other factors have recently exacerbated extinction
rates, including habitat loss and fragmentation, biological invasions, urbanization,
over-harvesting, pollution, pests, and emerging diseases.

1 Camilo Mora et al., “How many species are there on Earth and in the ocean?,” PLoS Biol 9, no.
8 (2011): e1001127.
2 David M Raup and J John Sepkoski Jr, “Mass extinctions in the marine fossil record,” Science
215, no. 4539 (1982): 1501–1503.
3 Michael L McKinney and Julie L Lockwood, “Biotic homogenization: a few winners replacing
many losers in the next mass extinction,” Trends in ecology & evolution 14, no. 11 (1999): 450–
453.
4 Elizabeth Kolbert, The sixth extinction: An unnatural history (A&C Black, 2014).

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.3367v2 | CC BY 4.0 Open Access | rec: 11 Sep 2018, publ: 11 Sep 2018



The Mathematics of Extinction 3

How does the sixth mass extinction scale up against the last five? The number
of extinctions alone is an unhelpful metric, as species richness changes over time.
A more convenient unit of measurement commonly used by scientists is the num-
ber of extinctions per millions of species-years (E/MSY). From a landmark study
by Gerardo Ceballos and colleagues, we know that in the geological record, ver-
tebrates normally go extinct at a rate of 2 E/MSY in the periods in-between mass
extinctions. But since 1900, that rate is an astounding 53 times higher.5 One study
has suggested that the sixth mass extinction is comparable to other mass extinctions
in E/MSY rates, meaning that with enough time, the geological definition of a mass
extinction (three quarters extinction) could be achieved in hundreds to thousands of
years.6 Or, to consider another framing : a 1970 study estimated that at a baseline,
one species goes extinct per year,7 while just a decade later that estimate was re-
vised to one species per hour.8 Plants, insects, and even micro-organisms all face
similarly catastrophic threats; and these across-the-board losses of biodiversity pose
a threat to human survival that some argue could even threaten our own species with
extinction.

The crisis of extinction is, for scientists, a crisis of prediction. While extinction
is a natural part of ecosystem processes and of the history of the planet, the job of
conservation biologists is to protect species that would otherwise be brought to an
untimely and avoidable end. To do that, conservationists must sort and prioritize the
8.7 million eukaryotes (and, even, some prokaryotes) to assess which species face
the greatest threat—and which can, and cannot, be saved by human intervention.
Assessment is easiest at the finest scales: by marking and tracking all the individuals
in a region, a population ecologist can make a statistically-informed estimate of the
probability of imminent extinction. But above the population level, assessment is
much more challenging, requiring sophisticated (and complicated) meta-population
models that are typically data-intensive. If a species is rare enough and the data
are “noisy,” its extinction may seem uncertain even after the fact; but mathematical
models can help assign a probability to the rediscovery of a species once thought
extinct, and resolve when (and even why) a species has disappeared long after it
is gone. Above the level of a single species, measuring extinction is an altogether
different problem, requiring a different type of model to explain how biodiversity
arises and is maintained over time.

Each of these modeling approaches represents a different aspect of a connected
problem, and we deal with each in turn in this chapter. We begin by discussing the
basic mechanics of extinction as a demographic process at the population scale,
including population viability analysis, with a case study on evolutionary rescue
processes. We progress up to the metapopulation scale, including patch occupancy
models and island biogeography. At the species scale, we dive deeper into the issue

5 Gerardo Ceballos et al., “Accelerated modern human–induced species losses: Entering the sixth
mass extinction,” Science advances 1, no. 5 (2015): e1400253.
6 Anthony D Barnosky et al., “Has the Earth/’s sixth mass extinction already arrived?,” Nature 471,
no. 7336 (2011): 51–57.
7 R Levins, “Extinction,” Lectures on Mathematics in the Life Sciences 2 (1970): 77–107.
8 Norman Myers, The sinking ark (Pergamon Press, Oxford, 1979).
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of evolutionary rescue, including the potential for plasticity to buffer species from
extinction in a changing environment. Expanding at the species level, we discuss the
recently-growing literature on using the sighting record to determine the odds that
species are extinct, with a handful of case studies including Spix’s macaw and the
ivory-billed woodpecker. Finally, we discuss how extinction scales up to the com-
munity level, and how extinction rates are inferred from habitat loss using macroe-
cological theory. The models we present are seminal and well-known, but extinction
risk modeling is a dynamic and rapidly-growing field. Consequently, these models
only present a handful of the many different approaches that link different temporal
and spatial scales of extinction together.

2 The Population Scale

Even though many make a terminological distinction between extinction (the loss
of a species) and extirpation (the eradication of a population), extinction is still
fundamentally a process that begins at the population scale. With the exception of
sudden, unexpected catastrophes, extinction at the population scale is almost al-
ways the product of either a declining population or of stochastic variations in an
already-small population, both of which follow mathematical rules that can be used
to quantify extinction risk. Perhaps the most significant body of theory about popu-
lation extinction deals with the estimation of a population’s mean time to extinction
(MTE, typically TE in mathematical notation), an important quantity to both the-
oretical ecologists and conservation practitioners. For both theoretical and applied
approaches to extinction, understanding the uncertainty around TE requires an un-
derstanding of the shape of the extinction time distribution, including developing
and testing demographic theory that accurately captures both the central tenden-
cies9 and the long tail10 of empirical extinction times. We begin by reviewing some
of the basic population-scale approaches that scale up to ecosystem-level theory of
extinction.

2.1 Stochasticity and the Timing of Extinction

In the most basic terms, a population declining at a steady rate will eventually be-
come extinct; the simplest deterministic equation governing the size of a population
N, as it grows over time t (generally measure in units of either years or generations)
is given by

9 John M Drake, “Extinction times in experimental populations,” Ecology 87, no. 9 (2006): 2215–
2220.
10 John M Drake, “Tail probabilities of extinction time in a large number of experimental popula-
tions,” Ecology 95, no. 5 (2014): 1119–1126.
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dN
dt

= rN (1)

where if r is positive the population is growing, while if r is negative, the population
heads rapidly towards extinction. A slightly more complex model that captures the
phenomenological capping of the growth of a population at a population ceiling
termed K is:

dN
dt

=

{
rN if 1 < N < K
0 if N = K

(2)

While K is often called a carrying capacity, this is perhaps misleading, as in this
context it only introduces density dependence when N = K, and not before. Eqns. 1
and 2 both imply that if r < 0, ln(N) declines linearly with slope r. For shrinking
populations (i.e., r < 0) these equations imply that the mean time to extinction (TE )
can be derived analytically as the amount of time before the population reaches one
individual (i.e. N = 1 at t = TE ):

TE(N0) =− ln(N0)/r (3)

Consequently, for a given population with a fixed r the maximum achievable extinc-
tion time given a starting stable population size would be

max(TE) =− ln(K)/r (4)

However, in this model if r > 1, the population never reaches extinction and simply
grows forever.

Deterministic models only tell a part of the story. In the history of conservation
biology, two paradigms emerged that separately explain the process of population
extinctions. The declining population paradigm explains that populations shrink and
vanish due to a combination of internal and external failures, and suggests that the
key to conserving populations is to identify and prevent those failures. In contrast,
the small population paradigm is rooted in ideas of stochasticity, suggesting that
even without factors like environmental degradation or disease, smaller, more frag-
mented populations simply face higher extinction risk due to stochastic population
processes.11 For one thing, stochasticity produces populations with log-normally
distributed sizes (i.e. most populations are comparatively small relative to a few
larger ones). The underlying reason for this can be traced back to Jensen’s inequal-
ity, which suggests the expected value of a convex function applied to a random
variable x is greater than, or equal to, that function applied to the expected value of
the random variable (below, E[·] is the expectation operator):

E[ f (x)]≥ f (E[x])

11 Graeme Caughley, “Directions in conservation biology,” Journal of animal ecology, 1994, 215–
244.
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Applied to stochastic population growth, if r is stochastic, the expectation of r will
always be greater than the expected real growth rate of the population:12

E[r]> E[(Nt/N0)
1/t ]

Iterating these lower growth rates over an infinite amount of time, populations that
are growing randomly with r̄≤ 1 (i.e. less than exponential growth) all tend eventu-
ally to extinction.

In general, r can be decomposed into two component processes; births and
deaths. In their foundational work on the ecology of invasion and extinction—The
Theory of Island Biogeography—Robert MacArthur and E.O. Wilson proposed a
simple model with discrete per-capita birth and death rates, λ and µ respectively.
With λ +µ changes expected per time step, the estimated time until a single change
(birth or death) is given 1/(λ + µ). Thus the time to extinction for a population of
x individuals, TE(x) can be intuitively understood (with a more detailed derivation
in MacArthur and Wilson) as: i) the expected time for one change to occur (birth or
death); plus ii) the probability the change is a birth (i.e., λ

λ+µ
) multiplied by the time

to extinction if the population is of size x−1; plus iii) the probability the change is
a death (i.e., λ

λ+µ
) multiplied by the time to extinction if the population is of size

x+1.
This reasoning produces the relationship:

TE(x) =
1

λ +µ
+

λ

λ +µ
TE(x+1)+

µ

λ +µ
TE(x−1)

This simple but elegant relationship can be used to produce an expression for TE(K)
using the method of induction; in particular, TE(x) can be expressed as a function of
TE(1), noting that TE(0) = 0. To do this, MacArthur and Wilson add a population
ceiling K as before, and consider two cases of density dependence. If births are
density dependent, then (using the notation λ̃ (x) to distinguish between the function
λ̃ and the constant λ and similarly for µ)

λ̃ (x) =

{
λx if X < K
0 if X ≥ K

µ̃(x) = µx

and (through and inductive procedure not shown here) the time to extinction is

TE(K) =
λ

λ −µ
TE(1)+

λ

µ(K +1)(λ −µ)
− 1

λ −µ

K

∑
i=1

1
i

where

12 Mark S Boyce, “Population growth with stochastic fluctuations in the life table,” Theoretical
Population Biology 12, no. 3 (1977): 366–373.
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TE(K) =
1
µ
(K +1)

and

TE(1) =
K

∑
i=1

(
λ

µ

)i 1
iλ

+
(

λ

µ

)K 1
µ(K +1)

In contrast, if and when deaths are density dependent,

λ̃ (x) = λx

µ̃(x) =

{
µx if X < K
0 if X ≥ K

and the time to extinction is

TE(K) =
λ

λ −µ
TE(1)−

1
λ −µ

K

∑
i=1

1
i

In this scenario, TE(K) = TE(K +1); with some induction (not shown here), TE(1)
can also be expressed as

TE(1) =
K

∑
i=1

(
λ

µ

)i 1
iλ

This provides an explicit method for calculating TE(K), the maximum achievable
time to extinction with these rates. MacArthur and Wilson made a handful of key
observations about the behavior of these functions as they relate both to island bio-
geography and to the population process of extinction. First, TE(1) can be surpris-
ingly large if λ > µ , meaning that a net tendency for growth has incredibly long
times before extinction, even with stochasticity. Second, if populations start with a
single propagule (as their work is framed in the context of island colonists), roughly
µ/λ go extinct almost immediately while roughly (λ − µ)/λ grow to K and take
TE(K) years to go extinct. (This means that even though density dependence is not
introduced until N = K, the effects of the population ceiling are still emergent on
the dynamics of the whole system.) Third, “established populations” (N = K) have
a readily calculated extinction time:

TE(K)≈ λ

λ +µ
TE(1) =

λ

r
TE(1)

When λ > µ , the time to extinction scales exponentially with the population ceiling,
and does so at a hyperbolically accelerating rate with r. In short, bounded random
birth-death processes still approach extinction, but do so incredibly slowly if popu-
lations tend towards growth.

To more explicitly determine time to extinction in an exponentially growing
population, consider a population subject to simple Weiner process type stochas-
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tic fluctuations W (t).13 Specifically, if dW represents the derivative of W (t) such
that W (0) = 0, then W (t) is normally distributed around 0 such that

W (t)∼N (0, t) (5)

and the model is written as

dN = rNdt +
∫

NdW

This stochastic differential equation implies that for moderate population sizes,
where environmental stochasticity prevails over demographic stochasticity (dis-
cussed more fully in the next section), then for levels of infinitesimal environmental
variance σ2, the expected change in log population size X = log(N) over a small
interval [t, t +h] is14

E[X(t +h)−X(t)]∼N
(
µh,σ2h

)
where µ = r−σ

2/2 (6)

Solving the stochastic differential equation provides a distribution for X at time t:

g(X) =
1

σ
√

2πt

(
1− exp

(
−2XX0

σ2t

))
exp
(
− (X−X0−µT )2

2σ2T

)
Consequently, the distribution of the time to extinction (a population size of X = 0,
i.e. N = 1) is

f (T ) =
X0

σ
√

2πt
exp
(
− (X0 +µT )2

2σ2T

)
If µ ≤ 1, this integrates to zero; otherwise, it integrates to 1− exp(−2µX0/σ2).
Combining these expressions,

P(T < TE) =
∫

∞

0
g(X)dX =

∫
∞

1
f (T )dT

gives the probability that the population persists to time T without going extinct.
In reality, populations show a combination of deterministic and stochastic behav-

ior over time, and their extinction is a product of both. In the late 1980s, the field
of population viability analysis (PVA) emerged from the need to find appropriate
analytical and simulation methods for predicting population persistence over time.
According to one history of PVA, Mark Shaffer’s work on grizzly bears in Yellow-

13 Steinar Engen and Bernt-Erik Sæther, “Predicting the time to quasi-extinction for populations
far below their carrying capacity,” Journal of theoretical Biology 205, no. 4 (2000): 649–658;
Bernt-Erik Sæther and Steinar Engen, “Including uncertainties in population viability analysis us-
ing population prediction intervals,” Population viability analysis, 2002, 191–212.
14 Engen and Sæther, “Predicting the time to quasi-extinction for populations far below their car-
rying capacity”; Sæther and Engen, “Including uncertainties in population viability analysis using
population prediction intervals.”
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stone helped birth the field through two important developments, which we break
down in turn below.15

2.1.1 Demographic and Environmental Stochasticity

Shaffer’s first major contribution was the use of extinction risk simulations that
account for—and differentiate between—two major kinds of stochasticity. Demo-
graphic stochasticity is defined at the scale of the individual and occurs through
random variation in demography and reproduction, while environmental stochas-
ticity occurs at a synchronized scale for an entire population (e.g., a bad year may
change vital rates uniformly for all individuals in a population). While the impact
of environmental stochasticity is ultimately scale-independent, larger populations
become less sensitive to demographic stochasticity as they grow. This is due to the
integer-based nature of birth-death processes, where populations made up of fewer
individuals will suffer a disproportionate effect from a birth or death event.

