

A peer-reviewed version of this preprint was published in PeerJ
on 19 June 2014.

View the peer-reviewed version (peerj.com/articles/453), which is the
preferred citable publication unless you specifically need to cite this
preprint.

van der Walt S, Schönberger JL, Nunez-Iglesias J, Boulogne F, Warner JD,
Yager N, Gouillart E, Yu T, the scikit-image contributors. 2014. scikit-
image: image processing in Python. PeerJ 2:e453
https://doi.org/10.7717/peerj.453

https://doi.org/10.7717/peerj.453
https://doi.org/10.7717/peerj.453

scikit-image: Image processing in Python1

Stéfan van der Walt1,2, Johannes L. Schönberger3, Juan Nunez-Iglesias4,2

François Boulogne5, Joshua D. Warner6, Neil Yager7, Emmanuelle3

Gouillart8, Tony Yu9, and the scikit-image contributors10
4

1Corresponding author: stefan@sun.ac.za5

2Stellenbosch University, Stellenbosch, South Africa6

3Department of Computer Science, University of North Carolina at Chapel Hill, Chapel7

Hill, NC 27599, USA8

4Victorian Life Sciences Computation Initiative, Carlton, VIC, 3010, Australia9

5Department of Mechanical and Aerospace Engineering, Princeton University,10

Princeton, New Jersey 08544, USA11

6Department of Biomedical Engineering, Mayo Clinic, Rochester, Minnesota 55905, USA12

7AICBT Ltd, Oxford, UK13

8Joint Unit CNRS / Saint-Gobain, Cavaillon, France14

9Enthought Inc., Austin, TX, USA15

10https://github.com/scikit-image/scikit-image/graphs/contributors16

ABSTRACT17

scikit-image is an image processing library that implements algorithms and utilities

for use in research, education and industry applications. It is released under the

liberal “Modified BSD” open source license, provides a well-documented API in the

Python programming language, and is developed by an active, international team of

collaborators. In this paper we highlight the advantages of open source to achieve the

goals of the scikit-image library, and we showcase several real-world image processing

applications that use scikit-image.

18

Keywords: image processing, reproducible research, education, visualization19

INTRODUCTION20

In our data-rich world, images represent a significant subset of all measurements made.21

Examples include DNA microarrays, microscopy slides, astronomical observations,22

satellite maps, robotic vision capture, synthetic aperture radar images, and higher-23

dimensional images such as 3-D magnetic resonance or computed tomography imaging.24

Exploring these rich data sources requires sophisticated software tools that should be25

easy to use, free of charge and restrictions, and able to address all the challenges posed26

by such a diverse field of analysis.27

This paper describes scikit-image, a collection of image processing algorithms28

implemented in the Python programming language by an active community of volunteers29

and available under the liberal BSD Open Source license. The rising popularity of Python30

as a scientific programming language, together with the increasing availability of a large31

eco-system of complementary tools, make it an ideal environment in which to produce32

an image processing toolkit.33

The project aims are:34

1. To provide high quality, well-documented and easy-to-use implementations of35

PeerJ PrePrints | http://dx.doi.org/10.7287/peerj.preprints.336v2 | CC-BY 4.0 Open Access | received: 1 Apr 2014, published: 1 Apr 2014

P
re
P
ri
n
ts

mailto:stefan@sun.ac.za
https://github.com/scikit-image/scikit-image/graphs/contributors

common image processing algorithms.36

Such algorithms are essential building blocks in many areas of scientific research,37

algorithmic comparisons and data exploration. In the context of reproducible38

science, it is important to be able to inspect any source code used for algorith-39

mic flaws or mistakes. Additionally, scientific research often requires custom40

modification of standard algorithms, further emphasizing the importance of open41

source.42

2. To facilitate education in image processing.43

The library allows students in image processing to learn algorithms in a hands-on44

fashion by adjusting parameters and modifying code. In addition, a novice45

module is provided, not only for teaching programming in the “turtle graphics”46

paradigm, but also to familiarize users with image concepts such as color and47

dimensionality. Furthermore, the project takes part in the yearly Google Summer48

of Code program (Google, 2004), where students learn about image processing49

and software engineering through contributing to the project.50

3. To address industry challenges.51

High quality reference implementations of trusted algorithms provide industry52

with a reliable way of attacking problems, without having to expend significant53

energy in re-implementing algorithms already available in commercial packages.54

Companies may use the library entirely free of charge, and have the option of55

contributing changes back, should they so wish.56

GETTING STARTED57

One of the main goals of scikit-image is to make it easy for any user to get started58

quickly–especially users already familiar with Python’s scientific tools. To that end, the59

basic image is just a standard NumPy array, which exposes pixel data directly to the60

user. A new user can simply the load an image from disk (or use one of scikit-image’s61

sample images), process that image with one or more image filters, and quickly display62

the results:63

from skimage import data, io, filter

image = data.coins() # or any NumPy array!

edges = filter.sobel(image)

io.imshow(edges)

The above demonstration loads data.coins, an example image shipped with64

scikit-image. For a more complete example, we import NumPy for array manipulation65

and matplotlib for plotting. At each step, we add the picture or the plot to a matplotlib66

figure shown in Figure 1.67

import numpy as np

import matplotlib.pyplot as plt

2/18
PeerJ PrePrints | http://dx.doi.org/10.7287/peerj.preprints.336v2 | CC-BY 4.0 Open Access | received: 1 Apr 2014, published: 1 Apr 2014

P
re
P
ri
n
ts

Figure 1. Illustration of several functions available in scikit-image: adaptive threshold,

local maxima, edge detection and labels. The use of NumPy arrays as our data container

also enables the use of NumPy’s built-in histogram function.

