umx: Twin and Path-based Structural Equation
Modeling in R

Timothy C. Bates', Hermine Maes?, and Michael C. Neale?

Abstract: Structural equation modeling (SEM) is an important research tool, both for
path- based model specification, common in the social sciences, and also matrix-based
models in heavy use in behavior genetics. We developed umx to give more immediate
access, concise syntax and helpful defaults for users in these two broad disciplines. umx
supports development, modification, and comparison of models, as well as both
graphical and tabular output. The second major focus of umx, behavior genetic models,
is supported via functions implementing standard multi-group twin models. These
functions support raw and covariance data, including joint ordinal data, and give
solutions for ACE models including support for covariates, common- and independent-
Pathway models, and Gene x Environment interaction models. A tutorial site and
question forum are also available.

Keywords: structural equation modeling, OpenMx, path models, twin models, R.

1. University of Edinburgh email: tim.bates@ed.ac.uk
2. Virginia Commonwealth University

Peer] Preprints | https://doi.org/10.7287/peerj.preprints.3354v1 | CC BY 4.0 Open Access | rec: 19 Oct 2017, publ: 19 Oct 2017

umx: Twin and Path-based Structural Equation
Modeling in R

Timothy C. Bates, Hermine Maes, and Michael C. Neale

Abstract

Structural equation modeling (SEM) is an important research tool, both for path-
based model specification, common in the social sciences, and also matrix-based models
in heavy use in behavior genetics. We developed umx to give more immediate access,
concise syntax and helpful defaults for users in these two broad disciplines. umx supports
development, modification, and comparison of models, as well as both graphical and
tabular output. The second major focus of umx, behavior genetic models, is supported
via functions implementing standard multi-group twin models. These functions support
raw and covariance data, including joint ordinal data, and give solutions for ACE models
including support for covariates, common- and independent-Pathway models, and Gene
x Environment interaction models. A tutorial site and question forum are also available.

Keywords: structural equation modeling, OpenMx, path models, twin models, R.

1. Introduction

Structural equation modeling (Joreskog 1969b) enables modeling with latent and measured
variables, and allows researchers to realize the power of causal modeling (Pearl 2009), and it
has grown in importance (Hershberger 2003). Despite the utility of SEM, Learning, imple-
menting, and interpreting these techniques has remained a bottle-neck for many researchers,
especially for more complex multiple-group models common in advanced fields such as behav-
ior genetics. The advent of modular software such as OpenMx has provided tools for software
solutions in this field (Boker, Neale, Maes, Wilde, Spiegel, Brick, Spies, Estabrook, Kenny,
Bates, Mehta, and Fox 2011; Neale, Hunter, Pritikin, Zahery, Brick, Kirkpatrick, Estabrook,
Bates, Maes, and Boker 2016). The present paper describes umx, a package designed to give
more immediate access, concise syntax and helpful defaults for path-based SEM, together with
a set of high-level functions implementing matrix-based multi-group twin modeling. Practical
examples of umx usage are given. Users wanting to learn about twin-modeling in umx may
wish to skip to the section “T'win modeling in umx”.

1.1. Existing SEM packages

While a number of closed-source commercial applications exist, (e.g., Mplus (Muthén and
Muthén 1998-2016), SAS proc calis (SAS Institute Inc. 2003), SPSS Amos (IBM Corp 2013),
and GLAMM in STATA (Stata Corp LP 2016)), there are now 3 open-source R packages
for performing SEM: sem (Fox, Nie, and Byrnes 2014); lavaan (Rosseel 2012); and OpenMx
(Boker et al. 2011; Neale et al. 2016). As is common in R, these interoperate with an ecosys-

Peer] Preprints | https://doi.org/10.7287/peerj.preprints.3354v1 | CC BY 4.0 Open Access | rec: 19 Oct 2017, publ: 19 Oct 2017

2 umx SEM package

tem of packages, such as semTools (semTools Contributors 2016), Onyx (von Oertzen, Brand-
maier, and Tsang 2015), ctsem, EasyMx, ifaTools, lvnet, metaSEM, and semtree to provide
additional features.

sem includes functions for fitting general linear structural equation models, including both ob-
served and latent variables using the RAM (McArdle and Boker 1990) approach. It also allows
fitting structural equations in observed-variable models by two-stage least squares. Models
are input using an “Arrow specification” with paths described in an intuitively straightfor-
ward notation encompassing regression coeflicients (“A -> B”), variances (“A <-> A”) and
covariances (“A <-> B”). Models can be optimized against a maximum-likelihood objective
assuming multi-variate normality as well as multivariate-normal full-information maximum-
likelihood in the presence of missing data, with alternative objectives including generalized
least squares or user-specified objective functions. sem also implements multi-group models.

lavaan implements a similar string-based syntax for model description, and comparable multi-
group capability and a range of estimators including robust ML, and variants of WLS. It
outputs standard errors (SEs) including robust and bootstrap SEs, along with standard fit
indices, and statistics such as Satorra-Bentler, Satterthwaite, and Bollen-Stine bootstrap.
lavaan can handle missing data via FIML estimation. It allows the use of linear and nonlinear
equality (and inequality) constraints via a string syntax, e.g., to equate model parameters
“al” and “a2”, the user includes the following in their model statement: “al == a2”. More
complex statements are supported, for instance “al + a2 + a3 == 3”. As of version 0.5,
lavaan supports models with mixtures of binary, ordinal and continuous observed variables.
Exogenous categorical variables are supported via dummy variables, with additional variables
being created to represent the levels of nominal measures with more than 2 levels. Modeling
of binary and ordinal endogenous categorical variables (but not nominal) is supported by a
three-stage WLS approach. lavaan outputs results in a format familiar to Mplus and EQS
users, as well as the ability to translate Mplus code into lavaan format via mplus2lavaan.