Demographic and environmental stochasticity have measurably different effects
on TE in basic population models. A simple modeling framework distinguishing
between them was laid out in a 1993 paper by Russell Lande.16 That framework
begins again with Eq. 2, except that we now regard r as an explicit function of time
r(t) with a mean r̄. In the case of demographic stochasticity, individual variations
have no temporal autocorrelation and at the population scale,

r(t)∼N (r̄, σ
2
d /N)

where σ2
d is the variance of a single individual’s fitness per time. As above, the

population can be expressed as a diffusion process from the initial population size
N0:

1
2

σ
2(N0)

d2TE

dN2
0
+µ(N0)

dTE

dN0
=−1

The solution of that differential equation for TE (where extinction happens at N = 1)
is given as a function of the initial population size:

TE(N0) = 2
∫ N0

1
e−G(z)

∫ K

z

eG(z)

σ2(y)
dydz

where

G(y) = 2
∫ y

1

µ(N)

σ2(N)
dN

15 Steven R Beissinger, “Population viability analysis: past, present, future,” Population viability
analysis, 2002, 5–17.
16 Russell Lande, “Risks of population extinction from demographic and environmental stochas-
ticity and random catastrophes,” American Naturalist, 1993, 911–927.
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For populations experiencing demographic stochasticity and starting at their car-
rying capacity, this gives us an expression for extinction time that is perhaps slightly
clearer:

TE =

(
1
r̄

∫ K

1

e2r̄(N−1)N/σ2
d

N
dN
)
− lnK

r̄

Thus Lande argues in17 that when r̄ is positive, MTE scales exponentially with
carrying capacity, while when r̄ is negative it scales logarithmically with carrying
capacity (i.e., TE ∝ ln(K)), much like in the deterministic decline given by Eqs. 3
& 4). In contrast, in the case of environmental stochasticity, the variance acts on the
entire population at once (cf. Eq. 6):

E[lnN(t)] = lnN0 +(r̄−σ
2
e /2)t

and the mean time to extinction is now given by18

TE =
2

Vec

(
Kc−1

c
− lnK

)
where

c =
2r̄
σ2

e
−1

In the case of environmental stochasticity, if the “long-run growth rate” (r̃ = r̄−
σ2

e /2) is zero or negative, MTE again scales logarithmically with K. When long-run
growth is positive, the dynamic is a bit more complicated:

TE ≈ 2Kc/(σ2
e c2) if c lnK >> 1

In this case, the scaling of MTE with K bends up if and only if r̄/σ2
e > 1 (i.e., if and

only if the intrinsic growth rate exceeds environmental variation).

2.1.2 Minimum Viable Populations and Effective Population Size

The second major contribution of Shaffer’s work was the introduction of the concept
of a minimum viable population (MVP). In Shaffer’s original work, MVP is defined
as the smallest possible population for which there is a 95% chance of persistence
(a 5% or lower chance of extinction) after 100 years. In their foundational treatment
of the minimum viable population concept, Gilpin and Soulé19 identify four special
cases—extinction vortices—in which a population is likely to tend below the MVP
and towards ultimate extinction.

17 Lande, “Risks of population extinction from demographic and environmental stochasticity and
random catastrophes.”
18 Ibid.
19 Michael E Gilpin, “Minimum viable populations: processes of species extinction,” Conservation
biology: the science of scarcity and diversity, 1986, 19–34.
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The first, the R Vortex, is perhaps the most obvious: demographic stochasticity
(variation in r) reduces populations and increases variation in r, a positive feed-
back loop of demographic stochasticity directly driving populations to extinction.
The D Vortex occurs when the same processes—potentially in concert with exter-
nal forces—produce increased landscape fragmentation (see §3.1.1 for an explana-
tion of D), which not only reduces local population sizes (increasing local extinc-
tion rate) but also has subtle effects on population genetic diversity. The final two
vortices—the F Vortex and A Vortex—both concern the genetic and evolutionary tra-
jectories of small stochastic populations. In the first, inbreeding and demographic
stochasticity form a feedback cycle, while in the latter, maladaptation is the under-
lying mechanism of extinction. Both are especially relevant in research surrounding
phenomena like climate change, but fully understanding them requires a mathemat-
ical language for the genetic behavior of near-extinction populations.

In heavily subdivided populations with low dispersal, increased inbreeding can
lead to decreased genetic diversity and the accumulation of deleterious or mal-
adapted alleles that make the total population less viable than its size might indi-
cate. As a consequence, intermediate-sized populations with low genetic diversity
can behave, demographically, like small populations. Effective population size, or
Ne, quantifies that phenomenon, expressing the genetically or reproductively “ef-
fective” number of individuals in a population. In some cases, measuring population
size with Ne may more readily allow the computation of a meaningful and predic-
tive MVP, by removing some of the variability between different populations of the
same size, and by more accurately capturing the long-term reproductive potential
of the available genetic material. (Relatedly, it is worth noting that in one unusual
study, it was found that there is no statistical link between species MVP and global
conservation status.20)

A number of different approaches exist for the estimation of Ne. Sewall Wright,
who created the concept of effective population size, offered one interpretation
based on neighborhoods. In his model, offspring move a distance away from their
parent based on a two-dimensional spatial normal distribution with the standard de-
viation σ .21 If individuals have a density D, then

Ne = 4πσ
2D

Wright22 also provides a more commonly invoked method of calculating Ne based
on sex structure, using Nm and N f to respectively denote the number of breeding
females and males in the population:

Ne =
4NmN f

Nm +N f

20 Barry W Brook, Lochran W Traill, and Corey JA Bradshaw, “Minimum viable population sizes
and global extinction risk are unrelated,” Ecology letters 9, no. 4 (2006): 375–382.
21 Sewall Wright, “Isolation by distance under diverse systems of mating,” Genetics 31, no. 1
(1946): 39.
22 Sewall Wright, “The interpretation of population structure by F-statistics with special regard to
systems of mating,” Evolution, 1965, 395–420.
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In such an approach, a population of all males or all females would have an Ne of
0 (because no new offspring could be produced in the next generation, rendering
the population functionally extinct). That method of deriving Ne is still frequently
cited in population conservation work to the present day, as small populations tend
to stochastically deviate from a 50:50 sex ratio, sometimes severely impacting long-
term survival.

A more genetics-based method of calculating Ne comes from the Wright-Fisher
model of a two-allele one-locus system, referred to as the variance effective popu-
lation size.23 In that model, variance between generations σ2(a), for allele A with
frequency a, is given by a(1−a)/2N, yielding an effective population size of

Ne =
a(1−a)

2σ2

Alternatively, for a locus with a greater degree of polymorphism, or multi-locus
microsatellite data, genetic diversity θ and mutation rate µ are related by

Ne =
θ

4µ

A more commonly used metric in current literature is inbreeding effective popula-
tion size. To construct that metric, we start by defining population-level measures of
heterozygosity. In the simplest Hardy-Weinberg formulation for a two allele system
with allele frequencies a and 1−a, the expected fraction of heterozygote offspring
E(H) = 2a(1− a). By counting the real fraction of heterozygotes and comparing,
we can measure the assortiveness of mating:

f =
E(H)−H

H
That value f is called the inbreeding coefficient, ranging from 0 to 1; again accord-
ing to Wright,24 Ne should be calculated such that it satisfies

Ne =
1

2∆ f

where ∆ f is the change per generation (in a declining or small population, genetic
diversity decreases at a rate determined by the population size and inbreeding).

Returning to the extinction vortex concept with Ne in mind clarifies the ge-
netic component of those extinction processes. While the D Vortex reduces Ne as
a byproduct of fragmentation (in fact, decreasing neighborhood size), the last two
extinction vortices bring Ne below the MVP through specifically genetic modes of
extinction. In the F Vortex, a positive feedback loop between increased inbreeding
(hence f , the inbreeding coefficient) and decreases in effective population size drive

23 Brian Charlesworth and Deborah Charlesworth, “The Evolutionary Effects of Finite Population
Size: Basic Theory,” chap. 5 in Elements of Evolutionary Genetics (2012), 195–244.
24 Fred W Allendorf and Nils Ryman, “The role of genetics in population viability analysis,”
Population viability analysis. University of Chicago Press, Chicago, 2002, 50–85.
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a population to extinction over a few generations. A notorious real-world example
of such a process might be the near-extinction (or extinction, depending on your
species concept) of the Florida panther, a subspecies of Puma concolor ultimately
rescued through outbreeding with Texas panthers. All things considered, their rescue
was both fortuitous and improbable, as the species was assigned a 5% or less chance
of avoiding imminent extinction in 1995.25 Finally, in the A vortex (i.e., adaptation),
decreased Ne acts as a buffer to the strength of selection acting on phenotypes that
are closely paired with environmental variation or change, leading to mismatch be-
tween them that reduces both r and N (and Ne) until extinction (a process we cover
in much greater detail in §4.1) . Obviously, the four vortices are non-independent
processes, and probably often exist in combination in real-world cases.

2.1.3 Population Viability Analysis: Theory and Practice

Population viability analysis is conventionally implemented by modeling the dy-
namics of different compartmental classes within a population, such as age and sex
structure. The foundations of that method date as far back as P. H. Leslie’s popula-
tion analyses in the late 1940s in the framework of discrete matrix models and linear
systems theory. Formulations of the Leslie model and the theory behind such mod-
els can be found in several expository texts,26 with a brief outline provided here. In
the Leslie model, the population is divided into n age classes, where Ni(t) is used
to denote the number of individuals in age class i at time t. In each age class, the
parameter si (0 < si ≤ 1) is used to represent the proportion of individuals aged i
that survive to age i+1, in which case the variables Ni(t) and Ni+1(t +1) are linked
by the equation

Ni+1(t +1) = siNi(t) (7)

At some point we either terminate this series of equations at age n by assuming
that sn = 0 (i.e. no individuals survive beyond age n) or we interpret Nn as the group
of individuals in the population aged n and older and use the equation

Nn(t +1) = sn−1Nn−1(t)+ snNn(t) (8)

to imply that all individuals aged n and older are subject to the survival parameter
sn (i.e., individuals older than age n are indistinguishable from individuals aged n).
If we now interpret N0(t) as all newborn individuals born just after individuals have
progressed one age class, then N0(t) can calculated using the formula

25 Warren E Johnson et al., “Genetic restoration of the Florida panther,” Science 329, no. 5999
(2010): 1641–1645.
26 Hal Caswell, Matrix population models (Wiley Online Library, 2001); Wayne M Getz and
Robert G Haight, Population harvesting: demographic models of fish, forest, and animal resources,
vol. 27 (Princeton University Press, 1989).
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N0(t) =
n

∑
i=1

biNi(t) (9)

where bi is the average (expected) number of progeny produced by each individual
aged i. In this model we have not differentiated between the sexes; so, for example,
if each female aged i is expected to produce 3 young and the population has a 1:1
sex ratio (same number of males to females) then bi = 1.5 for this age class. If we
now apply Equation 7 for the case i = 0, we obtain the equation

N1(t +1) = s0N0(t) = s0

n

∑
i=1

biNi(t) (10)

Equations 7 to 10 can be written compactly in matrix notation (a Leslie matrix) as

N(t +1) = LN(t) (11)

where N =

N1
...

Nn

 and L =


s0b1 · · · s0bn−1 s0bn
s1 · · · 0 0
...

. . .
...

...
0 · · · sn−1 sn


The matrix L is a nonnegative matrix since all its elements are non-negative,

with at least one positive element. Further, if there exists some integer p > 0 such
that Lp is positive (i.e. all its elements are positive), then it is is known from the
Perron-Frobenius Theorem that the matrix L has a dominant positive eigenvalue λp
(known as the Perron root) and a corresponding eigenvector vp whose elements are
all positive. These values λp and vp characterize the long term behavior of N such
that

N(t)∼ (λp)
tvp

This equation implies that as t gets very large N(t) grows like (λp)
t and the ratio of

different age classes matches the ratio of elements of vp. Thus, if λp > (<)1, N(t)
will grow (decline) geometrically at the rate λp and approach the so-called stable
age-distribution, as characterized by the ratio of consecutive elements of vp. In other
words, this model predicts that the population will go extinct whenever the largest
eigenvalue of L is less than one (i.e., 0 < λp < 1). On the other hand, if λp > 1,
then we expect density-dependent effects at some point to rein in the unfettered
growth by causing survival rates to decline. In particular, if the survival rate s0 of
the youngest age class is the most sensitive of the survival rates to increases in the
total biomass density

B =
n

∑
1

wiNi (12)

of the population, where wi > 0 is the average weight of an individual in age class
i, then we should replace s0 in Eqn. 10 with an expression such as
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Fig. 1 An example PVA without (A) and with (B) the influence of demographic stochastic-
ity, and with no (blue), medium (red) or high (purple) environmental stochasticity. Based on
many numerical simulations, an “extinction curve” can be plotted from the probability of pop-
ulation survival over time (C). This analysis can be used to make decisions about manage-
ment and conservation: here, illustrating that three populations with migration between them
survive for much longer in a poached population of rhinos than a single population. An inter-
active tutorial of PVA, which can be adjusted to produce anything from the simplest popula-
tion dynamics to a stochastic, structured metapopulation experiencing harvesting, can be found
at http://www.numerusinc.com/webapps/pva.

s0 =
ŝ0

1+(B/K0)γ
(13)

where ŝ0 is the density-independent survival rate, K0 is the density at which ŝ0 is
halved, and γ > 1 is termed the “abruptness” (as it controls the abruptness in the on-
set of density, approaching a step down function as γ gets large27). Similar modifica-
tions can be made to the other survival parameters si, depending on their sensitivity
to changes in population density.

Stochastic equivalents of these deterministic models typically treat the survival
rates si as probabilities that each individual survives each time period, rather than as
the proportion of individuals surviving each time period; and bi itself is a random
variable drawn from an appropriately defined distribution (usually the binomial dis-
tribution). Stochastic models of this sort can be made even more complex by adding
more population structure (e.g. genetic variability) or increased levels of complexity
(e.g. modeling at the metapopulation scale, discussed in §3, or adding underlying
environmental variation or other landscape structure). Though MVP or extinction
rates might be difficult to calculate analytically for models of this level of complex-
ity, repeated simulation can easily allow empirical derivation of these properties of
a system,28 and is perhaps the most widespread practice in existence for estimating
population extinction risk in conservation research. An example using an interactive
web app29 is show in Figure 1.