3/18
PeerJ PrePrints | http://dx.doi.org/10.7287/peerj.preprints.336v2 | CC-BY 4.0 Open Access | received: 1 Apr 2014, published: 1 Apr 2014

P
re
P
ri
n
ts

Load a small section of the image.

image = data.coins()[0:95, 70:370]

fig, axes = plt.subplots(ncols=2, nrows=3,

figsize=(8, 4))

ax0, ax1, ax2, ax3, ax4, ax5 = axes.flat

ax0.imshow(image, cmap=plt.cm.gray)

ax0.set_title(’Original’, fontsize=24)

ax0.axis(’off’)

Since the image is represented by a NumPy array, we can easily perform operations68

such as building an histogram of the intensity values.69

Histogram.

values, bins = np.histogram(image,

bins=np.arange(256))

ax1.plot(bins[:-1], values, lw=2, c=’k’)

ax1.set_xlim(xmax=256)

ax1.set_yticks([0, 400])

ax1.set_aspect(.2)

ax1.set_title(’Histogram’, fontsize=24)

To divide the foreground and background, we threshold the image to produce a binary70

image. Several threshold algorithms are available. Here, we employ71

filter.threshold_adaptive where the threshold value is the weighted mean72

for the local neighborhood of a pixel.73

Apply threshold.

from skimage.filter import threshold_adaptive

bw = threshold_adaptive(image, 95, offset=-15)

ax2.imshow(bw, cmap=plt.cm.gray)

ax2.set_title(’Adaptive threshold’, fontsize=24)

ax2.axis(’off’)

We can easily detect interesting features, such as local maxima and edges. The74

function feature.peak_local_max can be used to return the coordinates of local75

maxima in an image.76

Find maxima.

from skimage.feature import peak_local_max

coordinates = peak_local_max(image, min_distance=20)

4/18
PeerJ PrePrints | http://dx.doi.org/10.7287/peerj.preprints.336v2 | CC-BY 4.0 Open Access | received: 1 Apr 2014, published: 1 Apr 2014

P
re
P
ri
n
ts

ax3.imshow(image, cmap=plt.cm.gray)

ax3.autoscale(False)

ax3.plot(coordinates[:, 1],

coordinates[:, 0], c=’r.’)

ax3.set_title(’Peak local maxima’, fontsize=24)

ax3.axis(’off’)

Next, a Canny filter (filter.canny) (Canny, 1986) detects the edge of each77

coin.78

Detect edges.

from skimage import filter

edges = filter.canny(image, sigma=3,

low_threshold=10,

high_threshold=80)

ax4.imshow(edges, cmap=plt.cm.gray)

ax4.set_title(’Edges’, fontsize=24)

ax4.axis(’off’)

Then, we attribute to each coin a label (morphology.label) that can be used to79

extract a sub-picture. Finally, physical information such as the position, area, eccentricity,80

perimeter, and moments can be extracted using measure.regionprops.81

Label image regions.

from skimage.measure import regionprops

import matplotlib.patches as mpatches

from skimage.morphology import label

label_image = label(edges)

ax5.imshow(image, cmap=plt.cm.gray)

ax5.set_title(’Labeled items’, fontsize=24)

ax5.axis(’off’)

for region in regionprops(label_image):

Draw rectangle around segmented coins.

minr, minc, maxr, maxc = region.bbox

rect = mpatches.Rectangle((minc, minr),

maxc - minc,

maxr - minr,

fill=False,

edgecolor=’red’,

linewidth=2)

ax5.add_patch(rect)

5/18
PeerJ PrePrints | http://dx.doi.org/10.7287/peerj.preprints.336v2 | CC-BY 4.0 Open Access | received: 1 Apr 2014, published: 1 Apr 2014

P
re
P
ri
n
ts

plt.tight_layout()

plt.show()

scikit-image thus makes it possible to perform sophisticated image processing tasks82

with only a few function calls.83

LIBRARY CONTENTS84

The scikit-image project started in August of 2009 and has received contributions85

from more than 100 individuals (Ohloh, 2014). The package can be installed from,86

amongst other sources, the Python Package Index, Continuum Anaconda (Continuum87

Analytics, 2012), Enthought Canopy (Enthought, Inc, 2014), Python(x,y) (Raybaut,88

2014), NeuroDebian (Halchenko and Hanke, 2012) and GNU/Linux distributions such89

as Ubuntu (Canonical, Ltd., 2004). In March 2014 alone, the package was downloaded90

more than 5000 times from the Python Package Index (PyPI, 2014).91

The package currently contains the following sub-modules:92

• color: Color space conversion.93

• data: Test images and example data.94

• draw: Drawing primitives (lines, text, etc.) that operate on NumPy arrays.95

• exposure: Image intensity adjustment, e.g., histogram equalization, etc.96

• feature: Feature detection and extraction, e.g., texture analysis, corners, etc.97

