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Abstract

Underpowered experiments have three problems: the probability of a false positive 
result is higher, true effects are harder to detect, and the true effects that are 
detected tend to have inflated effect sizes. Many biology experiments are 
underpowered and recent calls to change the traditional 0.05 significance threshold 
to a more stringent value of 0.005 will further reduce the power of the average 
experiment. Increasing power by increasing the sample size is often the only option 
considered, but more samples increases costs, makes the experiment harder to 
conduct, and is contrary to the 3Rs principles for animal research. We show how the 
design of an experiment and some analytical decisions can have a surprisingly large 
effect on power.

Introduction

Statistical power is the probability of detecting a true effect, and therefore when 
experiments have low power, a true effect or association is hard to find.1,2 A less 
appreciated consequence of lower power is that a statistically significant result is 
more likely to be a false positive than a true effect.2–4 The probability that a 
significant result is a false positive increases because a p-value less than 0.05 means
either (1) an effect is present, or (2) no effect is present but an extreme (unlikely) 
result occurred by chance. We never know which of these options is correct, but 
with low power, true effects are harder to detect, and so the "effect present" option 
becomes less probable and the "chance occurrence" option becomes more probable. 
A final problem with low power is that small effects will only be statistically 
significant when the effect size is overestimated (or if the within-group variance is 
underestimated).5–7 In other words, the correct qualitative conclusion might be 
reached (there is an effect) but the magnitude or strength of the effect is 
overestimated.6 Thus, lower power has a triple-negative effect on statistical 
inference.
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Statisticians and scientists have recently been arguing for a more stringent 
significance threshold of 0.005 because the traditional 0.05 threshold provides little 
evidence against the null hypothesis.8–12 If journals start requiring a lower threshold 
for significance, the power of all experiments will be further reduced, exacerbating 
the above problems. By way of example, suppose we are conducting a two group 
experiment with independent samples in each group. To achieve 80% power to 
detect an effect size of 1.25 units, with a within-group standard deviation of 1 and a 
significance threshold of 0.05, we require 11 samples per group, or 22 in total. If the
significance threshold is reduced to 0.005, 38 total samples are required—a 71% 
increase in sample size. If only 22 samples are used with the more stringent 0.005 
significance threshold, the power of the experiment is only 44%.

To increase power, many researchers only consider increasing the sample size ( N
). Indeed, standard power and sample size calculations in textbooks and review 
articles suggest that the only option to increase power is to increase the number of 
samples. The design of the experiment is taken as given, the probability of making a 
false positive decision is set to α=0.05 , and the power is usually fixed to 80% or 
90%. The effect size is the smallest effect that is biologically or clinically meaningful 
and that the researcher would like to detect, and the within group standard 
deviation is derived from pilot studies, published results, or an educated guess. (In 
practice, the effect size and standard deviation are often adjusted to give the sample
size that investigators were planning to use all along13,14). This only leaves N  to be
adjusted to meet the desired power. (We leave aside the assumed requirement that 
the sample size must be fixed in advance. Data can be collected until a strong 
conclusion is reached or until the allocated time and resources are expended. 
Controlling the false positive rate becomes a concern, as does the analysis of such 
an experiment, but both issues are handled naturally with Bayesian methods.15,16)

Increasing the sample size makes the experiment more expensive, harder to 
conduct, and has ethical implications for animal experiments. Also, it is often not 
possible to increase N  while holding everything else constant. A larger 
experiment may need to be conducted in smaller batches, perhaps half of the 
samples are run on two separate days, or conducted by two researchers instead of 
one. This changes the design of the experiment because Day and Researcher are 
new variables that could influence the outcome and were not included in the power 
calculation. Similarly, data from a small experiment may be collected over a short 
period of time (e.g. one or two hours), making circadian effects negligible. A larger 
experiment may need to collect data over a longer period, and now circadian effects 
may become more pronounced. The design of the experiment now needs to change 
to accommodate the circadian effects; for example, by using time as a blocking 
factor.17 This is again a different experiment to the one used for the power 
calculation.