27 Wayne M Getz, “A hypothesis regarding the abruptness of density dependence and the growth
rate of populations,” Ecology 77, no. 7 (1996): 2014–2026.
28 Brett A Melbourne and Alan Hastings, “Extinction risk depends strongly on factors contributing
to stochasticity,” Nature 454, no. 7200 (2008): 100–103.
29 Wayne M Getz et al., “A web app for population viability and harvesting analyses,” Natural
Resource Modeling, 2016,

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.3367v2 | CC BY 4.0 Open Access | rec: 11 Sep 2018, publ: 11 Sep 2018



16 Carlson

Is population viability analysis the perfect tool for studying extinction? PVA is
currently the gold standard for most applied conservation research, both by virtue of
being an all-encompassing term for quantitative extinction risk modeling at the pop-
ulation scale, and the absence of any suitable alternative. But PVA, like any quan-
titative tool, is tremendously sensitive to assumptions, parameterization, and data
availability. Imprecise parameterization, from noisy data or tenuous assumptions,
proportionally reduces the precision of PVA, to a degree that may be hard to char-
acterize; it is consequently important to report uncertainty from PVA estimates.30

Similarly, given the challenges of developing an accurate and precise model, it has
been widely agreed that PVA should be treated as more of a relative or compara-
tive tool (for instance, between different management or conservation scenarios),
and authors should refrain from treating minimum viable population or extinction
time estimates as absolute, precise estimates.31 Despite this, many managers still
use PVA as an absolute estimate of extinction risk, a pervasive problem with no
clear solution.

2.2 Case Study: PVA, Disease, and Evolutionary Rescue

In 2015, an epidemic of unknown identity eliminated more than half of the popu-
lation of the critically endangered saiga antelope (Saiga tatarica), in the short span
of three weeks. While the causative agent was ultimately identified as a species of
Pasteurella, the mechanism by which a normally asymptomatic non-pathogenic bac-
terium killed at least 130,000 antelopes is still in question.32 Literature explaining
the die-off, or predicting the consequences for the species, remains comparatively
limited; the fate of the species remains uncertain, and it may yet face extinction in
the coming years.

Disease is rarely responsible for the extinction of a cosmopolitan species; but
for already-threatened species like the saiga, it can be one of the most rapid, un-
predictable and unpreventable mechanisms of extinction. Disease has been impli-
cated in a handful of notable wildlife extinctions, like that of the thylacine (Thylac-
inus cynocephalus) and Carolina parakeet (Conuropsis carolinensis), and has been
the definitive mechanism of extinction for species like the eelgrass limpet (Lottia
alveus).33 While most diseases co-evolve with their hosts to an optimal virulence

30 Stephen P Ellner et al., “Precision of population viability analysis,” Conservation Biology 16,
no. 1 (2002): 258–261.
31 J Michael Reed et al., “Emerging issues in population viability analysis,” Conservation biology
16, no. 1 (2002): 7–19; Tim Coulson et al., “The use and abuse of population viability analy-
sis,” Trends in Ecology & Evolution 16, no. 5 (2001): 219–221; Steven R Beissinger and M Ian
Westphal, “On the use of demographic models of population viability in endangered species man-
agement,” The Journal of wildlife management, 1998, 821–841.
32 EJ Milner-Gulland, “Catastrophe and hope for the saiga,” Oryx 49, no. 04 (2015): 577–577.
33 Francisco De Castro and Benjamin Bolker, “Mechanisms of disease-induced extinction,” Ecol-
ogy Letters 8, no. 1 (2005): 117–126.
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that prevents the species from reaching extinction, diseases that can persist in the
environment may be released from such constraints and be more likely to evolve
“obligate killer” strategies (like that of anthrax34). Fungal pathogens in particular
tend to grow rapidly in hosts and spread rapidly between them, which can result in
population collapses before optimal virulence levels can be attained.35

Two notable fungal diseases have recently demonstrated the destructive potential
of environmentally transmitted pathogens. Perhaps the most significant example of
disease-driven extinctions is the trail of destruction caused by the chytrid fungus
Batrachochytrium dendrobatidis (Bd). Bd has been found in at least 516 species
of amphibian36 and has driven decline or extinction in least 200,37 including at
least two thirds of the genus Atelopus alone.38 According to some estimates, current
extinction rates that amphibians face (largely but not entirely due to chytrid) are
roughly 200 times the background rate; including declining species, that estimate is
closer to an even more staggering 25-45,000.39 White nose syndrome (WNS; Ge-
omyces destructans), a similar fungal epizootic, has similarly spread through bat
populations in the eastern United States, causing widespread population-level die-
offs since the mid-2000s. While white-nose syndrome has yet to drive any entire
species to extinction, significant concern remains regarding its ongoing spread; one
study in 2010 using population viability analysis suggested a 99% extinction risk
for the little brown bat (Myotis lucifugus) in under two decades.40 Even in a best-
case scenario where white-nose mortality was reduced to one twentieth of its rate,
substantially reducing extinction risk, bats would still be reduced to one percent of
their original population size.

White-nose syndrome has also become a potential case study for evolutionary
rescue, one of the most controversial phenomena in extinction research. The premise
that rare genes for resistance or tolerance can bring a disease-ridden population back
from the brink of extinction has theoretical support, and potentially indicated from
the rapid evolutionary response of certain hosts documented throughout the litera-
ture.41 But WNS constitutes one of the most interesting and controversial examples
because, while populations show some sign of recovery from the disease, at the

34 SA Frank and P Schmid-Hempel, “Mechanisms of pathogenesis and the evolution of parasite
virulence,” Journal of evolutionary biology 21, no. 2 (2008): 396–404.
35 Matthew C Fisher et al., “Emerging fungal threats to animal, plant and ecosystem health,” Nature
484, no. 7393 (2012): 186–194.
36 Deanna H Olson et al., “Mapping the global emergence of Batrachochytrium dendrobatidis, the
amphibian chytrid fungus,” PloS one 8, no. 2 (2013): e56802.
37 Lee Francis Skerratt et al., “Spread of chytridiomycosis has caused the rapid global decline and
extinction of frogs,” EcoHealth 4, no. 2 (2007): 125–134.
38 J Alan Pounds et al., “Widespread amphibian extinctions from epidemic disease driven by global
warming,” Nature 439, no. 7073 (2006): 161–167.
39 Malcolm L McCallum, “Amphibian decline or extinction? Current declines dwarf background
extinction rate,” Journal of Herpetology 41, no. 3 (2007): 483–491.
40 Winifred F Frick et al., “An emerging disease causes regional population collapse of a common
North American bat species,” Science 329, no. 5992 (2010): 679–682.
41 Sonia Altizer, Drew Harvell, and Elizabeth Friedle, “Rapid evolutionary dynamics and disease
threats to biodiversity,” Trends in Ecology & Evolution 18, no. 11 (2003): 589–596.
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time of writing, no definitive genetic mechanism for resistance has been isolated,
a necessary component of demonstrating evolutionary rescue from disease-induced
extinction.42 Consequently, speculation about evolutionary rescue is controversial
and so far has been conducted in primarily theoretical settings. In an age-structured
matrix population model proposed by Maslo and Fefferman, two scenarios for re-
covery from WNS are considered.43 In one, bats’ adaptive immunity leads to re-
stabilization at much lower levels overall, but a much faster recovery to a stable
balance of juveniles (J) and adults (A), with subscript t denoting the number of
individuals in these two age classes at time t. In that model, in the absence of white-
nose, (

Jt+1
At+1

)
=

(
0.95 0.35
0.95 0.87

)(
Jt
At

)
In a second model they propose, recovery comes not from adaptive immunity but
from innate immunity through a genetic mechanism for resistance. In that scenario a
robust type (R) is present in the gene pool with frequency pt and protects from white
nose infection; the remainder of individuals are wild type (WT). In the evolutionary
rescue model, all individuals have lower survivorship, but wild type bats fare much
worse and reproduce at slightly slower rates (imposing strong selection against WT):(

Jt+1
At+1

)
= pt

(
0.86 0.32
0.86 0.78

)(
JR

t
AR

t

)
+(1− pt)

(
0.52 0.27
0.52 0.46

)(
JWT

t
AWT

t

)
In this model, an 11-year stabilization period ultimately leads to population recov-
ery with a positive net growth rate (calculated as the dominant eigenvalue λ = 1.05),
potentially saving populations from extinction. Despite the lack of genetic evidence
for evolutionary rescue, Maslo and Fefferman propose that observed similarities be-
tween the dynamics they observe and real data on white-nose outbreaks suggests
that evolutionary rescue may be happening in real time. Other work since has sim-
ilarly supported the idea that bat populations may be recovering. Validating these
results requires that researchers identify genetic variation between populations as-
sociated with differential outcomes, and develop models more directly informed by
those mechanisms.

3 The Metapopulation Scale

Populations rarely exist in isolation, but are often connected to other populations
through dispersal processes, creating a metapopulation. Metapopulations are con-
sidered to be in a relatively constant state of flux, as local extinctions of species

42 Altizer, Harvell, and Friedle, “Rapid evolutionary dynamics and disease threats to biodiversity.”
43 Brooke Maslo and Nina H Fefferman, “A case study of bats and white-nose syndrome demon-
strating how to model population viability with evolutionary effects,” Conservation Biology 29,
no. 4 (2015): 1176–1185.
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in habitat patches are buffered by re-colonization from local dispersal. In this way,
dispersal can be beneficial or detrimental to metapopulation persistence. Under high
dispersal, patches become homogeneous and population dynamics tend to become
synchronous. This synchrony is destabilizing, in that periods of low population sizes
will be experienced by all patches, increasing the likelihood of stochastic extinction
of the entire metapopulation. On the other hand, too little dispersal will result in
spatial clustering of a species, as the species will be confined to the set of patches
that can be successfully reached and colonized and similarly potentially increasing
extinction risk.44

The importance of dispersal to patch-level colonization and metapopulation per-
sistence highlights that extinction processes occur at two scales: the local patch-level
(i.e., a single population in the network of habitat patches) or at the entire metapop-
ulation level (i.e., either through catastrophic events or cascading local extinctions).
Extinctions of single patches can occur as a result of demographic, environmental,
or genetic stochasticity (addressed in more detail in §2.1.1), or through extrinsic
events related to habitat loss or natural enemies.45 Metapopulation level extinction
can also result from environmental stochasticity at the regional scale,46 provided
this stochasticity is spatially autocorrelated, such that it is expected to promote syn-
chronous dynamics among habitat patches.47

3.1 Basic Metapopulation Models and Extinction

In the classic metapopulation model described by Richard Levins, the balance be-
tween patch colonization (c) and local extinction (e) determines patch occupancy
dynamics. In this case, local habitat patches are either occupied or unoccupied, and
both patch number and the spatial orientation of patches are undescribed. Dispersal
among habitat patches can rescue patches from extinction, or allow for the recol-
onization of extinct patches. All patches are treated as equal, so that any patch is
suitable for a species, and (as a simplifying assumption) all habitat patches can be
reached from all other patches. This simplified representation treats space as im-
plicit, and patch quality and size as constant; rather than an explicit population size,
patch occupancy is just a 0 or 1 state. The dynamics of the proportion occupied
patches, P, are given by a differential equation:

44 Karen C Abbott, “Does the pattern of population synchrony through space reveal if the Moran
effect is acting?,” Oikos 116, no. 6 (2007): 903–912; Karen C Abbott, “A dispersal-induced para-
dox: synchrony and stability in stochastic metapopulations,” Ecology letters 14, no. 11 (2011):
1158–1169.
45 Ilkka Hanski, “Metapopulation dynamics,” Nature 396, no. 6706 (1998): 41–49.
46 James C Bull et al., “Metapopulation extinction risk is increased by environmental stochasticity
and assemblage complexity,” Proceedings of the Royal Society of London B: Biological Sciences
274, no. 1606 (2007): 87–96.
47 Ana R Gouveia, Ottar N Bjørnstad, and Emil Tkadlec, “Dissecting geographic variation in pop-
ulation synchrony using the common vole in central Europe as a test bed,” Ecology and evolution
6, no. 1 (2016): 212–218.
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dP
dt

= cP(1−P)− eP (14)

In that equation, extinction is a random process for every occupied patch that is
entirely independent of the state of the system. In contrast, colonization rates de-
pend both on the fraction of occupied and unoccupied patches, as emigrants move
from occupied patches to re-colonize unoccupied ones. The balance between the
two processes of extinction and colonization determines long-term persistence of
the metapopulation;48 that is, a necessary condition for metapopulation persistence
in this model is e

c
< 1

At a non-trivial equilibrium, the patch occupancy is given as

P̂ = 1− e
c

(15)

This suggests that the equilibrium fraction of occupied patches is a simple function
of colonization (c) and extinction (e). If extinction rates are greater than zero, this
implies that the equilibrium occupancy is less than one even if colonization exceeds
extinction; that is to say, not every patch will ever be stably filled if extinction is
nontrivial. This shows that even a metapopulation in equilibrium is still in a constant
state of patch-level flux. In real applications, this implies that just because a patch of
habitat is empty, that may not imply it is uninhabitable; and similarly, just because
a population goes extinct, it may not be indicative of broader declines or instability.