• filter: Sharpening, edge finding, rank filters, thresholding, etc.98

• graph: Graph-theoretic operations, e.g., shortest paths.99

• io: Reading, saving, and displaying images and video.100

• measure: Measurement of image properties, e.g., similarity and contours.101

• morphology: Morphological operations, e.g., opening or skeletonization.102

• novice: Simplified interface for teaching purposes.103

• restoration: Restoration algorithms, e.g., deconvolution algorithms, denoising,104

etc.105

• segmentation: Partitioning an image into multiple regions.106

• transform: Geometric and other transforms, e.g., rotation or the Radon transform.107

• viewer: A simple graphical user interface for visualizing results and exploring108

parameters.109

6/18
PeerJ PrePrints | http://dx.doi.org/10.7287/peerj.preprints.336v2 | CC-BY 4.0 Open Access | received: 1 Apr 2014, published: 1 Apr 2014

P
re
P
ri
n
ts

DATA FORMAT AND PIPELINING110

scikit-image represents images as NumPy arrays (van der Walt et al., 2011), the de facto111

standard for storage of multi-dimensional data in scientific Python. Each array has a112

dimensionality, such as 2 for a 2-D grayscale image, 3 for a 2-D multi-channel image,113

or 4 for a 3-D multi-channel image; a shape, such as (M,N,3) for an RGB color image114

with M vertical and N horizontal pixels; and a numeric data type, such as float for115

continuous-valued pixels and uint8 for 8-bit pixels. Our use of NumPy arrays as the116

fundamental data structure maximizes compatibility with the rest of the scientific Python117

ecosystem. Data can be passed as-is to other tools such as NumPy, SciPy, matplotlib,118

scikit-learn (Pedregosa et al., 2011), Mahotas (Coelho, 2013), OpenCV, and more.119

Images of differing data-types can complicate the construction of pipelines. scikit-120

image follows an "Anything In, Anything Out" approach, whereby all functions are121

expected to allow input of an arbitrary data-type but, for efficiency, also get to choose122

their own output format. Data-type ranges are clearly defined. Floating point images are123

expected to have values between 0 and 1 (unsigned images) or -1 and 1 (signed images),124

while 8-bit images are expected to have values in {0, 1, 2, ..., 255}. We provide utility125

functions, such as img_as_float, to easily convert between data-types.126

DEVELOPMENT PRACTICES127

The purpose of scikit-image is to provide a high-quality library of powerful, diverse im-128

age processing tools free of charge and restrictions. These principles are the foundation129

for the development practices in the scikit-image community.130

The library is licensed under the Modified BSD license, which allows unrestricted131

redistribution for any purpose as long as copyright notices and disclaimers of warranty132

are maintained (Regents of the University of California, 1999). It is compatible with133

GPL licenses, so users of scikit-image can choose to make their code available under134

the GPL. However, unlike the GPL, it does not require users to open-source derivative135

work (BSD is not a so-called copyleft license). Thus, scikit-image can also be used in136

closed-source, commercial environments.137

The development team of scikit-image is an open community that collaborates on138

the GitHub (the scikit-image team, 2010a) platform for issue tracking, code review, and139

release management. Google Groups (the scikit-image team, 2010b) is used as a public140

discussion forum for user support, community development, and announcements.141

scikit-image complies with the PEP8 coding style standard (van Rossum et al., 2001)142

and the NumPy documentation format (Gommers and the NumPy developers, 2010)143

in order to provide a consistent, familiar user experience across the library similar to144

other scientific Python packages. As mentioned earlier, the data representation used145

is n-dimensional NumPy arrays, which guarantees universal interoperability within146

the scientific Python ecosystem. The majority of the scikit-image API is intentionally147

designed as a functional interface which allows one to simply apply one function to148

the output of another. This modular approach also lowers the barrier of entry for new149

contributors, since one only needs to master a small part of the entire library in order to150

make an addition.151

We ensure high code quality by a thorough review process using the pull request152

interface on GitHub. The source code is mainly written in Python, although certain153

7/18
PeerJ PrePrints | http://dx.doi.org/10.7287/peerj.preprints.336v2 | CC-BY 4.0 Open Access | received: 1 Apr 2014, published: 1 Apr 2014

P
re
P
ri
n
ts

performance critical sections are implemented in Cython, an optimising static compiler154

for Python (Behnel et al., 2011). scikit-image aims to achieve full unit test coverage,155

which is above 85% as of release 0.10 and continues to rise. A continuous integration156

system (the Travis-CI community, 2012; LEMUR Heavy Industries, 2013) automatically157

checks each commit for unit test coverage and failures on both Python 2 and Python 3.158

Additionally, the code is analyzed by flake8 (Cordasco, 2010) to ensure compliance with159

the PEP8 coding style standards (van Rossum et al., 2001). Finally, the properties of160

each public function are documented thoroughly in an API reference guide, embedded as161

Python docstrings and accessible through the official project homepage or an interactive162

Python console. Short usage examples are typically included inside the docstrings,163

and new features are accompanied by longer, self-contained example scripts added164

to the narrative documentation and compiled to a gallery on the project website. We165

use Sphinx (Brandl and the Sphinx team, 2007) to automatically generate both library166

documentation and the website.167

The development master branch is fully functional at all times and can be obtained168

from GitHub (the scikit-image developers, 2010). The community releases major169

updates as stable versions approximately every six months (Wikipedia, 2014). Major170

releases include new features, while minor releases typically contain only bug fixes.171

Users are notified about API-breaking changes by deprecation warnings one full major172

release before they are applied.173

USAGE EXAMPLES174

Research175

Often, a disproportionately large component of research involves dealing with various176

image data-types, color representations, and file format conversion. scikit-image offers177

robust tools for converting between image data-types (Microsoft, 1995; the Khronos178