OpenMx provides a sophisticated kit of basic objects for building structural equation models
including modeling via arbitrary matrices, algebras, constraints, and fit-functions. It also
supports “RAM” (McArdle and Boker 1990) and LISREL (Jéreskog 1969a) path-based mod-
els. It accepts both summary and raw data and arbitrary mixtures of continuous, ordinal
and binary data. Full-information maximum likelihood (FIML) analysis with missing data
is supported, as is WLS. With raw data, models may include row-specific values (definition
variables). Multiple-group models are supported, and constraints and equalities may be im-
plemented via label-based equating and algebra-based linear and non-linear constraint specifi-
cation. The OpenMx package includes two open-source optimization packages—CSOLNP and
SLSQP—and can use the closed-source NPSOL optimizer. OpenMx has developed a strong
following among geneticists and twin researchers, reflected in several hundred citations in
published projects, many of which rely on testing complex models, often with constraints,
using data comprising mixtures of binary, ordinal, and continuous data, with missingness,
and wide-format data comprising multiple genetically related groups (in particular identical
and fraternal twins, siblings, parents, grand-parents, offspring, adoptive parents), with data
nested in these family structures.

1.2. Accessible modeling with concise syntax and helpful defaults

The umx package evolved over the last 6 years in response to modeling demands experienced

Peer] Preprints | https://doi.org/10.7287/peerj.preprints.3354v1 | CC BY 4.0 Open Access | rec: 19 Oct 2017, publ: 19 Oct 2017

Timothy C. Bates, Hermine Maes, and Michael C. Neale 3

in practical path based modeling and matrix-based behavior genetics structural modeling, and
in teaching SEM. Its concise syntax aids in time-constrained lessons, and affords researchers
the ability to rapidly implement and modify new models, while high-level implementations of
complex models increase the speed and reliability of behavior genetics modeling. Attention
was paid to smart defaults — for instance setting start values and automatically labeling paths
— as well as ensuring functions handle a wide range of inputs, so that users can offer up a
wide range of data and get the results they expect. For instance, models can accept not
only continuous data, but mixtures of ordinal and continuous data, with the umx functions
handling the error-prone process of setting up threshold matrices, and integrating these with
latent variables. To aid learning, and help users correct coding mistakes, help files contain
substantial, well-commented practical code examples oriented toward being used directly in
class instruction or self-directed learning. Moreover, umx functions include significant error-
checking. Error reporting tries explain both “why” (for instance not just saying there was
a type-match error, but what type was provided, and which was expected) with a “how-to-
fix” orientation — where possible explaining to users what the most likely fix is for the error
encountered.

Finally, umx provides methods for generating graphical and tabular output suitable for pub-
lication (e.g. Table 2). Function names and parameters have been refined based on feedback
and a drive for consistency and memorability. Where appropriate, these are implemented
as S3 methods well known to R users: for instance plot and residuals. A number of pa-
pers using the package have been published (Archontaki, Lewis, and Bates 2013; Ritchie and
Bates 2013) and umx is under active development — with updates on CRAN every month
or two, and a road-map of future extensions of the twin modeling functions including use of
WLS, and 5-group twin models, non-Cholesky-based implementations of models, multivariate
correlation-based sex-limitation models (Maes, Sullivan, Bulik, Neale, Prescott, Eaves, and
Kendler 2004).

In total, the package includes approximately 140 high- and low-level helpers for such tasks
as data processing, creating and editing data structures, updating model parameters, and
reporting. The functions provided by umx may be grouped under three headings:

1. Model building and reporting functions.
2. Functions implementing behavior genetic models.

3. Wrappers and helpers to simplify or enhance model building and data wrangling.

In the next section, umx’s path-based functions are introduced in the context of practical
models, such as that shown in Figure 1. The second major section covers behavior genetic
modeling in umx. Not detailed here, we briefly note some of the additional helper functions
available in umx. While the approximately 100 wrapper and helper functions make little
claim to innovation, they offer increased speed of coding, reduced errors, and more readable
code. For instance, umxMatrix, is a wrapper for mxMatrix that places the matrix name as the
first parameter (increasing readability), and uses umx_label to automatically add labels in a
standard format, often halving code size and effort. Other helpers simplify repetitive tasks,
such as generating lists of twin-variables from base names, and residualizing family-based
data.

Peer] Preprints | https://doi.org/10.7287/peerj.preprints.3354v1 | CC BY 4.0 Open Access | rec: 19 Oct 2017, publ: 19 Oct 2017

4 umx SEM package

1.3. Installing the package

Installing umx can be done using the standard R-code to access the CRAN version of the
package.

install.packages ("umx")

This document assumes umx version 1.8.0 or higher. The current package version can be
shown with:

umxVersion ("umx")
Developer versions are available on github, using:
install_github("tbates/umx")

umx also aids installing custom versions of OpenMx via the install.OpenMx () function.

2. Path-based Models in umx

2.1. Path-based models using umxRAM and umxPath

In umx, a path-based structural model consists of a model container, some data, and a
collection of paths. The model container is the umxRAM function. This specifies the data,
a name for the model, options such as autoRun, and, importantly, a collection of umxPaths
specifying the paths that make up the model. As coding is often best learned by doing, we
introduce these functions via building the Confirmatory Factor Analysis (CFA) model shown
in Figure 1. To build the CFA model shown in Figure 1, we will specify three things:

Figure 1: Example CFA path diagram, showing standardized path estimates.