While admittedly a simple representation of a metapopulation, the Levins model
can yield important insights into spatial population dynamics.49 For instance, the
mean time to extinction of any given population/patch is the inverse of the rate (i.e.,
TE = 1/e), providing a link to the models at the population scale discussed above.
We can take the Levins model a step further to explicate the relationship between
patch occupancy and overall mean time to extinction TM at the metapopulation scale.
Starting with the assumption that the total H patches each have their own average
extinction time TL (which should be 1/e),

TM = TL exp

 (P̂H)2

2H
(

1− P̂
)


Consequently, using Eq. 15, we can also express TM as

TM = TL exp
(

H
2

(
cTL +

1
cTL
−2
))

48 Richard Levins, “Some demographic and genetic consequences of environmental heterogeneity
for biological control,” Bulletin of the Entomological society of America 15, no. 3 (1969): 237–240.
49 F Elías-Wolff et al., “How Levins’ dynamics emerges from a Ricker metapopulation model,”
Theoretical Ecology 2, no. 9 (2016): 173–183.
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showing that metapopulation extinction time increases exponentially, not linearly,
with the MTE of individual habitat patches.50

The simplicity of the Levins model has resulted in a sizable body of literature
surrounding and extending the model. For instance, in the original Levins’ model
all patches are equidistant from one another, identical in quality, and can only be in
one of two potential states (occupied or unoccupied), but each of these conditions is
frequently adjusted in derivative stochastic patch occupancy models (SPOMs). Re-
searchers have shown that despite the simplicity, Levins-type dynamics can emerge
from more complicated stochastic metapopulation models,51 and extensions of the
Levins model continue to provide insight into the influence of habitat patch size and
topography (i.e., spatial orientation of habitat patches) on metapopulation persis-
tence.52

3.1.1 Island Biogeography and Metapopulation Capacity

A simple extension of the Levins model considers a set of spatially explicit patches
of variable size, where a distance matrix D describes the distance between all
patches in the metapopulation. The model borrows elements of Macarthur and Wil-
son’s Theory of Island Biogeography,53 such that distance between patches (Di j)
and patch area (Ai) influence extinction and colonization processes, where the patch
extinction rate scales with patch area (ei = e/Ai), and colonization (ci) becomes a
property of distance (Di j), patch area (Ai), and dispersal rate (α) where

ci = ∑
j 6=i

e−αDi j A j p j(t)

This suggests that the mean time to extinction of a habitat patch (1/ei) is determined
by the area of the patch. This makes the occupancy probability of each patch in the
metapopulation, described in terms of matrix M

Mi j = e−αDi j AiA j

and the leading eigenvalue of this matrix M describes the persistence of the metapop-
ulation (also know as metapopulation capacity54 or λM). The condition for metapop-
ulation persistence is that the dominant eigenvalue of M must be greater than the
ratio between extinction and colonization rates:

50 Ilkka Hanski, “Single-species metapopulation dynamics: concepts, models and observations,”
Biological Journal of the Linnean Society 42, nos. 1-2 (1991): 17–38.
51 Elías-Wolff et al., “How Levins’ dynamics emerges from a Ricker metapopulation model.”
52 Luis J Gilarranz and Jordi Bascompte, “Spatial network structure and metapopulation persis-
tence,” Journal of Theoretical Biology 297 (2012): 11–16.
53 Robert H MacArthur and Edward O Wilson, Theory of Island Biogeography.(MPB-1), vol. 1
(Princeton University Press, 2015).
54 Ilkka Hanski and Otso Ovaskainen, “The metapopulation capacity of a fragmented landscape,”
Nature 404, no. 6779 (2000): 755–758.
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λM > e/c

While spatially explicit, this approach assumes that dispersal among habitat
patches is determined by patch area and distance to other patches, ignoring popula-
tion dynamics in each patch. However, since habitat patches vary in their size and
connectedness to other patches, it is possible to determine the relative importance
of each habitat patch to metapopulation persistence in this framework,55 potentially
informing conservation and management decisions.56

3.1.2 Incorporating Patch Dynamics

The above extension of the Levins’ model allows for patches to vary in size and
connectedness. Another extension is to consider the abundances of habitat patches
within the metapopulation, thus considering the dynamics of each patch, and the
effects of dispersal among local populations.57

Ni(t +1) = Ri(t)Ni(t)e−Ni/K

This expression assumes that the growth rate of each habitat patch is Ri, and that the
carrying capacity is a constant K. If we assume that the population growth rates (ri)
are independent and identically-distributed Gaussian random variables, this causes
Ri values to be log-normally distributed, and allows us to define persistence thresh-
olds for the metapopulation based on the variance in the population growth rates ri.
The threshold for metapopulation persistence relies on exceeding a threshold value
(σthreshold) in terms of the variance among local patch population growth rates (ri).
If µ is the mean local population growth rate over time, this threshold is

σthreshold >
√

2|µ|

This model can be extended to yield many interesting conclusions. For instance,
if populations have influence on where their offspring go, population growth rates
may be maximized by seeding offspring in less than suitable “sink” habitat if habitat
quality fluctuates with time, and when the “source” habitat occasionally experiences
catastrophes.58 The complexity of metapopulation dynamics in the face of environ-

55 Hanski and Ovaskainen, “The metapopulation capacity of a fragmented landscape”; Jacopo
Grilli, György Barabás, and Stefano Allesina, “Metapopulation persistence in random fragmented
landscapes,” PLoS Comput Biol 11, no. 5 (2015): e1004251.
56 Subhashni Taylor et al., “Applications of Rapid Evaluation of Metapopulation Persistence
(REMP) in Conservation Planning for Vulnerable Fauna Species,” Environmental management
57, no. 6 (2016): 1281–1291.
57 Manojit Roy, Robert D Holt, and Michael Barfield, “Temporal autocorrelation can enhance
the persistence and abundance of metapopulations comprised of coupled sinks,” The American
Naturalist 166, no. 2 (2005): 246–261.
58 V AA Jansen and Jin Yoshimura, “Populations can persist in an environment consisting of sink
habitats only,” Proc. Natl. Acad. Sci. USA 95 (1998): 3696–3698.
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mental stochasticity, variable patch quality, dispersal, and competition has fueled
expansive theoretical work.59 An obvious next step is to scale from single species
metapopulations to multi-species communities (i.e., metacommunities), which al-
lows for the modeling of how species interactions, predator-prey dynamics, and
community assembly relate to persistence.60

4 The Species Scale

Extinction is defined at the scale of the species, but it is also at this level of tax-
onomic resolution that it is perhaps hardest to quantify—and, to summarize—due
to considerable diversity of approaches and applications. We explore in this chapter
two applied extensions of that body of theory, corresponding to two common quan-
titative frameworks for species-level extinctions. In the first, the complete loss of
suitable habitat leads to an inevitable—if not immediate—extinction. Species can
escape extinction through three primary channels: acclimation, adaptation, and mi-
gration. Species distribution models are often used to calculate extinction risk at the
community scale in that framework (described in greater detail below), but they can
only at best include the last of those three rescue processes. Evolutionary models,
on the other hand, can link demography and genetics to the overall risk of extinction
in a changing environment; we explore that application here in the context of both
adaptation and phenotypic plasticity.

The second framework is based in the notion that population extinctions become
species extinctions; and so the framework for population (and metapopulation) vi-
ability analysis described above acts as a sufficient method for estimating species
extinction risk. In many cases, that may be a safe assumption, as near-extinction
species are reduced down to a single persistent population or a handful in isolated
refugia. But in real applications, persistence in small isolated refugia may be diffi-
cult to study, or even observe with any regularity; consequently, an entire body of
literature has been developed to relate extinction risk to the sightings of rare species.
That body of theory allows two applications: the posthumous assignment of extinc-
tion dates to extinct species, and sighting-based hypothesis testing for a species of
unknown extinction status. We explore both applications below.

59 David P Matthews and Andrew Gonzalez, “The inflationary effects of environmental fluctuations
ensure the persistence of sink metapopulations,” Ecology 88, no. 11 (2007): 2848–2856; Michael
B Bonsall and Alan Hastings, “Demographic and environmental stochasticity in predator–prey
metapopulation dynamics,” Journal of Animal Ecology 73, no. 6 (2004): 1043–1055.
60 Mathew A Leibold et al., “The metacommunity concept: a framework for multi-scale community
ecology,” Ecology letters 7, no. 7 (2004): 601–613.
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4.1 Adaptation and Plasticity in a Changing Environment

Bounding uncertainty is the seminal challenge in extinction research, and in the real
world, species’ potential to acclimate and adapt to changing environments confers
an unknown degree of robustness that may give species a chance at evading extinc-
tion. As discussed above, evolutionary rescue has been a particularly tantalizing—
and controversial—idea in the context of disease research. But more broadly, evi-
dence suggests that extinction risk is heavily complicated by species’ variable ability
to track changing environments.

Most models of evolutionary rescue approach the problem by explicitly mod-
eling fitness curves and the speed of natural selection. In a foundational paper by
Gomulkiewicz & Holt,61 population size Nt changes over time in response to its
mean fitness Wt such that

Nt =Wt−1Nt−1 =
t−1

∏
i=1

WiN0

If fitness is below one (i.e., populations are reproducing at a rate below replace-
ment), then the population will tend towards extinction. The model they present
uses a pseudoextinction threshold Nc such that if the initial fitness W0 is held con-
stant over the entire interval,

TE =
lnNc− lnN0

lnW0

Without adaptation (i.e. Wt increase above W0 < 1), the population declines to ex-
tinction. To model adaptation, Gomulkiewicz & Holt assume that environmental
change begins at time 0, adapting a system of equations for describing natural se-
lection on a single phenotypic trait originally proposed by Russell Lande.62 In that
notation, the trait z has an optimum phenotype zopt . The population mean pheno-
type is expressed as dt , the distance of the average z from zopt at each timestep, with
an initial value d0. As for any quantitative trait, individual phenotypic values z are
normally distributed around the population mean with some variance σ2

z :

zt ∼N (dt ,σz
2)

The corresponding fitness function with width ωz is expressed as a bell curve around
the optimum:

W (z) =Wmaxe−z2/2ωz

where Wmax is the fitness of zopt . The width of the fitness function (which can be
interpreted as the strength of selection), the existing variance in the trait, and the dis-

61 Richard Gomulkiewicz and Robert D Holt, “When does evolution by natural selection prevent
extinction?,” Evolution 49, no. 1 (1995): 201–207.
62 Russell Lande, “Natural selection and random genetic drift in phenotypic evolution,” Evolution,
1976, 314–334.
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tance from the optimum, determine how quickly the population evolves; the chang-
ing fitness of the population can be expressed as:

Wt =Wmax

√
ωz/(σ2

z +ωz) e−d2
t /(2σz

2+2ωz) (16)

Even a population with a mean at zopt does not have perfectly maximized fitness,
because of the variance around the mean; the actual growth rate of the population
when dt = 0 can be expressed as

Ŵ =Wmax

√
ωz/(σ2

z +ωz)

This provides a clear way to simplify Eq. 16:

Wt = Ŵe−d2
t /(2σz

2+2ωz)

In this expression, the changing fitness of the population is expressed only as a
function of the optimum and the strength of selection on the trait z.

How does the actual distribution of phenotypes change over time? In real sys-
tems, evolution is seldom a direct progression towards the optimum, even under
hard selection with ample genetic variation. If the trait z has a heritability h2 (where
a heritability of 1 means the trait is perfectly heritable, and 0 would indicate perfect
plasticity or no genetic basis), Gomulkiewicz & Holt define a scaleless “evolution-
ary inertia”

k =
ωz +(1−h2)σz

2

ωz +σz2 ;0≤ k ≤ 1

which in turn simplifies how fast the population shifts towards its optimum pheno-
type:

dt = ktd0

Together, this set of equations produces the governing expression for the system:

t lnŴ − d0
2

2(ωz +σz2)

1− k2t

1− k2 = ln
Nc

N0

If this equation has no roots when solving for t, then this indicates the population
will fall and rise without any real extinction risk; but when it does, the roots are
estimates of the time until the population falls below the critical threshold (TE ) and
the time until recovery could be evolutionarily possible (TP in their notation, where
Nt passes back above Nc). The interval between these two values is characterized
by a small population that, due to demographic stochasticity, would require much
more intensive conservation efforts (e.g., managed ex situ breeding) than normal to
possibly survive that interval. The time to recovery (growth switches from negative
to positive even though Nt < Nc) is

TR =
1

lnk2

(
ln lnŴ − ln

d0
2

2(ωz +σz2)

)
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From this expression, Gomulkiewicz and Holt derive a useful finding: “tR increases
logarithmically with the degree of initial maladaptation ... but is independent of the
initial population density.” Or, to rephrase: the possibility and speed of evolutionary
rescue depends on the initial phenotypic distribution, the evolutionary inertia, and
the speed of selection, but is scale invariant across population sizes; even small
populations with high enough genetic diversity and low inertia can be rescued by
evolutionary rescue.

The model developed by Gomulkiewicz and Holt sets useful theoretical bounds
on the genetically-coded evolution of a trait; but in the real world, phenotypic plas-
ticity complicates this pattern, and presents one of the hardest challenges for predict-
ing how species might escape extinction. In a similar model developed by Chevin et
al.,63 the trait in question z has a developmental trajectory with both a genetic com-
ponent and the potential for phenotypic plasticity in response to an environmental
variable ε . Their model uses a “reaction norm” approach to plasticity (popularized
by Schlichting, Pigliucci and others64), breaking down that phenotypic trait into
an adaptive genetic component a and a plastic component b that responds to the
environmental gradient. They express the distribution of the phenotype p(z) at gen-
eration n in an environment changing at rate ε(t) = ηt as:

p(z)∼N (z̄,σz
2)

Here the population mean z̄, expressed in terms of the generation time T under the
assumptions that i) developmental plasticity takes effect at time τ during ontogeny
and ii) the strength of plasticity b (the slope of a phenotypic reaction norm), takes
the form

z̄ = ā+bηT (n− τ)

Assumption (ii) is of course a limiting one, given that plastic reaction norms are
in fact evolvable; but extensions of quantitative theory that incorporate this idea
are underdeveloped. We also assume that the variance associated with z has both
environmental and genetic components: i.e.,

σ
2
z = σa

2 +σe
2

Assuming there is an optimum phenotype θ = Bε , where B is the optimal rate
of change to plastically track the changing environment, Gomulkiewicz and Holt
define a changing population size with a maximum growth rate Wmax, such that

W (z) =Wmax exp
(
− (z−θ)2

2ωz
− b2

2ωb

)

63 Luis-Miguel Chevin, Russell Lande, and Georgina M Mace, “Adaptation, plasticity, and extinc-
tion in a changing environment: towards a predictive theory,” PLoS Biol 8, no. 4 (2010): e1000357.
64 Carl D Schlichting, Massimo Pigliucci, et al., Phenotypic evolution: a reaction norm perspective.
(Sinauer Associates Incorporated, 1998).
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where both ω’s represent the strength of stabilizing selection (the width of fitness
curves, comparable to above). From there they make the link to overall population
dynamics, where the intrinsic rate of growth of the population r can be scaled with
generation time and related to selection on z as

r =
ln(W )

T
=

ln(Wmax)

T
−

ln(1+σ2
z /ωz)+b2/ωb

2T
− (z̄−θ)2

2T
γ

where γ , the strength of stabilizing selection, is given by

γ =
1

ωz +σ2
z

The first two terms become the maximum possible growth rate rmax if z reaches
the optimum θ :

rmax =
ln(Wmax)

T
−

ln(1+σ2
z /ωz)+b2/ωb

2T

From this expression for population dynamics, Chevin et al. derive a formula for the
critical rate of environmental change, above which (η > ηc), plasticity and adapta-
tion combined still fail to prevent extinction (recalling that B is the optimal rate
of change to plastically track the changing environment and b is the slope of the
phenotypic reaction norm):

ηc =

√
2rmaxγ

T
h2σ2

z

|B−b|
From this expression, it is very easy to determine the long term tendency of the
population to extinction or survival as a function only of the degree of plasticity and
the associated strength of costs (ωb). The greater the extent of plasticity, the more
the costs of plasticity separate out population trajectories; but when plasticity has a
weak slope, the extinction isoclines converge towards the same threshold. This con-
ceptualization of adaptation to environmental change as a single-trait system with
readily measured costs of adaptive plasticity is obviously an idealization, but also
clearly illustrates a number of important points. While adaptive genetic variation
has a clear direct relationship to evolutionary rescue, plasticity also plays an im-
portant role; and quantifying plasticity without quantifying its costs can provide a
misleading perspective on the feasibility of adaptation and acclimation.