Group, 2004; Paeth, 1990) and to do file input/output (I/O) operations. Our purpose is179

to allow investigators to focus their time on research, instead of expending effort on180

mundane low-level tasks.181

The package includes a number of algorithms with broad applications across image182

processing research, from computer vision to medical image analysis. We refer the183

reader to the current API documentation for a full listing of current capabilities (the184

scikit-image team, 2014). In this section we illustrate two real-world usage examples of185

scikit-image in scientific research.186

First, we consider the analysis of a large stack of images, each representing drying187

droplets containing nanoparticles (see Figure 2). As the drying proceeds, cracks propa-188

gate from the edge of the drop to its center. The aim is to understand crack patterns by189

collecting statistical information about their positions, as well as their time and order of190

appearance. To improve the speed at which data is processed, each experiment, consti-191

tuting an image stack, is automatically analysed without human intervention. The con-192

tact line is detected by a circular Hough transform (transform.hough_circle)193

providing the drop radius and its center. Then, a smaller concentric circle is drawn194

(draw.circle_perimeter) and used as a mask to extract intensity values from195

the image. Repeating the process on each image in the stack, collected pixels can be196

assembled to make a space-time diagram. As a result, a complex stack of images is197

8/18
PeerJ PrePrints | http://dx.doi.org/10.7287/peerj.preprints.336v2 | CC-BY 4.0 Open Access | received: 1 Apr 2014, published: 1 Apr 2014

P
re
P
ri
n
ts

reduced to a single image summarizing the underlying dynamic process.198

0 90 180 270 360
Angle

0

100

200

T
im

e

Figure 2. Scikit-image is used to track the propagation of cracks (black lines) in a

drying colloidal droplet. The sequence of pictures shows the temporal evolution of the

system with the drop contact line, in green, detected by the Hough transform and the

circle, in white, used to extract an annulus of pixel intensities. The result shown

illustrates the angular position of cracks and their time of appearance.

Next, in regenerative medicine research, scikit-image is used to monitor the regener-199

ation of spinal cord cells in zebrafish embryos (Figure 3).This process has important200

implications for the treatment of spinal cord injuries in humans (Bhatt et al., 2004;201

Thuret et al., 2006).202

To understand how spinal cords regenerate in these animals, injured cords are203

subjected to different treatments. Neuronal precursor cells (labeled green in Figure 3,204

left panel) are normally uniformly distributed across the spinal cord. At the wound site,205

they have been removed. We wish to monitor the arrival of new cells at the wound site206

over time. In Figure 3, we see an embryo two days after wounding, with precursor207

cells beginning to move back into the wound site (the site of minimum fluorescence).208

The measure.profile_line function measures the fluorescence along the cord,209

directly proportional to the number of cells. We can thus monitor the recovery process210

and determine which treatments prevent or accelerate recovery.211

Education212

scikit-image’s simple, well-documented application programming interface (API) makes213

it ideal for educational use, via self-taught exploration or formal training sessions.214

9/18
PeerJ PrePrints | http://dx.doi.org/10.7287/peerj.preprints.336v2 | CC-BY 4.0 Open Access | received: 1 Apr 2014, published: 1 Apr 2014

P
re
P
ri
n
ts

Figure 3. The measure.profile_line function being used to track recovery in

spinal cord injuries. Left: an image of fluorescently-labeled nerve cells in an injured

zebrafish embryo. Middle: the automatically determined region of interest. The SciPy

library was used to determine the region extent, and functions from the scikit-image

draw module were used to draw it. Right: the image intensity along the line of interest,

averaged over the displayed width.

The online gallery of examples not only provides an overview of the functionality215

available in the package but also introduces many of the algorithms commonly used216

in image processing. This visual index also helps beginners overcome a common217

entry barrier: locating the class (denoising, segmentation, etc.) and name of operation218

desired, without being proficient with image processing jargon. For many functions, the219

documentation includes links to research papers or Wikipedia pages to further guide the220

user.221

Demonstrating the utility and ease-of-use of scikit-image, thirteen-year-old Rishab222

Gargeya of the Harker School won the Synopsys Silicon Valley Science and Technology223

Championship using scikit-image in his project, “A software based approach for auto-224

mated pathology diagnosis of diabetic retinopathy in the human retina” (science-fair.org,225

2014).226

We have also delivered image processing tutorials using scikit-image at various227

annual scientific Python conferences, such as EuroSciPy (de Buyl and Pettiaux, 2013),228

PyData 2012 (PyData organizers, 2012) and SciPy India 2012). Course materials for229

some of these sessions are found in Haenel et al. (2014) and are licensed under the230

permissive CC-BY license (Creative Commons, 2013). These typically include an intro-231

duction to the package and provide intuitive, hands-on introductions to image processing232

concepts. The well documented application programming interface (API) along with233

tools that facilitate visualization contribute to the learning experience, and make it easy234

to investigate the effect of different algorithms and parameters. For example, when inves-235

tigating denoising, it is easy to observe the difference between applying a median filter236

(filter.rank.median) and a Gaussian filter (filter.gaussian_filter),237

demonstrating that a median filter preserves straight lines much better.238

Finally, easy access to readable source code gives users an opportunity to learn how239

algorithms are implemented and gives further insight into some of the intricacies of a240

fast Python implementation, such as indexing tricks and look-up tables.241

10/18
PeerJ PrePrints | http://dx.doi.org/10.7287/peerj.preprints.336v2 | CC-BY 4.0 Open Access | received: 1 Apr 2014, published: 1 Apr 2014