Simple options are available to increase power—often dramatically—while keeping 
the sample size fixed. Or coming from the other direction, certain design and 
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analytic options can be avoided to prevent loss of power. Four options are described 
below that apply to most biological experiments, and other options are described in 
Lazic.17 The R code for these examples is provided as supplementary material.

Trade-offs are inevitably required when planning an experiment, and defining a key 
question or hypothesis enables the experiment to be designed to maximise the 
chance of success, but at the cost of being unable to address other questions. Hence,
the first step is to clearly define the key question that the experiment will answer. 
This may sound trite, but consider an experiment testing a new compound in an 
animal model of a disease. The key questions could be:

1. Is the compound active (does it work)?

2. Is the compound active at a specific dose?

3. What is the minimum effective dose?

4. What is the dose that gives half of the maximum response (ED50)?

5. Is one dose better than another?

No design is optimal for answering all of these questions; some designs are better 
suited to answer some questions and other designs are better for other questions. 
Once the question or hypothesis is defined, the four points below can be used to plan
the experiment.

1. Use fewer factor levels for continuous predictors

In experiments with continuous predictors such as dose, concentration, time, pH, 
temperature, pressure, illumination level, and so on, how do we decide on the 
minimum and maximum levels, the number of points in between, and the specific 
levels where observations will be made or samples allocated? Some choices are easy,
for example, when a minimum value of zero serves as a control condition, and the 
maximum value is the upper limit that we are interested in testing or learning about.
But what about the points between the min and max? The places where observations
are made (min, max, plus intermediate points) are called the design points.18

To illustrate how the number of design points affects the power, we compare four 
designs with 2 to 5 design points (experimental groups) and a fixed sample size of 
20. Assume that the dose of a compound is the factor of interest, which ranges from 
min = 0 to max = 100. 10,000 data sets were simulated from the true model (Fig. 
1A), which has a maximum response of 40 at Dose = 0, and a minimum response of 
27 at Dose = 100. The variability of the data is shown by the scatter of points around
the dose-response line (standard deviation = 9). Data were simulated under each 
design and analysed with a one-way ANOVA, testing the general hypothesis "is there 
any difference between the experimental groups"? The power for each design is then
calculated as the proportion of significant results from the ANOVA (overall F-test). 
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Despite the same sample size, the power of these experiments differs greatly (Fig. 
1B, "ANOVA line"). The power of Design 1 with two groups is 84% and steadily 
decreases to 40% with Design 4.

Figure 1. Effect of increasing the number of groups. A fictitious example of the 
relationship between an outcome and the dose of a compound (A). Four designs with
the same sample size but with observations taken at different doses are indicated 
with black circles. For example, Design 1 has 10 samples at doses 0 and 100. 
Increasing the number of groups from 2 to 5 decreases the power for the overall 
ANOVA from 84% to 40% (B). Testing a more specific hypothesis for a trend has 
improved power compared with an ANOVA analysis, but still loses power with more 
groups.

It is clear that using two groups maximises power. What if the true relationship is 
not sigmoidal but a "U", inverted-"U", or some other complex shape? A design with 
two groups would be unable to detect such relationships, but if a linear or monotonic
relationship is expected, then one additional design point can allow departures from 
the assumed relationship to be detected (e.g. Design 2 in Figure 1).18 Trade-offs are 
always necessary when designing experiments, although adding an additional group 
allows a more complex relationship to be detected, it lowers the probability of 
detecting a linear relationship if that is indeed the correct one. If the aim of the 
study is to fit a 4 parameter logistic model (the black line in Fig. 1A), then Design 4 
is better, illustrating how the aim of the experiment or the question asked influences 
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the design. Berger and Wong discuss a wider range of designs and how they affect 
power for different types of relationships.18

A related point to maximise power is to ensure that the predictor variable covers a 
wide enough range; for example, the compound would appear to have no effect if the
maximum dose is 30.

2. Use a focused hypothesis test

A second way to increase power is to test a specific hypothesis instead of a general 
"are there any differences?" hypothesis. For the simulated example above, the 
ANOVA analysis can detect any pattern of differences between groups, but the trade-
off is that it has less power to detect any specific pattern. If we expect the outcome 
to either steadily increase or decrease as the dose increases, then a focused test of 
this pattern is more powerful (Fig. 1B, "Trend test" line).