4.1.1 Is Evolutionary Rescue Real?

Evolutionary rescue is not a “silver bullet,” and the application of evolutionary the-
ory to real populations and metapopulations is far from straightforward. For one
thing, evolutionary rescue requires a sufficiently large population that a species
is buffered against demographic and environmental stochasticity long enough for
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higher-fitness phenotypes to become predominant.65 Additional complications in-
clude, but are not limited to:

• Initial environmental conditions. Bell and Gonzalez showed that populations
that begin at intermediate stress levels may react the slowest to environmental
“deterioration,” producing a U-shaped curve in adaptive rescue.66 They explain
this as a product of two competing processes driving evolutionary rescue: as base-
line stress increases, overall mutation rates decline, but the proportion of bene-
ficial mutations (or, perhaps more accurately, the associated fitness differential)
increases. Populations beginning in “mildly stressful conditions” may simply be
at the low point of both processes. Bell and Gonzalez similarly show that popu-
lations with a history of minor environmental deterioration have a much greater
probability of evolutionary rescue in a fast-changing environment.

• The velocity of environmental change. As Chevin et al.’s model highlights, en-
vironmental changes that are too rapid almost invariably drive species to extinc-
tion, when selection simply cannot operate fast enough to keep pace; this finding
is readily confirmed in environmental settings. Rapid environmental changes can
also functionally reduce mutation rates at a population scale. A study of E. coli
by Lindsey et al. showed that “The evolutionary trajectory of a population evolv-
ing under conditions of strong selection and weak mutation can be envisioned
as a series of steps between genotypes differing by a single mutation,” and some
“priming mutations” may be necessary to arrive at further genotypic combina-
tions with substantially higher fitness.67 Consequently, if environmental changes
are too rapid, higher fitness genotypes may be “evolutionary inaccessible.”

• Dispersal rates and metapopulation connectivity. Simulated metapopulation
models by Schiffers et al. showed that higher dispersal rates can severely limit the
propensity of populations to experience local adaptation, especially in a hetero-
geneous environment (a phenomenon they refer to as “genetic swamping”), and
thereby potentially limit evolutionary rescue.68 However, for an entire species to
persist, intermediate (local) dispersal may be necessary to allow adaptive muta-
tions to spread, a finding shown experimentally by Bell and Gonzalez.

• Linkage disequilibrium. Schiffers et al.’s study, which simulated genomes in
an “allelic simulation model,” produced an unusual result suggesting that link-
age between adaptive loci may not actually increase the rate of adaptation. The
interaction this could have with the “priming mutation” process is complex and
poorly explored in a theoretical context.

65 Yi-Qi Hao et al., “Evolutionary rescue can be impeded by temporary environmental ameliora-
tion,” Ecology letters 18, no. 9 (2015): 892–898.
66 Graham Bell and Andrew Gonzalez, “Adaptation and evolutionary rescue in metapopulations
experiencing environmental deterioration,” Science 332, no. 6035 (2011): 1327–1330.
67 Haley A Lindsey et al., “Evolutionary rescue from extinction is contingent on a lower rate of
environmental change,” Nature 494, no. 7438 (2013): 463–467.
68 Katja Schiffers et al., “Limited evolutionary rescue of locally adapted populations facing climate
change,” Philosophical transactions of the Royal Society of London B: Biological sciences 368, no.
1610 (2013): 20120083.
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A final important consideration should be made with regard to what Schiffers et
al. distinguish as complete vs. partial evolutionary rescue. In their models, they
find that when adaptive traits originated but spread poorly (as a combination of
linkage disequilibrium, habitat heterogeneity, and dispersal limitations), it substan-
tially reduced population sizes and ultimately produced an “effective reduction in
the suitable habitat niche.” This type of partial evolutionary rescue could be most
common in real-world scenarios, where adaptation in larger populations experienc-
ing the slowest rates of environmental change may allow persistence, but not main-
tain a species throughout its entire range, and may still be followed by a substantial
reduction in overall habitat occupancy.

If current research on global climate change is any indication, this type of par-
tial evolutionary rescue may ultimately be a poor buffer against extinction. Climate
change may set the events of an extinction in motion, but research suggests that
habitat loss from climate change is rarely the direct and solitary causal mechanism
of an extinction.69 Instead, climate change may reduce a population to small enough
levels at which other mechanisms drive extinction. Small populations are especially
susceptible to stochastic crashes in population size, and may also be especially sus-
ceptible to stochastic collapse due to other factors within-species (Allee effects in
breeding, inbreeding) or from interactions with other species (competition, invasion,
disease). Ultimately, the synergy between these drivers may produce a greater over-
all extinction risk that many modeling approaches might not directly quantify, but
that could be most likely to drive species to extinction, and drive ecosystems into
novel assemblages.70

4.2 After Extinction: Lazarus Species, Romeo Errors, and the
Rarest Birds in the World

The job of conservation biologists and extinction researchers is far from over af-
ter the extinction of a species. The autoecology of an extinct species (its basic bi-
ology, ecology, natural history, distribution and other species-level characteristics)
often becomes a permanent unknown, assumed to be lost to the annals of history.
But as statistical tools for ecological reconstruction become more sophisticated, re-
searchers have the chance to explore basic questions about extinction in retrospect.
In particular, the same body of theory that governs the timing of extinction in a de-
clining population can be applied in a retrospective sense as well, to estimate the
likely extinction date of a species. (Or, more formally, the estimation of the MTE
from a given point can be used to pinpoint TE , even with the same data, after extinc-
tion has already occurred.) These methods have been used both for ancient species

69 Barry W Brook, Navjot S Sodhi, and Corey JA Bradshaw, “Synergies among extinction drivers
under global change,” Trends in ecology & evolution 23, no. 8 (2008): 453–460.
70 Lewis J Bartlett et al., “Synergistic impacts of habitat loss and fragmentation on model ecosys-
tems,” in Proc. R. Soc. B, vol. 283, 1839 (The Royal Society, 2016), 20161027.
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like the megalodon,71 and for more recent extinctions like that of the dodo72 or the
thylacine.73 But perhaps most interestingly that theory can be applied when the un-
certainty bounds on TE contain the present date, meaning that the extinction of a
species is not taken as a certain part of history. Even ancient “Lazarus species” can
be rediscovered, like the coelacanth, believed to have gone extinct 66 million years
ago but rediscovered in the last century. How can we confidently say the coelacanth
continues to exist, but the megalodon is likely to never be rediscovered?

4.2.1 Statistical Methods for the Sighting Record

Once a species is suspected to be extinct, at what point do we stop looking for them?
With limited resources for conservation, trying to find and conserve a species that
is no longer around wastes resources better used elsewhere; but making a Type I
error and assuming a species is falsely extinct (and abandoning conservation ef-
forts) can lead to a “Romeo Error,” whereby giving up on the species can lead to
actual extinction.74 Since 1889, 351 species thought to be extinct have been “redis-
covered,”75 highlighting just how big of a problem this may be. In order to answer
these questions, determining the probability that a species is still extant, despite a
lack of recent sightings, is an important step in making evidence-based decisions
conservation managers must make about allocating resources.

But how do we determine the likelihood that a species is extinct? How long does
it have to be since the last time an individual was seen before we can say, with
some certainty, that the species is gone? The most obvious step is to assemble all
available evidence from when the species was around. The first place to look is in
the specimen record, which conventionally acts as the “gold-standard” of evidence.
However, other data can be brought to bear, including observations, photos, and au-
dio recordings. All these forms of evidence are collectively referred to as sightings.
For a dataset of sightings t = (t1, ...., tn), perhaps the simplest approach is to wait at
least as long as the last interval during which the species was apparently absent be-
fore declaring a species extinct. One could formalize the estimate of the extinction
date, TE , as:

T̂E = tn +(tn− tn−1)

71 Catalina Pimiento and Christopher F Clements, “When did Carcharocles megalodon become
extinct? A new analysis of the fossil record,” PloS one 9, no. 10 (2014): e111086.
72 David L Roberts and Andrew R Solow, “Flightless birds: when did the dodo become extinct?,”
Nature 426, no. 6964 (2003): 245–245.
73 Colin J Carlson, Alexander L Bond, and Kevin R Burgio, “Estimating the extinction date of the
thylacine with mixed certainty data,” Conservation Biology 32, no. 2 (2018): 477–483.
74 NJ Collar, “Extinction by assumption; or, the Romeo Error on Cebu,” Oryx 32, no. 4 (1998):
239–244.
75 Brett R Scheffers et al., “The world’s rediscovered species: back from the brink?,” PloS one 6,
no. 7 (2011): e22531.
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This approach, formalized by Robson and Whitlock,76 is accompanied by a (1−
α)% confidence interval with a lower bound at the last sighting tn and the upper
bound

T u
E = tn +

1−α

α
(tn− tn−1)

and accompanying p-value for testing the hypothesis that the species is extinct at
the current time T :

p =
tn− tn−1

T − tn−1

The reasoning behind this method is fairly sound: if a large gap exists between
the last two sightings, conservation biologists should wait at least that long before
pronouncing a species certain to be extinct. But this estimator is also severely con-
servative, and has very limited theoretical grounding.

In 1993, Andrew Solow developed a more explicitly probabilistic approach,77

which assumes sightings are generated by a random process with by a fixed sighting
rate m that becomes 0 at TE , the true date of extinction. The probability of the data
conditional on a current time T and an extinction date TE , is

P(Tn ≤ tn|TE ≥ T ) = (tn/T )n

In that light, Solow says, hypothesis testing is easy: against the null hypothesis that
extinction has yet to happen (i.e., TE > T ), we can test the alternate hypothesis that
the species is extinct (TE < T ). For a given last sighting at TN , we can provide a
p-value for the test with desired significance level α equivalent to

P(TN ≤ α
1/nT |TE < T ) = α(T/TE)

n

for values of α1/nT < TE < T ; for values of TE lower than or equal to that critical
value α1/nT , the value of that P is equal to 1 and the null hypothesis is rejected with
full certainty. Solow explains, by way of example, that with 10 sightings and 95%
confidence, the critical value of TE/T is 0.74, and so the null hypothesis is sure to
be rejected (extinction is confidently confirmed) if the true extinction date occurs
within the first 74% of the (0,T ) window. Based on this approach, the maximum
likelihood estimate T̂E would be tn, but this is clearly biased, and performs poorly as
an estimation method. Instead, he suggests an alternate non-parametric estimator:78

T̂E =
n+1

n
tn

And, in addition, a 1−α upper confidence interval bound:

76 DS Robson and JH Whitlock, “Estimation of a truncation point,” Biometrika 51, nos. 1/2 (1964):
33–39.
77 Andrew R Solow, “Inferring extinction from sighting data,” Ecology 74, no. 3 (1993): 962–964.
78 Andrew R Solow, “Inferring extinction from a sighting record,” Mathematical biosciences 195,
no. 1 (2005): 47–55.
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T u
E = tn/α

1/n

Solow also proposed a foundational Bayesian approach based on the likelihood
a given sighting rate m would generate an observed density of data. Hypothesis
testing in the Bayesian format where the likelihood of the sighting data given H0
(the species is extant at time T ) is∫

∞

0
mne−mT dP(m)

and given HA (the species went extinct at TE ) is∫
∞

0
mne−mTE dP(m)

From those and other assumptions, he derived the Bayes factor for the hypothesis
test:

B(t) =
n−1

(T/tn)
n−1−1

In Bayesian statistics, the Bayes factor is used to express the relative support be-
tween these two hypotheses. It bypasses the problem of setting a prior on the data
or, in fact, of the two hypotheses; and instead, just expresses the posterior:prior odds
of H0. If H0 is small (B << 1), that suggests there is strong evidence against the null
hypothesis.

Do these approaches make sense? If an extinction happens abruptly on the scale
of sightings data (say, an epidemic wipes a species out within a year), then sight-
ing rates might remain relatively constant throughout the sighting record. Similarly,
applying this method to paleontological records may make sense, as prior informa-
tion about variation in specimen preservation might be limited (and so a constant
rate parameter is the best possible prior). But there are also a number of situations
where the constant sighting rate m simply does not suffice. Lessons from population
ecology remind us that extinction is, at its most fundamental scale, a process of de-
clining abundance. If sightings are proportional to abundance (which they generally
are), replacing m with a non-constant function has the potential to sharply refine the
process of extinction date estimation.

Two additional methods have been suggested by Solow to account for the chang-
ing rate of sightings. Both assume that sightings are a declining process, which will
make at least some of the above estimators prone to Type I errors. The first method
assumes sighting rates decline exponentially at a rate β , so that the sighting density
for 0≤ t ≤ TE can be expressed as:

f (t) =
βe−β t

1− e−βTE
,

In this model, if we express
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s =
n

∑
i=1

ti

and k is the integer part of s/tn (which we can write as [s/tn]), then the estimated
extinction date can be given as:

T̂E = tn +
∑

k
i=0 (−1)i

(n
i

)
(s− itn)n−1

n(n−1)∑
k−1
i=0 (−1)i

(n−1
i

)
(s− (i+1)tn)n−2

The p-value is given as p = F(tn)/F(T ) where

F(x) = 1−
[s/x]

∑
i=1

(−1)i−1
(

n
i

)(
1− ix

s

)n−1

The confidence interval can be determined using this p-value. However, computa-
tionally, that upper bound does not always exist–a major problem with this method.

In contrast, the second and far more complex method, implemented by Roberts
and Solow in their 2003 study of the dodo,79 accounts for the fact that the last few
sightings of the species should, in most circumstances, follow a Weibull distribution.
The method, optimal linear estimation (OLE), estimates TE through linear algebra,
with

TE =
k

∑
i=1

witn−i+1

w = (e′Λ−1e)−1
Λ
−1e

e =


1.
.
.
.
1

 (dimension k)

and Λ is a k by k matrix, for which

Λi j =
Γ (2v̂+ i)Γ (v̂+ j)

Γ (v̂+ i)Γ ( j)

v̂ =
1

k−1

k−2

∑
i=1

ln
tn− tn−k+1

tn− ti+1

The OLE’s upper 95% confidence interval is given by:

T̂ u
ci = Tn +

Tn−Tn−k+1

c(α)−1

c(α) =

(
−log(α/2)

k

)−v̂

79 Roberts and Solow, “Flightless birds: when did the dodo become extinct?”
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The OLE method has been recorded as one of the most successful methods available
for predicting extinction,80 and has the added bonus of being adjustable through
sensitivity analysis to examine how different extent of sighting data changes the
overall estimate.