1. An arbitrary name — “CFA”

2. The data (in this case a built-in dataset demoOneFactor containing 5 correlated vari-
ables x1:x5). In keeping with familiar R functions such as "1m", the data to be modeled
are provided via the data parameter. The umxRAM function can accept a data-frame,
covariance matrix, or mxData as data.

Peer] Preprints | https://doi.org/10.7287/peerj.preprints.3354v1 | CC BY 4.0 Open Access | rec: 19 Oct 2017, publ: 19 Oct 2017

Timothy C. Bates, Hermine Maes, and Michael C. Neale 5

3. The paths of which the model is composed. The paths required in this model are those
needed to create a latent variable “G” with mean of 0 and variance of 1, the five manifest
variables x1:x5, each with freely-estimated mean and variance, and 5 single-headed paths
from G to each of the manifest variables.

Building, running and saving this model in its run state for possible modification or com-
parison, along with producing summary data and a plot, can be done in 5-lines (excluding
comments, loading the library and data) of model code shown below as “CFA Code”.

CFA Code

Load the umx library (this is assumed in subsequent examples
library("umx")

Load demo data consisting of 5 correlated variables, x1:x5
data(demoOneFactor)

Create a list of the manifest variables for use in specifying the model
manifests = C("Xl u’ "X2”, HX3H’ ”X4”, IIX5H)

Create model cfal, with name 'CFA', data demoOneFactor, and the CFA paths.

cfal <- umxRAM("CFA", data = demoOneFactor,
Create latent variable 'G', with fixed variance of 1 and mean of 0
umxPath(vim0 = "G"),
Create 5 manifest variables, x1:x5, with free variance and mean
umxPath(v.m. = manifests),
Create 1-headed paths from G to each of the manifests
umxPath("G", to = manifests)

)

On execution, this code block builds the model, echoing to the console which latent and
manifest variables were created. By default, umxRAM also runs the model, plots it graphically,
and prints a brief fit statistic summary:

Y2(2485) = 7.4,p = 0.193; CFI = 0.999;: TLI = 0.999; RMSEA = 0.031

Two aspects of this code are noteworthy. First, we did not explicitly specify a list of manifest
and latent variables contained in the model. Instead, umxRAM maps these from the data,
with any variable name not found being assumed to be a latent variable. As with lm, unused
variables are excluded from the model. Secondly, we did not need to specify starting values
for the parameters. umx generates feasible start values, with manifest variable means set to
the observed means, manifest variances set to 80% of the observed variance of each variable.
Single-headed paths are set to a positive value (.9). Estimation thus begins from close to an
independence model.

umazPath in detail

umxPath creates paths in a model using a compact syntax, describing a full range of path
types and settings. A complete list of umxPath keywords is set out in Table 1.

Peer] Preprints | https://doi.org/10.7287/peerj.preprints.3354v1 | CC BY 4.0 Open Access | rec: 19 Oct 2017, publ: 19 Oct 2017

6 umx SEM package

For example, to create a 2-headed path allowing a variable “a” to covary with variable “b”,
with the covariance fixed at the value 1, the user would add a call to umxPath("a", with =
"b", fixedAt = 1). To specify a mean for a manifest or latent variable, say the variable “b”,
the umxPath code would be umxPath(means = "b"). As specifying the mean and variance of
variables is such a common task, umxPath supports doing both in one line with the vim0 and
v.m. parameters we saw used in the CFA model above to specify normalized (fixed mean =
0, variance = 1) or freely-estimated variables respectively.

umxPath syntax Result
umxPath (means =’b’) Add means expectation for variable b.
umxPath(var = c(’a’,’b’)) Variance for “a” and for “b”. Value free.
umxPath(’a’, with =’b’) Covariance of “a” with “b”. Value free.
umxPath(’a’, with =’b’, fixedAt = 1) 2-headed path a<b.

Value fixed at 1.
umxPath(’a’, with =’b’, freeAt = 1) 2-headed path a<>b. Value free,

but started at 1.
umxPath(’a’, to = vars, firstAt = 1) Path from “a” to vars, with first path

fixedAt 1, remainder free.
umxPath(vim0 =’g’) Fix variance of “g” at 1, mean at 0.
umxPath(v.m0 =’g’) Free variance, mean fixed at 0
umxPath(v.m. = c(’wt’,’mpg’)) Estimated variance and mean.
umxPath(vOm0O = c(’wt’,’mpg’)) Variance and mean fixed at zero.
umxPath(c(’a’,’b’,’c’), forms="A") Define a formative latent variable (“A”).

with incoming paths from a, b, & ¢ to A,
variances for a, b, & c, and covariances
among them.

umxPath (unique.pairs=c(’A’,’B’)) Create paths A—A, B—B, A—B
umxPath(unique.bivariate = c(’A’,’B’,’C’)) Create paths A«~B, B&C, A«C
umxPath (fromEach=c(’A’,’B’)) Create A—B, B—A

umxPath (Cholesky=c(’A’,’B’), to=c(’a’,’b’)) Create the lower-triangle (Cholesky)
paths: A—a, A—b, B—>b
umxPath(defn="A’, label="age") Create latent variable A,
var@O0 mean fixed, value = data.age

Table 1: Table of all umxPath options.

labels

The umx package automatically adds labels to all the parameters of any model. These labels
allow the user not only to get and set the values of parameters by label, but also to equate
parameters by setting their labels to be the same (see Section 2.3.3 on umxModify below).