P
re
P
ri
n
ts

Industry242

Due to the breadth and maturity of its code base, as well as the its commercial-friendly243

license, scikit-image is well suited for industrial applications.244

BT Imaging (BT Imaging, 2014) designs and builds tools that use photoluminescence245

(PL) imaging for photovoltaic applications. PL imaging can characterize the quality of246

multicrystalline silicon wafers by illuminating defects that are not visible under standard247

viewing conditions. The left panel of Figure 4 shows an optical image of a silicon248

wafer, and the center panel shows the same wafer using PL imaging. In the right panel,249

the wafer defects and impurities have been detected through automated image analysis.250

scikit-image plays a key role in the image processing pipeline. For example, a Hough251

transform (transform.hough_line) finds the wafer edges in order to segment the252

wafer from the background. scikit-image is also used for feature extraction. Crystal253

defects (dislocations) are detected using a band-pass filter, which is implemented as a254

Difference of Gaussians (filter.gaussian_filter).255

The image processing results are input to machine learning algorithms, which assess256

intrinsic wafer quality. Solar cell manufacturers can use this information to reject poor257

quality wafers and charge more for cells that are expected to have high efficiency.258

Figure 4. Left: An image of an as-cut silicon wafer before it has been processed into a

solar cell. Center: A PL image of the same wafer. Wafer defects, which have a negative

impact solar cell efficiency, are visible as dark regions. Right: Image processing results.

Defects in the crystal growth (dislocations) are colored blue, while red indicates the

presence of impurities.

scikit-image is also applied in a commercial setting for biometric security applica-259

tions. AICBT Ltd uses multispectral imaging to detect when a person attempts to conceal260

their identity using a facial mask (AICBT, Ltd., 2014). scikit-image performs file I/O261

(io.imread), histogram equalization (exposure.equalize_hist), and aligns a262

visible wavelength image with a thermal image (transform.AffineTransform).263

The system determines the surface temperature of a subject’s skin and detects situations264

where the face is being obscured.265

EXAMPLE: IMAGE REGISTRATION AND STITCHING266

This section gives a step-by-step outline of how to perform panorama stitching using the267

primitives found in scikit-image. The full source code is at https://github.com/268

11/18
PeerJ PrePrints | http://dx.doi.org/10.7287/peerj.preprints.336v2 | CC-BY 4.0 Open Access | received: 1 Apr 2014, published: 1 Apr 2014

P
re
P
ri
n
ts

https://github.com/scikit-image/scikit-image-demos
https://github.com/scikit-image/scikit-image-demos
https://github.com/scikit-image/scikit-image-demos

scikit-image/scikit-image-demos.269

Data loading270

The “ImageCollection” class provides an easy way of representing multiple images on271

disk. For efficiency, images are not read until accessed.272

from skimage import io

ic = io.ImageCollection(’data/*’)

Figure 5a shows the Petra dataset, which displays the same facade from two different273

angles. For this demonstration, we will estimate a projective transformation that relates274

the two images. Since the outer parts of these photographs do not comform well to such275

a model, we select only the central parts. To further speed up the demonstration, images276

are downscaled to 25% of their original size.277

from skimage.color import rgb2gray

from skimage import transform

image0 = rgb2gray(ic[0][:, 500:500+1987, :])

image1 = rgb2gray(ic[1][:, 500:500+1987, :])

image0 = transform.rescale(image0, 0.25)

image1 = transform.rescale(image1, 0.25)

Feature detection and matching278

“Oriented FAST and rotated BRIEF” (ORB) features (Rublee et al., 2011) are detected in279

both images. Each feature yields a binary descriptor; those are used to find the putative280

matches shown in Figure 5b.281

from skimage.feature import ORB, match_descriptors

orb = ORB(n_keypoints=1000, fast_threshold=0.05)

orb.detect_and_extract(image0)

keypoints1 = orb.keypoints

descriptors1 = orb.descriptors

orb.detect_and_extract(image1)

keypoints2 = orb.keypoints

descriptors2 = orb.descriptors

matches12 = match_descriptors(descriptors1,

descriptors2,

cross_check=True)

12/18
PeerJ PrePrints | http://dx.doi.org/10.7287/peerj.preprints.336v2 | CC-BY 4.0 Open Access | received: 1 Apr 2014, published: 1 Apr 2014

P
re
P
ri
n
ts

https://github.com/scikit-image/scikit-image-demos
https://github.com/scikit-image/scikit-image-demos

Transform estimation282

To filter the matches, we apply RANdom SAmple Consensus (RANSAC) (Fischler and283

Bolles, 1981), a common method for outlier rejection. This iterative process estimates284

transformation models based on randomly chosen subsets of matches, finally selecting285

the model which corresponds best with the majority of matches. The new matches are286

shown in Figure 5c.287

from skimage.measure import ransac

Select keypoints from the source (image to be

registered) and target (reference image).

src = keypoints2[matches12[:, 1]][:, ::-1]

dst = keypoints1[matches12[:, 0]][:, ::-1]

model_robust, inliers = \

ransac((src, dst), ProjectiveTransform,

min_samples=4, residual_threshold=2)