4.2.2 Case Study: Spix’s Macaw

Perhaps the most fruitful body of research concerning extinction date estimation
has been within ornithology, where data on the last sightings of rare species is often
more available than for other groups, due to tremendous global interest in bird sight-
ings and observation by non-scientists. The most popular methods for sighting date
research have often been developed in association with data on notable extinct birds,
including the dodo81 and the ivory-billed woodpecker.82 In fact, one of the most ex-
pansive reviews of sighting date estimators, conducted by Elphick and colleagues,
estimated the extinction date of 38 extinct or near-extinct birds from North Amer-
ica (including Hawaii, a hotspot of bird extinction).83 But for rarer birds around the
world, basic data on their extinction may be somewhat more lacking.

One such bird, the Spix’s macaw (Cyanopsitta spixii) has been called “the
world’s rarest bird”84 and has been the subject of two popular animated movies
(Rio and Rio 2). Currently, Spix’s macaw is considered critically endangered (pos-
sibly extinct in the wild) by the IUCN, with a small number of captive individuals
(∼130) found around the world. Not seen in the wild since 2000, a video of a Spix’s
macaw in Brazil made headlines in 2016. The video was subsequently examined by
ornithologists and the consensus that the bird was, in fact, a Spix’s macaw, though
many believe it was likely an escaped captive bird.

Sightings of the Spix’s macaw are sporadic, and after the first known specimen
being shot in 1819 by Johann Baptist Ritter von Spix (though he believed the bird to
be a Hyacinth Macaw), it was not recorded again until a wild-caught individual was
procured by the Zoological Society of London in 1878. Collecting sighting records
of the Spix’s macaw relies mostly on data from trappers/poachers and inferring data
from captive individuals. Given the illicit nature of wildlife poaching, better data
may exist in the husbandry records of the wild-caught individuals currently in cap-
tivity, but those data are not freely available. Verifiable observations are few and far
between, as this species was not subject to any intensive study or searches until the
mid-1980s, when only a handful of individuals were found and, of those remaining,
most were caught by poachers.

80 Christopher F Clements et al., “Experimentally testing the accuracy of an extinction estimator:
Solow’s optimal linear estimation model,” Journal of Animal Ecology 82, no. 2 (2013): 345–354.
81 Roberts and Solow, “Flightless birds: when did the dodo become extinct?”
82 Andrew R Solow and Andrew R Beet, “On uncertain sightings and inference about extinction,”
Conservation Biology 28, no. 4 (2014): 1119–1123.
83 Chris S Elphick, David L Roberts, and J Michael Reed, “Estimated dates of recent extinctions
for North American and Hawaiian birds,” Biological Conservation 143, no. 3 (2010): 617–624.
84 Tony Juniper, Spix’s Macaw: the race to save the world’s rarest bird (Simon / Schuster, 2004).
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Fig. 2 Estimates of likely extinction date of the Spix’s macaw based on extinction estimating
equations in Solow (1993). The lines represent the estimated probability the species is extant each
year; the blue line is the results using physical evidence only (specimens / wild-caught individuals),
the orange line for uncontroversial sightings and physical evidence, and the green line is the results
for all sightings, including controversial. The dotted line is a significance level of 0.05. Once the
probability drops below this level, the species is considered likely extinct.

For this case study, we collected sighting and specimen data from GBIF (Global
Biodiversity Information Facility; www.gbif.org) and Juniper’s authoritative book
on Spix’s macaw. We found physical evidence (specimens / wild-caught captive
birds) for sightings in the years: 1819, 1878, 1884, 1901, 1928, 1954, 1977, 1984,
1985, 1986, and 1987. Due to their rarity and the demand for them, we assumed in-
dividuals were caught in the wild the same year they were procured by the receiving
institution / zoo. We considered all observations of the Spix’s macaw reported in
Juniper’s book to be as uncontroversial as physical specimens, as there aren’t many
and these few have been rigorously scrutinized: 1903, 1927, 1974, 1989, 1990, and
2000. Our only controversial sighting is the recent video taken in 2016, which we
omit from the model. By eliminating the controversial sighting (in analyses 1 and
2), we inherently test a methodological question: would extinction date estimators
have pronounced the apparently-extant species dead?

Our analysis was conducted using the beta version of R package sExtinct,
which allows a handful of different extinction analyses to be implemented (and we
encourage prospective users to test the demos available with the package).85 Our
analysis uses two of the most common methods. First, we used the original Solow
maximum likelihood approach, plotting the probability of persistence in Figure 2.
The maximum likelihood estimates are given in that method as:

• Specimens only (1819-1987): TE = 2040
• Uncontroversial sightings (1819-2000): TE = 2035
• All sightings (1819-2016): TE = 2052

85 C Clements, sExtinct: Calculates the historic date of extinction given a series of sighting events.
R package version 1.1, 2013.
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That method suggests, even with the most limited dataset, that the species still ap-
pears to exist. In contrast, the OLE method tells a different story:

• Specimens only: TE = 1988 (95% CI: 1987 - 2006)
• Uncontroversial sightings: TE = 2002 (95% CI: 2000 - 2018)
• All sightings: TE = 2021 (95% CI: 2016 - 2045)

All things considered, both analyses would have suggested at least a marginal
chance the 2016 sighting may have been legitimate, and there is a possibility that a
wild population of Spix’s macaws may be out there, yet undiscovered in the Amazon
rainforest. Ultimately, the 2016 sighting was determined by ornithologists and con-
servation experts to most likely be an escaped bird. With no new sightings in recent
memory, and additional modeling work further refining these estimates, most ex-
perts now consider Spix’s macaw extinct in the wild.86 Hope for the species exists,
with significant interest in captive breeding programs.

4.2.3 Hope Springs Eternal: Addressing False Sightings

Consider the plight of the ivory-billed woodpecker (Campephilus principalis), a
charismatic and iconic part of the North American fauna. The ivory-billed wood-
pecker’s decline was gradual, and unlike its gregarious and easily-spotted compa-
triots (such as the passenger pigeon, Ectopistes migratorius, or the Carolina para-
keet, Conuropsis carolinensis, both extinct in a similar time period), sightings of the
woodpecker were already rare previous to its decline. So while the bird’s last “cred-
ible” sighting was in 1944, the precise date of its extinction remains controversial,
and some believe the bird still exists based on unverified observations as recent
as 2004 (with audiovisual evidence reviewed in a highly controversial 2005 paper
in Science87). These controversial observations led to one of the most costly sur-
veys in history, yet yielded no new evidence. In some circles, the search continues;
in 2016, two ornithologists—Martjan Lammertink and Tim Gallagher—traveled
through Cuba searching for remaining populations of the elusive woodpecker. Was
Lammertink and Gallagher’s search justified from a statistical standpoint? And per-
haps, more importantly, how can we address the problem of inaccurate sightings?

Not all sightings are created equal. Holding a dead body of an individual of the
species constitutes good evidence the species was present the year the specimen was
collected; but if some person claims they saw an extremely rare species with no cor-
roborating evidence, they may have misidentified the individual, or in some cases,
even lied, meaning that this sighting could be be invalid. Roberts et al. found that
extinction date estimators are sensitive to the data used, and can, unsurprisingly, lead

86 Stuart HM Butchart et al., “Which bird species have gone extinct? A novel quantitative classifi-
cation approach,” Biological Conservation 227 (2018): 9–18.
87 John W Fitzpatrick et al., “Ivory-billed Woodpecker (Campephilus principalis) persists in con-
tinental North America,” Science 308, no. 5727 (2005): 1460–1462.
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to very different estimates of extinction dates.88 They partitioned sighting data into
three categories: 1) physical evidence, 2) independent expert opinion, and 3) contro-
versial sightings in order of certainty. They found that adding independently-verified
observations to the analysis can sometimes lead to earlier predicted extinction times,
since the “gaps” within the sighting record are closed up, whereas, by nature, later
controversial sightings, if treated as legitimate (i.e., on par with physical evidence),
can greatly push the estimates of extinction to later years.

To account for this uncertainty, a few approaches have been proposed recently.
These approaches largely expand on Solow’s 1993 Bayesian equation above, mod-
ified to consider multiple levels of uncertainty in the data.89 In the most advanced
of these models, valid and invalid sightings are generated by separate Poisson pro-
cesses. If valid sightings occur at rate Λ and invalid sightings at Θ , the proportion
of valid sightings is

Ω =
Λ

Λ +Θ

The sightings data can be split into certain data (tc, with nc certain records) and
uncertain data (tu, with nu uncertain sightings, and nu(T̂E) sightings before T̂E ). The
conditional likelihood of the data is that of the two datasets multiplied:

p(t|T̂E) = p(tc|T̂E)p(tu|T̂E)

p(tc|T̂E) =
(nc−1)!
(T̂E)nc

p(tu|T̂E) =
∫ 1

0
ω
−nu(1−ω)nu−nu(T̂E )

(
T̂E +

1−ω

ω
T
)−nu

dω

where ω is a dummy variable representing the certainty rate Ω . Bayes’ theorem
gives the probability the species went extinct in the observation interval (0,T ], an
event E with probability

p(E|t) = p(t|E)p(E)
p(t)

=
p(t|E)p(E)

p(t|E)p(E)+ p(t|Ē)(1− p(E))

The conditional likelihood of the data is

p(t|E) = p(t|T̂E)p(T̂E)

and conversely p(t|Ē) is evaluated using the same function but replacing T̂E with
T . The prior probability of the extinction date p(T̂E) is a key part of successfully

88 David L Roberts, Chris S Elphick, and J Michael Reed, “Identifying anomalous reports of puta-
tively extinct species and why it matters,” Conservation Biology 24, no. 1 (2010): 189–196.
89 Solow and Beet, “On uncertain sightings and inference about extinction”; Tamsin E Lee et al.,
“Inferring extinctions from sighting records of variable reliability,” Journal of applied ecology 51,
no. 1 (2014): 251–258; CJ Thompson et al., “Inferring extinction risks from sighting records,”
Journal of theoretical biology 338 (2013): 16–22.
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implementing Bayesian analyses, and has a significant effect on the estimated ex-
tinction date.90 Solow & Beet (2014) suggest three possible priors: uniform, linear,
or exponential decline after the last certain sighting.

As previously noted, setting a prior probability for p(E) is even more challeng-
ing. Instead of explicitly calculating the probability the species is still in existence,
one can simply calculate the Bayes factor

B(t) =
p(t|E)
p(t|Ē)

This bypasses the problem of assigning a prior probability of extinction p(E), which
is often unsatisfyingly solved by assigning an equal probability of extant or extinct
(p(E) = 0.5). Ecological hypotheses can still be easily tested via the Bayes factor,
though, as in a recent study that re-evaluated avian extinctions on Tristan de Cunha,
and found that two of three species considered were probably extinct before the
arrival of rats (the conventionally-assumed cause of their extinction).91

Solow & Beet’s model is one of a handful of models that all use Bayesian ap-
proaches to estimate the extinction date, and test whether a species is extant. For an
overview of the assumptions and relative strengths of these approaches, see Boakes
et al.92 We note that while some more complex methods exist that, for instance,
assign different intermediate levels of certainty to different kinds of evidence,93 this
may ultimately be superfluous. In many cases, the expenditure and effort required
to obtain expert opinions may only have a marginal benefit, contributing little extra
certainty to the models.94 Consequently, the choice of model should depend on the
available data, the operational power of any given study, and the degree of certainty
needed for decision making.

4.2.4 The Ivory-Billed Woodpecker, and the Hunt for More Lazarus Species

To briefly reconsider Lammertink and Gallagher’s continuing search for the ivory-
billed woodpecker: regardless of how the sighting record for the ivory-billed wood-
pecker is analyzed, all indications point to an extremely low likelihood that the
species is extant.95 In the work of Elphick et al., estimates based on physical evi-
dence suggested a TE of 1941 (upper 95% CI: 1945) and including expert opinion

90 Andrew R Solow, “On the prior distribution of extinction time,” Biology Letters 12, no. 6 (2016):
20160089.
91 Alexander L Bond, Colin J Carlson, and Kevin R Burgio, “Local extinctions of insular avifauna
on the most remote inhabited island in the world,” Journal of Ornithology, 2018, 1–12.
92 Elizabeth H Boakes, Tracy M Rout, and Ben Collen, “Inferring species extinction: the use of
sighting records,” Methods in Ecology and Evolution 6, no. 6 (2015): 678–687.
93 Lee et al., “Inferring extinctions from sighting records of variable reliability.”
94 Tamsin E Lee, Clive Bowman, and David L Roberts, “Are extinction opinions extinct?,” PeerJ
5 (2017): e3663.
95 Elphick, Roberts, and Reed, “Estimated dates of recent extinctions for North American and
Hawaiian birds”; Nicholas J Gotelli et al., “Specimen-Based Modeling, Stopping Rules, and the
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sightings only moves TE towards 1945 (upper 95% CI: 1948). Solow & Beet rean-
alyzed this problem with their Bayesian models that differentiate between certain
and uncertain sightings. With a uniform prior on TE over 1897-2010, if valid and
invalid sightings are treated as generated from the same Poisson process, the calcu-
lated Bayes factor of 0.13 strongly suggests the species persists; but in the model
that treats the processes as separate, which they suggest is the more accurate and
appropriate one, the Bayes factor of 4x106 indicates almost no chance the species
might be extant. In summation, the hard evidence available to modelers casts seri-
ous doubts on the validity of the species’ “rediscovery” in 2004,96 and finds little
justification for the subsequent, costly search to find more conclusive evidence of
the ivory-billed woodpecker’s existence.

Some argue the search continues as long as hope does, and even to the most crit-
ically minded statistical ecologists, sighting models may not be an adequate source
of information. In a recent controversy, a paper using the Solow & Beet model sug-
gested astronomically low odds that the thylacine (Thylacinus cynocephalus) might
be rediscovered.97 Other scientists raised a number of issues with the methodology:
spatial and temporal heterogeneity in sighting rates are ignored by Solow & Beet’s
model, there may have been active disincentives to report sightings after the species
became protected, and perhaps the species’ behavior had changed to become more
cryptic.98 Whether or not these factors change the results of the model, these chal-
lenges speak to a broader tension in conservation: with other species potentially
within the bounds of rescue, the resources of conservation organizations might be
better devoted to saving those species than to chasing the ghosts of woodpeckers
or thylacines past.99 But this is far from universally taken as true, and is a value
judgment, not a statistical one.