With two groups the power of the trend test is identical to the ANOVA analysis (both 
are equivalent to a t-test), but with five groups (Design 4) the power of the trend test
is 66%, compared with 40% for the ANOVA analysis. Testing for a trend is available 
in most statistical packages and usually requires that the predictor variable—dose in
this case—is treated as an ordered categorical factor. The output from such an 
analysis will usually include the test for a linear trend (linear contrast). Alternatively,
treating dose as a continuous variable and analysing the data with a regression 
analysis instead of an ANOVA is another option that has high power.19

3. Don't dichotomise or bin continuous variables

Dichotomising or binning refers to taking a continuous variable and reducing it to 
two groups (e.g. Low/High) based on a threshold such as the median. Sometimes the
continuous variable is reduced to more than two groups such as Low/Medium/High, 
and both outcome and predictor variables can be dichotomised. This practice is 
common, despite many papers warning against it. Dichotomising variables reduces 
power, can bias estimates, and can increase false positives.19–33

To illustrate this point, Figure 2 shows data for 50 samples that have a correlation of
0.4. These are naturally analysed with a Pearson correlation or linear regression 
(solid line), both of which give p = 0.002 for the association. If the variables are 
dichotomised at their median (dashed lines) the number of data points falling in each
quadrant can be counted (numbers in grey boxes), forming a 2 ×  2 table. This 
doubled-dichotomised data is commonly analysed with a χ2  test or Fisher's Exact 
test, and the χ2  test gives p = 0.024—almost ten times larger than the regression 
analysis. To estimate the reduction power when using the χ2  test, 5000 data sets 
like the one in Figure 2 were simulated with N  = 50 and a correlation of 0.4. 
Analysing the continuous values with a regression analysis had 84% power, while 
binning and using the χ2  test reduced power to 34%.

5

5

10

15

20

25

30

35

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.3363v1 | CC BY 4.0 Open Access | rec: 23 Oct 2017, publ: 23 Oct 2017



Figure 2. Analysis of continuous and binned data. A regression analysis (black 
line) gives p = 0.002. Binning the data with a bivariate median-split (dashed lines) 
and analysing the number of samples in each quadrant (grey boxes) with a χ2  test
gives p = 0.024. The power of the χ2  test is only 34%, compared with 84% for the
regression analysis.

4. Cross your factors, don't nest them

The levels of an experimental factor are either (1) set by the researcher, (2) a 
property of the samples, or (3) a technical aspect of how the experiment is 
conducted. For example, the dose of a drug that an animal receives is controlled by 
the researcher, while the sex of the animal is a property of the animal. If the 
experiment is conducted over multiple days or by more than one researcher, then 
Day and Researcher are technical factors. Factor arrangement refers to how 
multiple factors relate to each other, and there are three possibilities.

When two factors are completely confounded, levels of one factor always co-occur 
with the same levels of the other factor; for example, if all the control animals are 
run on the first day and all the treated animals are run on the second day. 
Confounding a treatment effect that we are interested in testing with an 
uninteresting technical effect is never a good idea because it is impossible to 
attribute any differences between treatment groups to the effect of the treatment—
differences may have arisen from the day-to-day variation. To conclude anything 
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about a treatment effect we would have to assume that the Day effect is zero, and 
therefore this arrangement should be avoided.

The second possibility is a crossed or factorial arrangement, which occurs when all 
levels of one factor co-occur with all levels of another factor, and is the most 
common arrangement in experimental biology. The final possibility is a nested 
arrangement, where levels of one factor are grouped or nested under the levels of 
another factor. Figure 3 shows the difference between crossed and nested 
arrangements. Suppose that we have 16 mice (assume all male for simplicity) from 4
litters (A-D), and we want to test the effect of a compound at a single dose. Assume 
that each mouse can be randomly and individually assigned to one of the two 
treatment groups. Although this is a simple two-group design, we might expect 
differences between litters and want to take this into account in the design.