One-headed paths are labeled “fromVariable_to_toVariable”. Thus the path umxPath("IQ",
to = "earnings") would be labeled “IQ_to_earnings”. For two-headed paths, “_to_” is re-
placed with “_with ”. This is consistent with Onyx (von Oertzen et al. 2015). Future versions
of umx may extend the labeling scheme to encode more information in each label, for instance
the extra information captured in LISREL-type models.

For matrix-style models (such as the behavior genetic twin models described in Section 3),

Peer] Preprints | https://doi.org/10.7287/peerj.preprints.3354v1 | CC BY 4.0 Open Access | rec: 19 Oct 2017, publ: 19 Oct 2017

Timothy C. Bates, Hermine Maes, and Michael C. Neale 7

umx uses a more general labeling scheme, in which labels are a concatenation of the matrix
name, an underscore, the letter “r” for row, the row number, followed by the letter “c” for
“column” and, finally, the column-number of the matrix cell. The following code returns the
$labels slot of a matrix “means” to show an example of this labelling scheme:

x = umxLabel (mxMatrix(name="means", "Full", ncol = 2, nrow = 2))

x$labels
labels
[,1] [,2]
[1,] "means_rlcl" "means_ric2"
[2,] "means_r2cl" "means_r2c2"

2.2. Controlling graphical and summary output

A parameter table (see Table 2) can be requested by setting showEstimates = “std” in
umxRAM. More control and creation of summary output tables and plots is possible, however,
using umxSummary on the model returned from umxRAM.

umxSummary

Output from umxSummary can be as little as a line of fit information (the default), or a table

of standardized or raw estimates (requested with show = "std" or show = "raw"). Example
output from umxSummary(cfal, show = "std")) is shown in Table 2.
name | Std.Estimate | Std.SE | CI
G to x1 0.89 0.01 | 0.89 [0.87, 0.91]
G to x2 0.93 0.01 | 0.93 [0.92, 0.95]
G to x3 0.94 0.01 | 0.94 [0.93, 0.95]
G tox4 0.96 0.00 | 0.96 [0.95, 0.97]
G to x5 0.97 0.00 | 0.97 [0.97, 0.98]
x1 with x1 0.21 0.02 | 0.21 [0.17, 0.24]
x2 with x2 0.13 0.01 | 0.13 [0.11, 0.15]
x3 with x3 0.11 0.01 | 0.11 [0.09, 0.13]
x4 with x4 0.07 0.01 | 0.07 [0.06, 0.09]
x5 with x5 0.05 0.01 | 0.05 [0.04, 0.07]
G with G 1.00 0.00 | 11, 1)

Table 2: Example output table from umxSummary.

This report is customizable, with parameters to filter non-significant (“NS”) or significant
(“SIG”) parameters and to show or hide SE and RMSEA_CI columns.

The output-type of the summary table also be selected: e.g. markdown, latex, or html. The
default output can be changed with the umx_set_table_format function. Markdown is easy
to read in the console, or to include in a reproducible document. Html output is opened in a
browser for easy copying into a word processor.

Peer] Preprints | https://doi.org/10.7287/peerj.preprints.3354v1 | CC BY 4.0 Open Access | rec: 19 Oct 2017, publ: 19 Oct 2017

8 umx SEM package

plot

umx includes S3 plot methods for RAM and twin models. These rely on the dot language,
invented at Bell Laboratories (as was S: the ancestor of R) to specify graphs in a text-based
format of edges and vertices, analogous to the way that the latex system separates content
from layout. Plots from umx are displayed in the user’s browser courtesy of the DiagrammR
package.

The plot function has a number of options to customize output. For instance the plot in
Figure 1, showed the fixed path representing the variance of “G” using fixed = TRUE. We
could also not display the means model (paths to the “one” triangle), e.g.:

plot(cfal, means = FALSE, fixed = TRUE)

plot can also standardize the model (std = TRUE), and control numeric precision (with the
digits parameters). Other options include control over how residuals are drawn. By default,
these appear as conventional circles, with double-headed arrows. To cope with situations
where diagrams imported into other applications fail to render the residual circles, these can
be set to simple one-headed labeled arrows using resid = "line". This code snippet shows
these options in use:

plot(cfal, std = TRUE, digits = 3, resid= 'line')

Plotting is useful not only to display final models, but may be used during model construction
to verify or test what the code build to date is specifying. To make this easier when the user
is is simply “sketching out” ideas, instead of simulating data needed for the model, the user
can simply offer up a list of variable names expected to be encountered, and write the code
they wish to play with and visualize. For instance to explore the unique.pairs construction
of umxPath, the following model could be plotted:

ml = umxRAM("play", data = c("A", "B", "C"),
umxPath (unique.pairs = c("A", "B", "C"))

For publication purposes, further processing of the diagram is often desirable. This is done
by editing the file created by plot. The graph is written to a text-file, by default “<model
name>.gv”. This can be overridden by setting the file = parameter to the desired file
name. This file can be edited using either open-source graph visualization software available
at http://www.graphviz.org, or closed software such as Omnigraffle®), or Visio®).

Inspecting model parameters and residuals.

Often we wish to see some (but not all) estimates from a model. As shown above, umxSummary
can filter output according to whether parameters are significant or not, i.e., umxSummary (cfal,
show="std", filter = "SIG"). The generic coef function can return a list of model coef-
ficients. umx provides the convenience function parameters, which adds support for filtering
by name and value and returns the parameters and estimates of a model as a table.