In cases where rediscovery seems legitimately possible, statistical ecology still
has an important role to play in those efforts. Once it is determined that there is
an acceptable level of probability that a species is extant, one possible way to fur-
ther leverage the data collected would be use the data to build species distribution
models (SDMs) to aid in the search and rescue effort. In basic terms, SDMs use
information about the conditions where a species has occurred (and where it has not
occurred) to determine the realized ecological niche of the species. This niche can
be projected onto geographic space to help identify areas areas that appear highly

Extinction of the Ivory-Billed Woodpecker,” Conservation Biology 26, no. 1 (2012): 47–56; Solow
and Beet, “On uncertain sightings and inference about extinction.”
96 David A Sibley et al., “Ivory-billed or pileated woodpecker?,” Science 315, no. 5818 (2007):
1495–1496.
97 Carlson, Bond, and Burgio, “Estimating the extinction date of the thylacine with mixed certainty
data.”
98 Barry W. Brook et al., “Deficiencies in estimating the extinction date of the thylacine with mixed
certainty data,” Conservation Biology, doi:10.1111/cobi.13186.
99 Colin J Carlson, Alexander L Bond, and Kevin R Burgio, “Reevaluating sighting models and
moving beyond them to test and contextualize the extinction of the thylacine,” Conservation Biol-
ogy, 2018,
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suitable for the species but perhaps have not been searched yet.100 This approach
has been successful in identifying new populations of threatened species (e.g.101),
with the author identifying new populations of four of the eight rare plant species in
the study. While SDMs are commonly used in a variety of different ecological and
conservation applications, there is a deep literature on comparisons of SDM meth-
ods (see Qiao et al.102 for an overview), so caution must be exercised in selecting
which methods are best for the available occurrence and environmental data. This
approach—of determining the probability a species is still extant and using SDMs
to identify the areas they are most likely to be—may provide a way forward for con-
servation agencies for making cost-effective decisions of which species to pursue
and where to look for them. And with recent work advancing the idea of spatial ex-
tinction date estimators, to be used in combination with SDMs, significant advances
in theory and practice are hopefully on the horizon.103

5 The Community Scale and Beyond

Suppose that, in a twisted experiment motivated by an ecology-related childhood
trauma, a mad scientist was developing a scheme to reduce global biodiversity to one
half of the Earth’s total species. Hunting, fishing and poaching could achieve that
goal slowly, but would be particularly inefficient for eradicating insects; and while a
generalist disease might help eradicate a handful of mammals or a sizeable fraction
of amphibians, the majority of species would still remain. But perhaps realizing that
habitat loss might be the most efficient tool to destruction, that scientist might cut
the Gordian knot, by simply bisecting the Earth and destroying half. Would his plan
come to fruition?

Our mad scientist’s plan is riddled with flaws. If half of the species were endemic
to each half of the Earth with no overlap, his plan would succeed. But a handful of
species in any clade of life are globally-cosmopolitan; and no matter how his plan
was executed, the handful of species occurring on both halves of the Earth would
leave him with far, far more than half the species he started with.

With renewed vigor, the mad scientist sets out on a newly ambitious project:
what percentage scorched earth would be required to achieve his goal? He begins
by counting every species on his sidewalk block, then in his neighborhood, and up

100 Jonathon C Dunn et al., “Mapping the potential distribution of the Critically Endangered Hi-
malayan Quail Ophrysia superciliosa using proxy species and species distribution modelling,” Bird
Conservation International 25, no. 4 (2015): 466–478.
101 JL McCune, “Species distribution models predict rare species occurrences despite significant
effects of landscape context,” Journal of Applied Ecology 53, no. 6 (2016): 1871–1879.
102 Huijie Qiao, Jorge Soberón, and Andrew Townsend Peterson, “No silver bullets in correla-
tive ecological niche modelling: insights from testing among many potential algorithms for niche
estimation,” Methods in Ecology and Evolution 6, no. 10 (2015): 1126–1136.
103 Colin J Carlson et al., “Spatial extinction date estimation: a novel method for reconstruct-
ing spatiotemporal patterns of extinction and identifying potential zones of rediscovery,” bioRxiv,
2018, 279679.
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to bigger scales. With enough grant funding and undergraduate assistants, he has
eventually covered a measly 6.25% of the Earth when he realizes he has counted
half of Earth’s species. To enact his master plan, he’s tasked with destroying the
remaining 93.75%. Going by land area alone (his grudges, we suppose, do not ex-
tend to the ocean), he only needs preserve 3.6 million square miles of land - roughly
(conveniently?) the land area of the United States.

The process our nationalist, isolationist villain has enacted is the empirical con-
struction of the species-area relationship (SAR), one of the oldest and most power-
ful scaling laws in macroecology. Because the synthesis of different factors at global
scales is challenging, and habitat loss is one of the easiest extinction drivers to mea-
sure, the SAR gives us a powerful tool for approximating extinction rates - at the
price of not knowing specifically which species will go extinct.

5.1 The Species Area Relationship

The biogeographer Olof Arrhenius began the process of formalizing the SAR in a
classic 1921 paper in the Journal of Ecology titled “Species and Area.”104 In it he
observed that, by expanding the area of focus, the number of species continues to
increase at a diminishing rate (but, never reaching an asymptote105 ). The canonical
formula for the SAR has come to be called the Arrhenius SAR, and is formulated as

S = cAz

where c is a constant fit to the data, and z is a slope conventionally treated as 0.25.
The application of that formula to extinction rate estimation is relatively obvious:
by changing the amount of area, we can change the number of species:

S′ = c(A′)z

and calculate the number of extinctions

E(A′) = S−S′

In our mad scientist’s failed scheme, reducing the area of the Earth by half would
leave us with far more than half the species:

S′

S
=

(
0.5A

A

)0.25

= (0.5)0.25 = 0.84

In a 2004 Nature paper that has become perhaps the most cited study on extinction
since the millennium, a group of researchers led by Chris Thomas refined the global
extinction rate estimate by analyzing species’ habitat losses from climate change

104 Olof Arrhenius, “Species and area,” Journal of Ecology 9, no. 1 (1921): 95–99.
105 Mark Williamson, Kevin J Gaston, and WM Lonsdale, “The species–area relationship does not
have an asymptote!,” Journal of Biogeography 28, no. 7 (2001): 827–830.
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and applying the SAR. Their extinction-area relationship took three forms applied
to n species, with a given Ai area per species before change, and A′i subsequent to
habitat loss:

E1 = 1−

 ∑
i∈(1,n)

A′i

∑
i∈(1,n)

Ai


0.25

E2 = 1−

(
1
n ∑

i∈(1,n)

A′i
Ai

)0.25

E3 =
1
n ∑

i∈(1,n)

(
1−
(

A′i
Ai

)0.25
)

Using those three methods in combination with species distribution models, the au-
thors estimated that 15-37% of species on Earth might face climate-driven extinc-
tion by 2050. That result is by far one of the most important ones produced in any
study of extinction, and has supported a number of the most expansive conservation
programs worldwide.

5.2 Refining and Reformulating the SAR

Like many “laws” of ecology, the conventional SAR has problems and pitfalls, and
with the tremendous array of approaches developed to study it, it has even been
called ecology’s “most protean pattern.”106 Subsequent to the publication of Thomas
et al.’s study, one of the most seminal debates in extinction research has centered
around its conclusion that climate change is likely to act as the most consequential
driver of the sixth mass extinction. Different approaches to the species area relation-
ship, and comparable or derivative macroecological methods, have sprung up in the
wake of Thomas’s work. Here, we review a few of the different approaches that can
be used to predict extinction rates at the community level.

5.2.1 z: a Dynamic Scaling Property

The most immediate problem with applying the species area relationship is that the
slope z, normally set to 0.25, is neither universal nor scale-independent. In part,
this is because of two different constructions of the SAR. The slope of 0.25 derives
from the experimental work of Macarthur and Wilson on island ecosystems, which
applied the SAR to the richness of species on islands of different sizes. For islands

106 Mark V Lomolino, “Ecology’s most general, yet protean pattern: The species-area relation-
ship,” Journal of Biogeography 27, no. 1 (2000): 17–26.
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(and for application of the island SAR to extinction), a slope of 0.25 is justified under
a set of three (relatively common) circumstances delineated by Harte and Kitzes: “(i)
total abundance in the new area A is proportional to area, (ii) individuals found in
A are chosen by a random draw from all individuals in A0 [the initial area], and
(iii) the number of individuals of each species in A0 follows a canonical lognormal
abundance distribution.”107

However, the continental “nested” SAR (constructed from nested areas on a con-
tinental scale) does not always follow the same property. This is in part because the
conventionally-used SAR assumes self-similarity (or in more tangible terms, pick-
ing two patches of different area always yields a roughly-the-same-slope difference
in species). As it turns out, self-similarity works within some sites but not others,
and within the Western Ghats mountains of India alone, scaling up from vegetation
sampling plots to broader scales brings z down from values closer to 0.5, down to
values approaching 0.108 Selecting an appropriate slope based on scale is an impor-
tant part of appropriate use of the SAR to predict extinction rates, and as analyses
approach the continental scale, the appropriateness of the SAR method decreases as
z approaches zero.

5.2.2 An Alternate Approach Based on the Endemics Area Relationship

In the Thomas et al. study, the application of the species area relationship followed
three methods, and while some explicitly predicted extinction risk at the scale of a
single species, all rely on the prediction of reduced species richness based on habi-
tat loss. In place of this indirect calculation of decreased richness, a more direct
approach uses what is called the endemics area relationship, which calculates the
number of endemic species restricted to a given area (all of which should be commit-
ted to extinction when the area is destroyed). As pointed out by He and Hubbell, the
SAR and the EAR are not mirror curves except in a single special case when species
are completely randomly distributed in space; else, the “forwards” and “backwards”
methods of extinction calculation are not, they argue, comparable.109

Prediction of extinction based on the EAR may be more appropriate for mea-
suring the immediate effects of habitat loss, and is likely to better account for the
“geometry of habitat clearing.”110 Storch et al.111 developed an approach to the
SAR and the EAR that scales the area by the mean geographic range size in the

107 John Harte and Justin Kitzes, “The use and misuse of species-area relationships in predicting
climate-driven extinction,” in Saving a Million Species (Springer, 2012), 73–86.
108 John Harte, Adam B Smith, and David Storch, “Biodiversity scales from plots to biomes with
a universal species–area curve,” Ecology letters 12, no. 8 (2009): 789–797.
109 Fangliang He and Stephen P Hubbell, “Species-area relationships always overestimate extinc-
tion rates from habitat loss,” Nature 473, no. 7347 (2011): 368–371.
110 Ann P Kinzig and John Harte, “Implications of endemics–area relationships for estimates of
species extinctions,” Ecology 81, no. 12 (2000): 3305–3311.
111 David Storch, Petr Keil, and Walter Jetz, “Universal species-area and endemics-area relation-
ships at continental scales,” Nature 488, no. 7409 (2012): 78–81.
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focal clade/area and scales richness by the average number of species in that mean
geographic range. When plotted, the SAR curves upwards while the EAR is roughly
linear with a slope of 1 across most scales. Starting from basic knowledge about the
average geographic range size of a given species, this result indicates that extinction
from habitat loss can be predicted based on the EAR across scales fairly accurately.

5.2.3 An Alternate Approach Based on Maximum Entropy

Two “unifying” theories have dominated discussions about macroecology. The first
is the unified neutral theory (UNT) of biogeography and ecology (proposed by
Stephen Hubbell), which is beyond the scope of this chapter; the second is the
maximum entropy theory of ecology (METE) proposed by John Harte. The METE
deserves special mention here, due to a particular focus in the METE literature on
improving the applicability of the SAR to extinction rate prediction. What differ-
entiates both the UNT and the METE from more general conceptions of the SAR
is the explicit treatment of species abundance as a component of community as-
sembly. The theory of the METE is far too complex to encapsulate in this chapter
(and an entire book by Harte exists for that purpose), but a few useful derivations
are worth mentioning. One is the derivation by Kitzes and Harte of an extinction
probability that is applicable at the species scale112 based on proportional area loss
(A0/A, shortened to β ) and corresponding reduction in abundance (n from n0) with
a general probability distribution

P(n|n0,A0,A) = ce−λn

for which they provide rough approximations

c≈ 1
(An0/A0)+1

and

λ ≈ ln
(

1+
A0

An0

)
Drawing on similar concepts from the pseudoextinction thresholds we discuss above
in §4.1, they suggest the probability a remainder rc = n/n0 will be left after habitat
loss is equivalent to

Prob
[

n
n0

> rc

]
=
∫ n0

rcn0

ce−λndn =
[n0β/(1+n0β )]rcn0 − [n0β/(1+n0β )]n0

(1+n0β ) ln(1+1/n0β )

112 Harte and Kitzes, “The use and misuse of species-area relationships in predicting climate-driven
extinction.”
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Given a starting population and a critical population size, analogous results can
be derived for the Thomas et al. calculations; and higher level predictions can be
made based on the distribution of abundances and critical abundances within the
community.

In a subsequent publication,113 this extinction area relationship is extended even
further to extrapolate a MaxEnt-based probability that a given number of species
will remain after habitat loss. It assumes a logseries distribution φ of abundance for
species with a mean µφ with a single shape parameter p

φ(n0) =
−pn0

ln(1− p)n0

µφ =
−p

(1− p) ln(1− p)

They similarly propose an upper-truncated geometric species specific abundance
distribution, which provides the probability n individuals remain in a fractionally
reduced area a (β in their other notation) based on a shape parameter q:

Π(n|a,n0) =
(1−q)qn

1−qn0+1

where q is solved implicitly based on a and n0 from

an0 =
q

1−q
− (n0 +1)qn0+1

1−qn0+1

The probability a species is found in area A after habitat loss follows a distribu-
tion g that takes the form

g(a,nc) =
∞

∑
n0=1

(1−Π(n≤nc|a,n0))φ(n0)

which scales up to a community-level richness after area loss

p(S|S0,g) =
(

S0
S

)
gS(1−g)S0−S

where

g(a,nc,µφ ) =
∞

∑
n0=1

(
1− qnc+1−1

qn0+1−1

)(
−pn0

n0ln(1− p)

)
or if the pseudoextinction threshold is set to zero (i.e. no species has 0% survival
odds until all individuals are dead) and area loss is severe, that expression can be
reduced to eliminate the q term:

113 Justin Kitzes and John Harte, “Beyond the species–area relationship: improving macroecolog-
ical extinction estimates,” Methods in Ecology and Evolution 5, no. 1 (2014): 1–8.

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.3367v2 | CC BY 4.0 Open Access | rec: 11 Sep 2018, publ: 11 Sep 2018



46 Carlson

g(a,nc,µφ ) =−
a

ln(1− p)

∞

∑
n0=1

pn0

an0 +1

This METE approach thus provides a probabilistic species area relationship (PSAR)
that can be used to provide not only an expected extinction rate under habitat loss
but also a range of confidence. This becomes an especially important tool in a small
community of only a few dozen species or fewer (or in communities with pervasive
low abundance across species), where deviations from SAR-based predictions may
be greater due to stochastic processes.