When all animals from a litter are in the same condition, the factor Litter is said to 
be nested under the factor Treatment (Fig. 3, left). When animals from a litter are 
spread across both treatment groups, the Treatment and Litter factors are crossed 
(Fig. 3, right).
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Figure 3. Crossed versus nested designs. An experiment with 16 mice from four 
litters (A-D) can be randomised to treatment groups either by litter, leading to a 
nested design (left), or within litter, leading to a crossed design (right).

The main point here is that the nested arrangement is much less powerful than the 
crossed one. Example data is shown in Figure 4 to illustrate the difference in power 
between the two designs. The litter means are drawn from a normal distribution 
with a standard deviation of 3, and the values for the individual animals are drawn 
from a normal distribution with a standard deviation of 0.5. Thus, the litter-to-litter 
variation is large relative to the variation between animals within a litter. Figure 4A 
shows the data before the application of a treatment, and an immediate danger can 
be seen with a nested design: if litters A and B end up in one group and C and D in 
the other, large differences between groups exist at baseline. Hence, nested designs 
can also lead to more false positive findings.34,35
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Figure 4B shows one possible randomisation of a nested design, where litters A and 
D end up in the control group and B and C in the treated group. The effect of the 
treatment in this example is to decrease the outcome by 2 units (note how the 
control group values of black O 's and green × 's are identical in Fig. 4A and B).
Analysing the data with a t-test gives a p-value of 0.14. However, since the litters 
were randomised to the treatment conditions and not the individual animals, the 
litter is a more appropriate experimental unit, that is, the sample size is 4 litters, not
16 animals.17,36 One way to conduct this analysis is to calculate the litter average and
use these values for a standard statistical test, which gives p = 0.57. Figure 4C 
shows one possible randomisation of the crossed design, with the same effect size of 
-2 units. Analysis of this design, which includes litter as a variable in the model gives
p = 0.0007 for the effect of the treatment.

Figure 4. Simulated data for a nested and crossed design. Natural variation 
between and within litters (A). The nested design compares the effect of the 
treatment against the high variation between litters, leading to a large p-value (0.14 
or 0.57, depending on the analysis; B). The crossed design compares the treatment 
effect to the smaller within-litter variation, leading to a much smaller p-value of 
0.0007 (C).

To calculate the power of the two designs and both analyses of the nested design, 
5000 data sets were generated with the above characteristics. The nested design 
treating the animals as the experimental unit has 55% power, and treating the litter 
as the experimental unit (the more appropriate analysis) has only 7% power. The 
power of the crossed design is over 99%. These large differences in power exist 
because the nested design compares the effect size of -2 units against the high litter-
to-litter variation (standard deviation = 3), whereas the crossed design compares the
effect size against the much smaller variation of animals within a litter (standard 
deviation = 0.5). With the crossed design the test for a treatment effect is performed
within the litters and hence large differences between litters are irrelevant for 
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testing treatment effects. Litter is used as a "blocking variable" to remove the 
unwanted litter-to-litter variation.34,37

The difference in power between nested and crossed designs become less 
pronounced as litter effects get smaller, animal variation within a litter gets larger, 
or both. The nested design should be avoided because of low power, more false 
positives, and ambiguity in defining the sample size. Unfortunately, nested designs 
are common because they are often easier to conduct and manage; for example, it's 
easier to randomise litters to treatment groups as littermates can be housed 
together in the same cage.

Other technical variables or properties of subjects such as batches, microtitre 
plates, cages or other housing structure, body weight, day, and experimenter, can 
also be nested or crossed with the treatment effects of interest. These factors need 
to be carefully arranged to ensure high power and no confounding. The points 
discussed above can combine to reduce power even further; for example, using a 
nested design, dichotomising a variable, and testing a general hypothesis will have a
dramatic loss of power compared with a crossed design, without dichotomisation, 
and testing a focused hypothesis.

Conclusion

Low power continues to undermine many biology experiments, but a few simple 
alterations to a design or analysis can dramatically increase the information 
obtained without increasing the sample size. In the interest of minimising animal 
usage and reducing waste in biomedical research,38,39 researchers should aim to 
maximise power by designing confirmatory experiments around key questions, use 
focused hypothesis tests, and avoid dichotomising and nesting that ultimately reduce
power and provide no other benefits.
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