Show parameters, above .5, with label containing x2'
parameters(cfal, "above", .5, pattern= "x2")

Peer] Preprints | https://doi.org/10.7287/peerj.preprints.3354v1 | CC BY 4.0 Open Access | rec: 19 Oct 2017, publ: 19 Oct 2017

Timothy C. Bates, Hermine Maes, and Michael C. Neale 9

name Estimate
2 G_to_x2 0.5

Another common need in modeling is to inspect residuals. umx implements a residuals
method. Table 3 shows these for the cfal model. The user can zoom in on specific values
with the suppress parameter. For instance this call will hide residuals smaller than the value

of .005.
residuals(cfal, suppress = .005)
x1 x2 x3 x4 x5
x1 | . . 0.01 | .
x2 | . . 0.01 | -0.01
x3 | 0.01 | 0.01
x4 | . -0.01
X5

Table 3: Result of the residuals function on model cfal.

Resp e
77 —] OccAsp
Respondent
Gen
Aspiration 81
T Resp 34
EdAsp
Friend
EdAsp :‘D
. /V
Friend
Gen
Aspiration 83 —| Friend
OccAsp 31

Figure 2: A model of Aspiration (modified from Duncan, Haller, and Portes 1968).

2.3. Modifying and comparing models

Model comparison and modification is a key modeling task (MacCallum 2003). Here, we
introduce the umx functions enabling these tasks in the context of a classic example, modified
from Duncan et al. (1968) (See Figure 2). This is a moderately complex model, often used in
teaching because of the range of structural model elements it displays.

Peer] Preprints | https://doi.org/10.7287/peerj.preprints.3354v1 | CC BY 4.0 Open Access | rec: 19 Oct 2017, publ: 19 Oct 2017

10 umx SEM package

The code for this model introduces some new features, and reinforces others already discussed.
It is presented in three parts. First, reading in data. This uses a helper function included in
umx for converting lower matrices to symmetrical, full matrices. There are many dozens of
helpers such as this included in umx, and readers who adopt the package in their work will
find these documented in the package help, where they are also grouped in functional families.

Variable names in the Duncan data

dimnames = c("RespOccAsp", "RespEduAsp", "RespParAsp", "RespIQ", "RespSES",
"FrndOccAsp", "FrndEduAsp", "FrndParAsp", "FrndIQ", "FrndSES")

lower-triangle of correlations among these variables

tmp = c(

0.6247,

0.2137, 0.2742,

0.4105, 0.4043, 0.1839,

0.3240, 0.4047, 0.0489, 0.2220,

0.3269, 0.3669, 0.1124, 0.2903, 0.3054,

0.4216, 0.3275, 0.0839, 0.2598, 0.2786, 0.6404,

0.0760, 0.0702, 0.1147, 0.1021, 0.0931, 0.2784, 0.1988,

0.2995, 0.2863, 0.0782, 0.3355, 0.2302, 0.5191, 0.5007, 0.2087,

0.2930, 0.2407, 0.0186, 0.1861, 0.2707, 0.4105, 0.3607, -0.0438, 0.2950
)

Use the umx_lower2full function to create a full correlation matrix
duncanCov = umx_lower2full (tmp, diag = FALSE, dimnames = dimnames)

Turn the duncan data into an mxData object for the model
duncanCov = mxData(duncanCov, type = "cov", numObs = 300)

Next, we make some useful lists of variables to use when creating paths. These will help
reduce errors, and increase the readability of code.

respondentFormants c("RespSES", "FrndSES", "RespIQ", "RespParAsp")
friendFormants = c("FrndSES", "RespSES", "FrndIQ", "FrndParAsp")
latentAspiration = c("RespLatentAsp", "FrndLatentAsp")
c("RespOccAsp", "RespEduAsp")

c("FrndOccAsp", "FrndEduAsp")

respondentOutcomeAsp

friendOutcomeAsp
Finally, we build the model using the data and variable lists created above.

duncanl = umxRAM("Duncan", data = duncanCov,
Working from the left of the model, as laid out in the figure, to right...

1. Add all distinct paths between variables to allow the
exogenous manifests to covary with each other.
umxPath (unique.bivariate = c(friendFormants, respondentFormants)),

Peer] Preprints | https://doi.org/10.7287/peerj.preprints.3354v1 | CC BY 4.0 Open Access | rec: 19 Oct 2017, publ: 19 Oct 2017

Timothy C. Bates, Hermine Maes, and Michael C. Neale 11

2. Add variances for the exogenous manifests,

These are assumed to be error-free in this model,

and are fixed at their known value).

umxPath(var = c(friendFormants, respondentFormants), fixedAt = 1),

3. Paths from I}, SES, and parental aspiration
to latent aspiration for Respondents:

umxPath (respondentFormants, to = "RespLatentAsp"),
And same for friends

umxPath (friendFormants, to = "FrndLatentAsp"),

4. Add residual variance for the two aspiration latent traits.
umxPath(var = latentAspiration),

5. Allow the latent traits to influence each other.

This is done using fromEach, and the values are

bounded to improve stability.

note: Using one-label would equate these 2 influences
umxPath(fromEach = latentAspiration, lbound = 0, ubound = 1),

6. Allow latent aspiration to affect respondent's

occupational & educational aspiration.

note: firstAt = 1 is used to provide scale to the latent variables.
note also, this path does not display as 1 in Figure 2, because

Figure 2 shows the standardized paths.

umxPath ("RespLatentAsp", to = respondentOutcomeAsp, firstAt = 1),

And their friends
umxPath ("FrndLatentAsp", to = friendOutcomedsp, firstAt = 1),

7. Finally, on the right hand side of figure, we add
residual variance for the endogenous manifests.
umxPath(var = c(respondentOutcomeAsp, friendOutcomeAsp))

Modifying models

The model fits well (x?(22) = 24.59, p = 0.317; CFI = 0.997; TLI = 0.993; RMSEA = 0.02).
However, for theoretically interesting models, the user will typically wish to test different
versions of the model, dropping or adding paths corresponding to alternative hypotheses.
The umxModify function supports this task, updating the model, giving the model a new
name, running the new model, and printing a table comparing fits of the old and new models.