Warping288

Next, we produce the panorama itself. The first step is to find the shape of the output289

image by considering the extents of all warped images.290

r, c = image1.shape[:2]

Note that transformations take coordinates in

(x, y) format, not (row, column), in order to be

consistent with most literature.

corners = np.array([[0, 0],

[0, r],

[c, 0],

[c, r]])

Warp the image corners to their new positions.

warped_corners = model_robust(corners)

Find the extents of both the reference image and

the warped target image.

all_corners = np.vstack((warped_corners, corners))

corner_min = np.min(all_corners, axis=0)

corner_max = np.max(all_corners, axis=0)

output_shape = (corner_max - corner_min)

output_shape += np.abs(corner_min)

output_shape = output_shape[::-1]

13/18
PeerJ PrePrints | http://dx.doi.org/10.7287/peerj.preprints.336v2 | CC-BY 4.0 Open Access | received: 1 Apr 2014, published: 1 Apr 2014

P
re
P
ri
n
ts

The images are now warped according to the estimated transformation model. Values291

outside the input images are set to -1 to distinguish the “background”.292

A shift is added to ensure that both images are visible in their entirety. Note that293

warp takes the inverse mapping as input.294

from skimage.color import gray2rgb

from skimage.exposure import rescale_intensity

from skimage.transform import warp

from skimage.transform import SimilarityTransform

offset = SimilarityTransform(translation=-corner_min)

image0_ = warp(image0, offset.inverse,

output_shape=output_shape, cval=-1)

image1_ = warp(image1, (offset + model_robust).inverse,

output_shape=output_shape, cval=-1)

An alpha channel is added to the warped images before merging them into a single295

image:296

def add_alpha(image, background=-1):

"""Add an alpha layer to the image.

The alpha layer is set to 1 for foreground

and 0 for background.

"""

rgb = gray2rgb(image)

alpha = (image != background)

return np.dstack((rgb, alpha))

image0_alpha = add_alpha(image0_)

image1_alpha = add_alpha(image1_)

merged = (image0_alpha + image1_alpha)

alpha = merged[..., 3]

The summed alpha layers give us an indication of

how many images were combined to make up each

pixel. Divide by the number of images to get

an average.

merged /= np.maximum(alpha, 1)[..., np.newaxis]

The merged image is shown in Figure 5d. Note that, while the columns are well297

aligned, the color intensities at the boundaries are not well matched.298

14/18
PeerJ PrePrints | http://dx.doi.org/10.7287/peerj.preprints.336v2 | CC-BY 4.0 Open Access | received: 1 Apr 2014, published: 1 Apr 2014

P
re
P
ri
n
ts

(a) Petra images

(b) ORB binary features

(c) RANSAC-filtered features

(d) Warped & positioned

(e) Final result, combined with Enblend

Figure 5. An example application of scikit-image: image registration and warping to

combine overlapping images. (a): Photographs taken in Petra, Jordan by François

Malan. License: CC-BY. (b): Putative matches computed from ORB binary features.

(c): Matches filtered using RANSAC. (d): The second input frame (middle) is warped to

align with the first input frame (left), yielding the averaged image shown on the right.

(e): The final panorama image, registered and warped using scikit-image, blended with

Enblend.

15/18
PeerJ PrePrints | http://dx.doi.org/10.7287/peerj.preprints.336v2 | CC-BY 4.0 Open Access | received: 1 Apr 2014, published: 1 Apr 2014

P
re
P
ri
n
ts

Blending299

To blend images smoothly we make use of the open source package Enblend (Dersch300

and PanoTools contributors, 2010), which in turn employs multi-resolution splines and301

Laplacian pyramids (Burt and Adelson, 1983b), (Burt and Adelson, 1983a). The final302

panorama is shown in Figure 5e.303

CONCLUSION304

scikit-image provides easy access to a powerful array of image processing functionality.305

Over the past few years, it has seen significant growth in both adoption and contribution,306

and the team is excited to collaborate with others to see it grow even further, and to307

establish it the de facto library for image processing in Python.308

ACKNOWLEDGEMENTS309

We thank Timo Friedrich and Jan Kaslin for providing the zebrafish lesion data. Portions310

of the research reported in this publication was supported by the National Institute of311

Diabetes and Digestive and Kidney Diseases of the National Institutes of Health under312

award number F30DK098832. Portions of the research reported in this publication were313

supported by the Victorian Life Sciences Computation Initiative. The content is solely314

the responsibility of the authors and does not necessarily represent the official views of315

the National Institutes of Health.316

REFERENCES317

AICBT, Ltd. (2014). Disguise detection. http://www.aicbt.com/318

disguise-detection/ Accessed: 2014-03-30.319

Behnel, S., Bradshaw, R., Citro, C., Dalcin, L., Seljebotn, D., and Smith, K. (2011).320

Cython: The best of both worlds. Computing in Science and Engineering, 13(2):31–321

39.322

Bhatt, D., Otto, S., Depoister, B., and JR., F. (2004). Cyclic amp-induced repair of323

zebrafish spinal circuits. Science, 305:254–258.324

Brandl, G. and the Sphinx team (2007). http://sphinx-doc.org/ Accessed:325

2014-03-30.326

BT Imaging (2014). BT Imaging. http://www.btimaging.com Accessed: 2014-327

03-30.328

Burt, P. and Adelson, E. (1983a). The laplacian pyramid as a compact image code. IEEE329