How does the PSAR scale up against the Thomas-SAR? It has a clear advantage
in the prediction of individual species extinction risk (but correspondingly requires
more data on abundance/demography that may be absent for many poorly-known
taxa). Kitzes and Harte provide two illustrations; first, assuming the normal slope
of 0.25, the PSAR predicts a 44% chance of extinction for a species that loses 90%
of its habitat. Second, if we assume a pseudoextinction threshold of 50 individuals,
by comparison to the predictions of the PSAR, the Thomas-SAR approach under-
predicts extinction risk if n0 ≤ 1000 but overpredicts if n0 is greater–supporting the
notion that the 15-37% extinction rates that Thomas et al. study predicted could be
an overestimate.

5.2.4 Tying Up Loose Threads, Thinking Across Scales

The various different approaches to predicting extinction at the broadest scales have
driven substantial controversy among different interpretations of macroecological
theory. But one of the most important problems is that estimates of extinction from
these methods are still poorly connected, by and large, to the rest of the extinction
literature, and to the other types of models we discuss above. One of the most in-
novative and unusual approaches in the literature was presented by Rybicki and
Hanski,114 who simulated a stochastic patch occupancy model (similar to those
presented in §3.1) with spatially heterogeneous environmental conditions across
patches. While their model incorporates the standard mainstays of an SPOM (colo-
nization, extinction, a dispersal kernel), it also incorporates a phenotype and niche
breadth that produce a Gaussian fitness function (much like the models in §4.1)

Tying together a number of the important ideas discussed above, the work of
Rybicki and Hanksi made several advances into new territory. For one, they make
a semantic distinction between the endemics-area relationship (EAR, which they
define as the S = cAz relationship applied to the area lost A = a) and the “remaining
species-area relationship” (RAR),

S−Sloss = c(Anew/A)z

114 Joel Rybicki and Ilkka Hanski, “Species–area relationships and extinctions caused by habitat
loss and fragmentation,” Ecology letters 16, no. s1 (2013): 27–38.

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.3367v2 | CC BY 4.0 Open Access | rec: 11 Sep 2018, publ: 11 Sep 2018



The Mathematics of Extinction 47

The EAR and RAR, as two methods of calculating extinction risk, are not inter-
changeable or symmetric counterparts. Rybicki and Hanskii highlight a discrepancy
between Storch et al.’s suggested EAR slope of roughly 1, and He and Hubbell’s
values which were a tenth smaller,115 which they suggest can be resolved by the
fact that Storch fit the EAR while He and Hubbell were calculating the RAR; and
their simulations agree with the results of He and Hubbell that the slope of the RAR
may be half or less that of the SAR.

Their empirical approach to simulation leads to a valuable conclusion that stands
in opposition to previous work. While Kinzig and Harte116 and He and Hubbell117

both strongly suggest that the SAR overestimates extinction risk; the results of Ry-
bicki and Hanskii’s simulations suggest that in the short term, the RAR underesti-
mates extinction while the continental SAR (z ≈ 0.1) is adequate. Their result ties
the population scale to the community scale, as they attribute it to species’ popula-
tions outside destroyed or fragmented habitat falling below critical thresholds and
facing extinction despite the lack of total endemic extirpation. In the long term, they
suggest, the island SAR (z = 0.25) may be the best predictor of total losses. Finally,
they explore the difference between leaving a single patch of habitat and fragment-
ing habitat, and conclude all models underestimate extinction risk in scenarios of
extreme fragmentation. To address that problem, they propose a modified species
area relationship

S = cAze−b/λM

where λM is the metapopulation capacity (see §3.1) and b is another scaling param-
eter like c and z. If n is the number of habitat fragments, they suggest, the metapop-
ulation capacity scales linearly with A3/n2, meaning that the fragmented landscape
species area relationship (FL-SAR) can be expressed as:

Snew/S = (Anew/A)2e−bn2/A3

While the data to fit such an expression might be challenging to collect (and so
the FL-SAR may not be an immediately useful conservation planning tool), the
FL-SAR provides an important and much needed link between the population and
metapopulation processes we discuss above, and our broader understanding of the
rate of extinction at landscape and community scales.

115 He and Hubbell, “Species-area relationships always overestimate extinction rates from habitat
loss.”
116 Kinzig and Harte, “Implications of endemics–area relationships for estimates of species extinc-
tions.”
117 He and Hubbell, “Species-area relationships always overestimate extinction rates from habitat
loss.”
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6 Last Chance to See

What don’t we know about extinction yet?
As predictive tools gain precision, our estimates of the extinction rates of well-

known groups like mammals and birds also become more precise. But the majority
of the world’s species are not yet known; most animal diversity is harbored by in-
sects or parasites (especially nematodes), and the vast majority of species in those
groups are undiscovered or undescribed. Their extinction rates are just as poorly
quantified as their diversity or the hotspots of their biodiversity. But some basic esti-
mates suggest that 7% of the planet’s invertebrates may have already gone extinct—
at which rate evidence would suggest that 98% of extinctions on Earth are currently
going undetected.118 It’s also especially difficult to compare these extinction rates to
historical baselines, because the fossil record for most invertebrates and other taxa
are incomplete or nearly absent.

An especially poignant problem is the detection and estimation of coextinction
rates—the secondary extinction of species dependent on others for their ecological
niche—which Jared Diamond suggested in 1989 was one of the four horsemen of
mass extinction (in his words, “overhunting, effects of introduced species, habitat
destruction, and secondary ripple effects”).119 Among the most obvious candidates
for coextinction are two main groups: pollinators (which can have a strict depen-
dency on host plants) and endosymbionts (parasites and mutualists, which may ex-
hibit strict specificity in their association with plant or animal hosts). While both
groups are believed to be severely at risk of secondary extinction, quantifying their
extinction rate can be challenging, as there is rarely a 1:1 correspondence between
hosts and dependent species. An approach popularized by Koh simulates host ex-
tinctions in a random order and predicts the number of corresponding coextinctions
from the affiliation matrix; by fitting a function to real affiliation matrices, Koh et
al. found that if host specificity is 1:1 then the slope is linear, but when affiliates use
a greater number of hosts, the coextinction function is concave upward:

Ā = (0.35Ē−0.43)Ē ln s̄+ Ē

where E gives primary extinction risk, A gives secondary extinction risk, and s is
host specificity.120 Subsequent work has shown that even though parasites and mu-
tualists may experience a reduced rate of extinction from host switching, the major-
ity of threatened species on Earth might still be mutualists and parasites (due to the
tremendous diversity of such species, e.g. the estimated 300,000 species of helminth

118 Claire Régnier et al., “Mass extinction in poorly known taxa,” Proceedings of the National
Academy of Sciences 112, no. 25 (2015): 7761–7766.
119 Jared M Diamond, NP Ashmole, and PE Purves, “The present, past and future of human-
caused extinctions [and discussion],” Philosophical Transactions of the Royal Society B: Biological
Sciences 325, no. 1228 (1989): 469–477.
120 Lian Pin Koh et al., “Species coextinctions and the biodiversity crisis,” science 305, no. 5690
(2004): 1632–1634.
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alone121). One recent study using the Thomas species-area relationship approach es-
timated that, from the synergistic pressures of climate change and coextinction, up
to one third of all helminth parasites might be threatened with extinction by 2070.122

Most affiliate extinctions are poorly cataloged, if recorded at all,123 and only
limited conservation frameworks exist for their study. More data is needed on host-
symbiont association networks to better inform the role that non-random structure in
those networks might play in increasing or decreasing extinction rates; some work
has suggested that species preferentially favor more stable host species, the under-
lying cause of a “paradox of missing coextinctions.”124 Similarly, the potential for
species to switch hosts and thereby avoid extinction is unknown, but likely mitigates
global extinction risk. In parasitology, the Stockholm Paradigm suggests that host-
parasite associations diversify in changing climates and environments as a function
of (1) phenotypic plasticity, (2) trait integration and (3) phylogenetic conservatism
of “latent potential,” which together produce a pattern of ecological fitting that might
benefit parasites (and thereby other symbionts) in the face of the sixth mass extinc-
tion.125 A more in-depth treatment of the theoretical ecology of ecological fitting
can be found in the recent work of Araujo et al.126

Is saving microbes and parasites from extinction a reasonable goal? Some argue
that it is,127 but others have recently suggested it’s “time to get real about conserva-
tion” and focus on our failure to adequately prevent catastrophic population crashes
in megafauna like elephants.128 Regardless of animal type or conservation status,
the development of demographic theory and predictive modeling are our best op-
tions to understand and mitigate extinction risk in natural populations. One such
advance deserving of special mention is the development of early warning signals
of population collapse. This is a developing body of literature that is built around
the fact that populations on the verge of collapse often produce detectable statistical
signals129 that, detected far enough in advance, might allow mitigation efforts and
prevention of population collapse.

121 Andy Dobson et al., “Homage to Linnaeus: How many parasites? How many hosts?,” Proceed-
ings of the National Academy of Sciences 105, no. Supplement 1 (2008): 11482–11489.
122 Colin J Carlson et al., “Parasite biodiversity faces extinction and redistribution in a changing
climate,” Science Advances 3, no. 9 (2017): e1602422.
123 Robert R Dunn et al., “The sixth mass coextinction: are most endangered species parasites and
mutualists?,” Proceedings of the Royal Society of London B: Biological Sciences 276, no. 1670
(2009): 3037–3045.
124 Giovanni Strona, Paolo Galli, and Simone Fattorini, “Fish parasites resolve the paradox of
missing coextinctions,” Nature communications 4 (2013): 1718.
125 Daniel R Brooks and Eric P Hoberg, “How will global climate change affect parasite–host
assemblages?,” Trends in parasitology 23, no. 12 (2007): 571–574.
126 Sabrina BL Araujo et al., “Understanding host-switching by ecological fitting,” PloS one 10,
no. 10 (2015): e0139225.
127 Eric R Dougherty et al., “Paradigms for parasite conservation,” Conservation Biology, 2015,
128 Aaron M Ellison, “It’s time to get real about conservation.,” Nature 538, no. 7624 (2016): 141.
129 Marten Scheffer et al., “Early-warning signals for critical transitions,” Nature 461, no. 7260
(2009): 53–59.
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The majority of early warning signals for extinction currently rely on identify-
ing critical slowing down, a process by which as the dominant eigenvalue of the
system tends towards zero, populations return to equilibriums lower after perturba-
tions, with increasing variance and temporal autocorrelation. Critical slowing down
is often a sign of a dynamical system approaching a bifurcation point, which may
sometimes indicate a non-catastrophic shift to an alternative stable state,130 but more
usefully, may indicate an impending extinction emerging from a shift into a sharp
decline or into chaos. A foundational experiment by Drake & Griffen showed that
critical slowing down can readily be detected from time series data for populations
facing decreasing food availability up to eight generations before they reach the bi-
furcation point.131 Conventionally, this is done by taking a set of metrics such as the
autocorrelation, coefficient of variation, or skewness (termed leading indicators),
scaling and adding them into a single metric (composite indicators), and tracking
them over time. Given any indicator w, the standardized statistic is calculated as a
function of the mean and standard deviation of the time series to that point:

ŵt =
wt − w̄1:t

σ(w1:t)

When the test statistic ŵ passes a threshold level of deviation from the running
average w̄1:t , such as 2σ , this can be taken as an early warning signal.132

Early warning signals are far from a perfect tool. Most research has focused on
detecting critical slowing down, but not all types of dynamical systems exhibit criti-
cal slowing down.133 Even if critical slowing down is expected, these types of early
warning signals are far from perfectly accurate. Ecological data, especially from
population abundance estimates, often has a high signal:noise ratio,134 to which
early warning signals are still sensitive, leading to an expected mix of both Type
I and II errors, depending on the quality and quantity of data. In some cases, this
problem can be accommodated for by evaluating early warning signals as an iter-
ative process over the time series, rather than taking the first warning as the only
required evidence.135

Simulation work has shown early warning signals to be fairly robust to incom-
plete sampling, but proportionally data intensive to a degree that may be impossible

130 Sonia Kéfi et al., “Early warning signals of ecological transitions: methods for spatial patterns,”
PloS one 9, no. 3 (2014): e92097.
131 John M Drake and Blaine D Griffen, “Early warning signals of extinction in deteriorating
environments,” Nature 467, no. 7314 (2010): 456.
132 Christopher F Clements and Arpat Ozgul, “Including trait-based early warning signals helps
predict population collapse,” Nature communications 7 (2016).
133 Carl Boettiger, Noam Ross, and Alan Hastings, “Early warning signals: the charted and un-
charted territories,” Theoretical ecology 6, no. 3 (2013): 255–264; Alan Hastings and Derin B
Wysham, “Regime shifts in ecological systems can occur with no warning,” Ecology letters 13, no.
4 (2010): 464–472.
134 Boettiger, Ross, and Hastings, “Early warning signals: the charted and uncharted territories.”
135 Christopher F Clements et al., “Body size shifts and early warning signals precede the historic
collapse of whale stocks.,” Nature ecology & evolution 1, no. 7 (2017): 188.
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to reach with available ecological time series data.136 When population data is lack-
ing or incomplete, trait-based data can be used as a proxy or a supplement, if traits
such as body size are expected to correlate with fitness, and are responsive to ecolog-
ical shifts.137 One particularly interesting demonstration by Clements et al. showed
that body size data could be used to predict the collapse of whale populations 10-
40 years before the whaling industry depleted stocks.138 Other cutting-edge work
is attempting to scale the detection of early warning signals to the metapopulation
level by developing spatial early warning signals,139 which could be used to opti-
mize reserve design and address the influence of dispersal, stochasticity, and local
population dynamics on metapopulation persistence. Some work has even suggested
critical slowing down could be used to identify tipping points of network collapse
due to serial coextinctions in symbiont networks.140

The pressure for more accurate, predictive tools will only grow in the next few
decades of research. A recent review by Mark Urban surveyed studies of climate
change-driven extinction risk and found that, despite the variation between differ-
ent modeling methods and scopes, projected extinction rates are not only rising but
one in six species might be imminently threatened with extinction.141 Similarly, in
a study of roughly 1000 species of plants and animals, about half had experienced
population extinctions driven by climate change.142 As extinction rates accelerate
due to global change and we fully enter the sixth mass extinction, the need for
better analytical and simulation tools—that produce precise estimates from limited
data—will only grow. In light of the constant need to test, revise and re-test mod-
els of extinction, to a mathematically-trained ecologist or an ecologically-minded
mathematician, this field of research is a critical opportunity to apply the principles
of ecosystem science towards a high-impact and worthy goal.
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