In its simplest use, paths to be dropped are passed in as a vector or labels to the update
parameter. The following code-snippet will run a modified version of our example CFA,
with the paths “RespLatent Asp_to_FrndLatentAsp” and “FrndLatent Asp_to_RespLatentAsp”
dropped (fixed at zero). The new model is renamed to reflect this, and fit-comparison table

Peer] Preprints | https://doi.org/10.7287/peerj.preprints.3354v1 | CC BY 4.0 Open Access | rec: 19 Oct 2017, publ: 19 Oct 2017

12 umx SEM package

printed (See Table 4)

List the paths to drop

pathList = c("RespLatentAsp_to_FrndLatentAsp", "FrndLatentAsp_to_RespLatentAsp")
Modify duncanl model, requesting a comparison table

duncan2 = umxModify(duncanl, update = pathList,

name = "No_influence", comparison = TRUE)

Model EP | A-2LL | Adf | p AIC | Compare with
Duncan 33 -19.411

No influence | 31 | 19.509 | 2 < 0.001 | -3.902 | Duncan

Table 4: Comparison of effect of dropping reciprocal influence from the Duncan model.

By default, updated paths are fixed at zero, but any value is possible via the values. Regular
expressions can be used to pick-out parameters that match a given text-pattern. A regular
expression is a search pattern with powerful features greatly exceeding normal wildcards.
While regular expressions are somewhat complex to learn, they repay the user in a wide
range of computing applications, and allow more compact syntax.

As an instance of using regular-expressions in updating a model, consider a user who wants
to test the effect of dropping all paths from “G” in the cfal model. By label, these all begin
with the string “G_to_", followed by a variable name, e.g. “G_to_x1”. Rather than listing each
label in the update parameter, a regular expression that matches all instances could be used.
Something as simple as “G_to_.*” would work in this case, (with “.*” matching any characters
following “G_to_". For more explicit safety, the regular expression anchor-at-start character
(") could be used to ensure the match starts at the first character of the label. Whereas
“G_to_.*” would match labels such as “AG_to_x1”, using the carat to anchor the expression at
the first character “"G_to.*” prevents this. An example in R code would be:

cfa2 = umxModify(cfal, regex = "“G_to.*")

umxModify can also be used to add or replace objects in models, for instance, if a umxPath
is passed into update, the path will added to the model. Finally, umxModify can be used to
equate two paths, by setting the master parameter to one of the labels, and update to the
other label (or list of labels). The master and update lists will then have the same labels,
equating these paths. Note: umx includes the umxEquate function dedicated to equating paths
with defaults which make this easier to use during model building, rather than modification
(see Section 2.3.3).

Comparing models

The table of model comparison output from umxModify is shown in Table 4. This can be called
directly at any time using the umxCompare function. This takes one or more base models and
one or more comparison models, and prints a table of model comparisons including a column
directing the reader to the base model for the comparison, formats values in a publication
style, with control over precision via the standard digits parameter. It can report the results
to the console, or else open a browser table for pasting into a word processor. Printing to

Peer] Preprints | https://doi.org/10.7287/peerj.preprints.3354v1 | CC BY 4.0 Open Access | rec: 19 Oct 2017, publ: 19 Oct 2017

Timothy C. Bates, Hermine Maes, and Michael C. Neale 13

console is by default in markdown style, (change this with umx_set_table_format set to one
of latex, html, markdown, pandoc, or rst). If report = "inline" is selected, it also reports
the output as a one or more sentences to help the user describing the results in the text of a
paper. An example of using this function is below. In the plain-English description (the new
model name is used to describe what was done, and will need some editing): For instance,
the output from the code snippet below is "The hypothesis that no reciprocal influence was
tested by dropping no_reciprocal_influence from Duncan. This caused a significant loss of fit
(x%(2) = 19.51,p =< 0.001 : AIC = —3.902).”

umxCompare (duncanl, duncan2, report = "inline")

To open the output as an html table in a browser, say:

umxCompare (duncanl, duncan2, report = "html").

Equating model parameters

In addition to dropping or adding parameters, a second common task in modeling is to equate
parameters - setting two or more paths to have the same value. These parameters are picked
out via their labels, and setting two or more parameters to have the same value is accomplished
by setting the slave(s) to have the same label(s) as the master parameters, thus constraining
them to take the same value during model fitting. As of version 1.9.0 of umx, this can be
done using the umxModify , which is useful for one-step modifications. However there is also
a dedicated function umxEquate which is useful when building models as, by default, it does
not re-run the updated model.

For example, based on the duncanl model, we might test if the effect of 1QQ on aspiration
levels can be equated for respondent and friend. This is done by making a new model in
which they are equated and comparing the two models as follows:

Use parameters to quickly search the model and find the paths to equate.

parameters(duncanl, pattern = "IQ_to_")
name Estimate
RespIl]_to_RespLatentAsp 0.25
FrndI()_to_FrndLatentAsp 0.35

Modify duncanl model, requesting a comparison table
duncan3 = umxEquate(duncanl, name = "Equate I effect",
master = "RespIQ_to_RespLatentAsp",
slave = "FrndI@_to_FrndLatentAsp"

equivalently, with autoRun and plot by default

duncan3 = umxModify(duncanl, name = "Equate I effect", comparison = TRUE,
master = "RespI_to_RespLatentAsp",
update = "FrndI()_to_FrndLatentAsp"

)

There are numerous additional functions in the umx library facilitating model interrogation,
some are discussed at the end of this paper. For a complete listing, however, we direct the

Peer] Preprints | https://doi.org/10.7287/peerj.preprints.3354v1 | CC BY 4.0 Open Access | rec: 19 Oct 2017, publ: 19 Oct 2017

14 umx SEM package

Model EP | A-2LL | Adf | p AIC | Compare with Model
Duncan 33 -19.41
Equate friend’s 1Q effect | 32 | 2.265 1 0.132 | -19.145 | Duncan

Table 5: Comparison of equating IQ effects in respondents and friends.

reader to the package help “?7umx”, and to the tutorial site for umx: http://tbates.github.
io Next, we turn to twin modeling.