Transactions on Communications.330

Burt, P. and Adelson, E. (1983b). A multiresolution spline with application to image331

mosaics. ACM Transactions on Graphics, 2(4):217–236.332

Canny, J. (1986). A computational approach to edge detection. IEEE Trans. Pattern333

Analysis and Machine Intelligence., 8:679–714.334

Canonical, Ltd. (2004). python-skimage in Ubuntu. http://packages.ubuntu.335

com/search?keywords=python-skimage Accessed: 2014-03-30.336

Coelho, L. (2013). Mahotas: Open source software for scriptable computer vision.337

Journal of Open Research Software, 1(1).338

16/18
PeerJ PrePrints | http://dx.doi.org/10.7287/peerj.preprints.336v2 | CC-BY 4.0 Open Access | received: 1 Apr 2014, published: 1 Apr 2014

P
re
P
ri
n
ts

http://www.aicbt.com/disguise-detection/
http://www.aicbt.com/disguise-detection/
http://www.aicbt.com/disguise-detection/
http://sphinx-doc.org/
http://www.btimaging.com
http://packages.ubuntu.com/search?keywords=python-skimage
http://packages.ubuntu.com/search?keywords=python-skimage
http://packages.ubuntu.com/search?keywords=python-skimage

Continuum Analytics (2012). The Anaconda Scientific Python Distribution. https:339

//store.continuum.io/cshop/anaconda/ Accessed: 2014-03-30.340

Cordasco, I. (2010). https://pypi.python.org/pypi/flake8 Accessed:341

2014-03-30.342

Creative Commons (2013). CC-BY license. http://creativecommons.org/343

licenses/by/4.0/ Accessed: 2014-03-30.344

de Buyl, P. and Pettiaux, N. (2013). Euroscipy 2013. https://www.euroscipy.345

org/2013/schedule/presentation/3/ Accessed: 2014-03-30.346

Dersch, H. and PanoTools contributors (2010). Enblend 4.0 documentation. http:347

//enblend.sourceforge.net Accessed: 2014-03-30.348

Enthought, Inc (2014). Enthought canopy. https://www.enthought.com/349

products/canopy/ Accessed: 2014-03-30.350

Fischler, M. and Bolles, R. (1981). Random sample consensus: A paradigm for model351

fitting with applications to image analysis and automated cartography. Comm. of the352

ACM, 24(6):381âC“395.353

Gommers, R. and the NumPy developers (2010). https://github.com/numpy/354

numpy/blob/master/doc/HOWTO_DOCUMENT.rst.txt Accessed: 2014-355

03-30.356

Google (2004). Google Summer of Code. https://developers.google.com/357

open-source/soc Accessed: 2014-03-30.358

Haenel, V., Gouillart, E., Varoquaux, G., and scipy-lecture-notes contributors (2014).359

Scipy lecture notes. http://scipy-lectures.github.io/ Accessed:360

2014-03-30.361

Halchenko, Y. and Hanke, M. (2012). Open is not enough. letâC™s take the next step:362

an integrated, community-driven computing platform for neuroscience. Front. Neu-363

roinf., 6:22. http://neuro.debian.net/pkgs/python-skimage.html364

Accessed: 2014-03-30.365

LEMUR Heavy Industries (2013). https://coveralls.io Accessed: 2014-03-366

30.367

Microsoft (1995). http://msdn.microsoft.com/en-us/library/368

windows/desktop/dd607323 Accessed: 2014-03-30.369

Ohloh (2014). Scikit-image on ohloh. https://www.ohloh.net/p/370

scikit-image. https://www.ohloh.net/p/scikit-image Accessed:371

2014-03-30.372

Paeth, A. (1990). Proper treatment of pixels as integers. Graphics Gems.373

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel,374

M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau,375

D., Brucher, M., Perrot, M., and Duchesnay, E. (2011). Scikit-learn: machine learning376

in python. Journal of Machine Learning Research, 12:2825–2830.377

PyData organizers (2012). Pydata 2012. https://www.youtube.com/watch?378

v=Wvvxazwi2IY Accessed: 2014-03-30.379

PyPI (2014). scikit-image 0.9.3 at the Python Package Index. https://pypi.380

python.org/pypi/scikit-image Accessed: 2014-03-30.381

Raybaut, P. (2014). Python(x,y). https://code.google.com/p/pythonxy/382

Accessed: 2014-03-30.383

Regents of the University of California (1999). http://www.gnu.org/384

17/18
PeerJ PrePrints | http://dx.doi.org/10.7287/peerj.preprints.336v2 | CC-BY 4.0 Open Access | received: 1 Apr 2014, published: 1 Apr 2014