3. Behavior genetic twin modeling

A major goal of umx was to provide support for common twin-models, including Cholesky,
Common-Pathway, Independent-Pathway, and Gene xEnvironment moderation models, with
full support for tables and graphical output suitable for publication, as well as support for
model comparison and modification. These functions are outlined below, beginning with a
brief introduction to a common twin model (see Figure 3).

MZ =1.0;
Dz=05 1 E
a c e
xtwin1 Xtwin2
by by

Figure 3: Cholesky decomposition (ACE model) of variance in behavior (x) in twin-1 and
twin-2, decomposed into A (additive genetic), C' (Shared environmental) and E (uniques
environmental) components. There are two groups in the model: Identical (Monozygotic)
twins and Fraternal (Dizygotic) twins.

Peer] Preprints | https://doi.org/10.7287/peerj.preprints.3354v1 | CC BY 4.0 Open Access | rec: 19 Oct 2017, publ: 19 Oct 2017

Timothy C. Bates, Hermine Maes, and Michael C. Neale 15

3.1. Twin models and matrix-based modeling

Twin and family modeling takes advantage of classes of genetic and environmental covariance
present in nature. For example, “identical” or monozygotic (MZ) twins who share 100% of
their genes, and fraternal (DZ: dizygotic) twins who share, on average, half of their genes,
siblings, who also share 50% of their genes, but differ in year of birth, adoptees who are
unrelated genetically to their rearing family, but who share that family environment. These
classes of relatedness allow researchers to specify proposed structural and measurement models
of their phenotype(s) of interest and to model many types of relatedness using multiple-group
models, which are fitted simultaneously to arrive at estimates of genetic and environmental
variance consistent with the covariances found among the variables in the different group of
relatedness (Yong-Kyu Kim 2009; Knopik, Neiderhiser, DeFries, and Plomin 2016; Neale and
Maes 1996). A classic approach to modeling data such as these is shown in Figure 3). This
shows the decomposition of variance in behavior “x” measured in two related individuals —
either Monozygotic twins or Dizygotic twins — into additive genetic (A), shared environmental
(C) and unique environmental (F) components. There are two groups in the model, one for
each of the datasets. The correlation between A; and As is fixed at 1 (all variable genes
shared) in the MZ group, and at .5 for the DZ group (reflecting their 50% sharing of variable
genes).

For efficiency, twin models in umx are implemented using a matrix based approach (rather
than the path-approach used in Section 2. Each of the A, C, and E components are modeled
using square matrices, with the same number of rows and columns as there are variables
under analysis. These in turn are formed from the product of lower-triangle matrices a, c,
and e respectively, multiplied by their transpose to form the variance component matrices (e.g.
A = ad’). The utility of the Cholesky factorization is that the product of a lower triangular
matrix and its transpose, e.g. aa’ is guaranteed to be positive definite. The total phenotypic
(observed) covariance is modeled as the sum of these three components: V, = A+ C + E.

Figure 4 shows how the path diagram is mapped onto matrices in the case of the Additive
genetic (A) matrix. As shown, the latent additive genetic variables form the columns of the
A matrix. The variables are mapped to rows of this matrix, and paths from a latent variable
to a manifest variable appear in the appropriate cell, for instance the value of the path from
As to vare appears in cell A[2,2] of matrix A.

3 x 3 matrix-form of the genetic (A matrix)
paths, with labels as applied by umxLabel.
Al A2 A3
Var 1 arlcl
Var 2 ar2cl ar2c2
Var 3 ar3cl ar3c2 ar3c3

Figure 4: Genetic components of a tri-variate ACE model (C and E not shown) in graphical
(left) and matrix forms.

Peer] Preprints | https://doi.org/10.7287/peerj.preprints.3354v1 | CC BY 4.0 Open Access | rec: 19 Oct 2017, publ: 19 Oct 2017

16 umx SEM package

3.2. The ACE Cholesky model

umxACE supports a basic model in behavior genetics, known as the multivariate ACE or
Cholesky model (Neale and Maes 1996). The ACE model decomposes phenotypic variance
into additive genetic (A), unique environmental (E) and, one of either shared-environment
(C) or non-additive genetic effects (D). This latter restriction emerges due to confounding
of C and D when data are available from only MZ and DZ twin pairs reared together. The
Cholesky or lower-triangle decomposition allows a model that is both sure to be solvable and
it provides a saturated model against which models with fewer parameters can be compared.
This model creates as many latent A C and E variables as there are phenotypes, and, moving
from left to right, decomposes the variance in each component into successively restricted
factors (see Figure 4).

This function can be used to fit an ACE model to a single variable to decompose its variance
as shown in the example in Section 3.2.1. It can also be applied to two (bivariate) or more
(multivariate) models, decomposing not only the variance but also the covariance of the traits.