P
re
P
ri
n
ts

https://store.continuum.io/cshop/anaconda/
https://store.continuum.io/cshop/anaconda/
https://store.continuum.io/cshop/anaconda/
https://pypi.python.org/pypi/flake8
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.euroscipy.org/2013/schedule/presentation/3/
https://www.euroscipy.org/2013/schedule/presentation/3/
https://www.euroscipy.org/2013/schedule/presentation/3/
http://enblend.sourceforge.net
http://enblend.sourceforge.net
http://enblend.sourceforge.net
https://www.enthought.com/products/canopy/
https://www.enthought.com/products/canopy/
https://www.enthought.com/products/canopy/
https://github.com/numpy/numpy/blob/master/doc/HOWTO_DOCUMENT.rst.txt
https://github.com/numpy/numpy/blob/master/doc/HOWTO_DOCUMENT.rst.txt
https://github.com/numpy/numpy/blob/master/doc/HOWTO_DOCUMENT.rst.txt
https://developers.google.com/open-source/soc
https://developers.google.com/open-source/soc
https://developers.google.com/open-source/soc
http://scipy-lectures.github.io/
http://neuro.debian.net/pkgs/python-skimage.html
https://coveralls.io
http://msdn.microsoft.com/en-us/library/windows/desktop/dd607323
http://msdn.microsoft.com/en-us/library/windows/desktop/dd607323
http://msdn.microsoft.com/en-us/library/windows/desktop/dd607323
https://www.ohloh.net/p/scikit-image
https://www.ohloh.net/p/scikit-image
https://www.ohloh.net/p/scikit-image
https://www.ohloh.net/p/scikit-image
https://www.youtube.com/watch?v=Wvvxazwi2IY
https://www.youtube.com/watch?v=Wvvxazwi2IY
https://www.youtube.com/watch?v=Wvvxazwi2IY
https://pypi.python.org/pypi/scikit-image
https://pypi.python.org/pypi/scikit-image
https://pypi.python.org/pypi/scikit-image
https://code.google.com/p/pythonxy/
http://www.gnu.org/licenses/license-list.html#ModifiedBSD
http://www.gnu.org/licenses/license-list.html#ModifiedBSD
http://www.gnu.org/licenses/license-list.html#ModifiedBSD

licenses/license-list.html#ModifiedBSD Accessed: 2014-03-30.385

Rublee, E., Rabaud, V., Konolige, K., and G., B. (2011). ORB: An efficient alternative to386

SIFT and SURF. In Proceedings of the 2011 International Conference on Computer387

Vision (ICCV), pages 2564–2571.388

science-fair.org (2014). http://science-fair.org/database/project_389

awards.php?schoolname=Privately+Sponsored+Project&390

school_year=2014 Accessed: 2014-03-30.391

the Khronos Group (2004). https://www.khronos.org/registry/gles/392

specs/2.0/es_full_spec_2.0.25.pdf Accessed: 2014-03-30.393

the scikit-image developers (2010). https://github.com/scikit-image/394

scikit-image Accessed: 2014-03-30.395

the scikit-image team (2010a). https://github.com/scikit-image/396

scikit-image Accessed: 2014-03-30.397

the scikit-image team (2010b). https://groups.google.com/forum/?&398

fromgroups#!forum/scikit-image Accessed: 2014-03-30.399

the scikit-image team (2014). http://scikit-image.org/docs/dev/ Ac-400

cessed: 2014-03-30.401

the Travis-CI community (2012). https://travis-ci.org Accessed: 2014-03-402

30.403

Thuret, S., Moon, L., and Gage, F. (2006). Therapeutic interventions after spinal cord404

injury. Nature Rev Neurosci, 7:628–643.405

van der Walt, S., Colbert, C., and G, V. (2011). The NumPy array: a structure for efficient406

numerical computation. Computing in Science and Engineering, 13(2):22–30.407

van Rossum, G., Warsaw, B., and N, C. (2001). http://www.python.org/dev/408

peps/pep-0008/ Accessed: 2014-03-30.409

Wikipedia (2014). http://en.wikipedia.org/wiki/Software_410

versioning Accessed: 2014-03-30.411

18/18
PeerJ PrePrints | http://dx.doi.org/10.7287/peerj.preprints.336v2 | CC-BY 4.0 Open Access | received: 1 Apr 2014, published: 1 Apr 2014

P
re
P
ri
n
ts

http://www.gnu.org/licenses/license-list.html#ModifiedBSD
http://www.gnu.org/licenses/license-list.html#ModifiedBSD
http://science-fair.org/database/project_awards.php?schoolname=Privately+Sponsored+Project&school_year=2014
http://science-fair.org/database/project_awards.php?schoolname=Privately+Sponsored+Project&school_year=2014
http://science-fair.org/database/project_awards.php?schoolname=Privately+Sponsored+Project&school_year=2014
http://science-fair.org/database/project_awards.php?schoolname=Privately+Sponsored+Project&school_year=2014
http://science-fair.org/database/project_awards.php?schoolname=Privately+Sponsored+Project&school_year=2014
https://www.khronos.org/registry/gles/specs/2.0/es_full_spec_2.0.25.pdf
https://www.khronos.org/registry/gles/specs/2.0/es_full_spec_2.0.25.pdf
https://www.khronos.org/registry/gles/specs/2.0/es_full_spec_2.0.25.pdf
https://github.com/scikit-image/scikit-image
https://github.com/scikit-image/scikit-image
https://github.com/scikit-image/scikit-image
https://github.com/scikit-image/scikit-image
https://github.com/scikit-image/scikit-image
https://github.com/scikit-image/scikit-image
https://groups.google.com/forum/?&fromgroups#!forum/scikit-image
https://groups.google.com/forum/?&fromgroups#!forum/scikit-image
https://groups.google.com/forum/?&fromgroups#!forum/scikit-image
http://scikit-image.org/docs/dev/
https://travis-ci.org
http://www.python.org/dev/peps/pep-0008/
http://www.python.org/dev/peps/pep-0008/
http://www.python.org/dev/peps/pep-0008/
http://en.wikipedia.org/wiki/Software_versioning
http://en.wikipedia.org/wiki/Software_versioning
http://en.wikipedia.org/wiki/Software_versioning