The umxACE function flexibly accepts both raw data and summary covariance data, offering
up suitable covariance matrices to mzData and dzData, and entering the number of subjects
in each via numObsDZ and numObsMZ. In an important capability, the model transparently
handles ordinal (binary or multi-level ordered factor data) inputs, and can handle mixtures of
continuous, binary, and ordinal data in any combination. This involves setting up threshold
matrices for binary and ordinal data, which are modeled as thresholds applied to underlying
latent variables.

It is often desirable to include covariates within twin models. We currently support ACE
models with fixed covariates (covariates included in the means model) for continuous variables,
and as random effects (i.e., modeled in the covariance matrix, allowed to covary with the
main variables of interest (Neale and Martin 1989)). In the next major version of umx this
functionality will be enhanced to allow modeling covariates in ordinal and mixed data across
all twin models.,

umxACE also supports weighting of individual data rows. In this case, the model is estimated
for each row individually, the likelihood of each row is multiplied by its weight, and the
logarithm is taken. These weighted log-likelihoods are then summed to form the model log-
likelihood, which is to be maximized (by minimizing the —2log(Likelihood)). In addition,
umxACE supports varying the DZ genetic association (defaulting to .5) to allow exploring
assortative mating effects, as well as varying the DZ “C” factor from 1 (the default for modeling
family-level effects shared 100% by twins in a pair), to .25 to model dominance effects. This
weighting feature is used in Section 3.6.

When it comes to interpretation and graphing, models built by umxACE can be plotted and
summarized using plot and umxSummary methods. umxSummary can report summary A, C,
and E multivariate path-coefficients, along with model fit indices, and genetic correlations.
The umx package provides custom plot methods to handle graphical reporting of twin models,
including ACE models, and other models discussed below. This provides output as seen in
Figure 4.

ACE examples

We first set up data for a summary-data ACE analysis of weight data (using a built-in example
dataset from the Australian twin sample of Professor Nick Martin (Martin, Eaves, Heath,

Peer] Preprints | https://doi.org/10.7287/peerj.preprints.3354v1 | CC BY 4.0 Open Access | rec: 19 Oct 2017, publ: 19 Oct 2017

Timothy C. Bates, Hermine Maes, and Michael C. Neale 17

Jardine, Feingold, and Eysenck 1986; Martin and Jardine 1986).

require (umx) ;

open the built in dataset of Australian height and weight twin data
data("twinData")

selDVs = c("wt")

dz = twinData[twinData$zygosity == "DZFF",]

mz = twinData[twinData$zygosity == "MZFF",]

The next code block uses umxACE to build and run the model.
ACE1 = umxACE(selDVs = selDVs, dzData = dz, mzData = mz, sep = "")

umxACE prints feedback to the console, noting that the variables are continuous and that
the data have been treated as raw. It then prints the fit

—2 x log(Likelihood) = 12186.28(df = 4)

and outputs a plot of the fitted model (See Figure 5) and a table of the fitted parame-
ters (Table 6). By default the report table is written to the console in the format set by
umx_set_table_format.

al cl el
weight 0.92 . 0.39

Table 6: Standardized path loadings for ACE model.

The tabular output can also be requested at any time with umxSummary. By setting report
= “html”, the user can request the results in an html table, opened in the default browser for
pasting into a word processor or slide. Whether the parameter table is standardized or not is
set using std = TRUE. The user can request the genetic and environmental correlations with
showRg = TRUE. If Confidence intervals have been computed, these can be displayed with CIs
= TRUE. The user can control output precision using the digits parameter. The following
snippet creates a tabular summary of the unstandardized model (note, by default it will also
plot the model. This can be controlled with umx_set_auto_plot (FALSE)). The function help
(?umxACE) gives extensive examples, including for binary, ordinal, and joint-ordinal cases.

An example (not run) using more control features of umxSummary

This would print a table of raw parameters to the console in markdown,
open the table in the browser, set rounding to 3-digits,

and print a table showing the comparative fit of ACE1 and ACE2

ACE2 = umxModify(ACE1, update = "c_rlcl", name = "dropC")

umxSummary (ACE1, std = FALSE, report = 'html', digits = 3, comparison = ACE2)

Using labels to drop paths in twin models

Peer] Preprints | https://doi.org/10.7287/peerj.preprints.3354v1 | CC BY 4.0 Open Access | rec: 19 Oct 2017, publ: 19 Oct 2017

18 umx SEM package

o QO
: e
() Weight

Figure 5: Output from plot(ml) for univariate ACE model of Australian weight data, ren-
dered as default in DiagrammR . (left) and after editing in Omnigraffle (right graphic). note:
for simplicity, the unit-variance of A, C, and E are assumed, and not drawn in this figure.

We noted above (Section 2.3) how labels can be used to update a model. For twin models,
such model reduction by dropping paths is routine. For instance, to examine the effects of
shared or family-level environment, we may wish to update this model by dropping the C
(shared environment) paths. The matrix-based model labeling scheme (used in all the twin
models) follows a systematic pattern, with the path coefficients underlying the A, C, and E
factors stored in matrices named a, c, and e. We can view the ¢ parameters with a call to
parameters.

Show free parameters in model ACEl
parameters (ACE1)

This reveals the following 4 parameter labels (and their current (unstandardized) estimated
values) (See Table 7). It shows the four matrices for free parameters — a, ¢, e, and expMean
— each with 1 row and 1 column as this is a univariate model.

name Estimate

1 expMean_rlcl 58.80
2 arlcl 8.19
3 crlcl 0.00
4 erlcl 4.55

Table 7: Free paths loadings for ACE model.

These labels take the form: matrix name (a, ¢, or e in this case), _r followed by a row
number, then a c for column followed by the column number of the matrix cell containing
the parameter.

A straightforward way to drop the shared environment path we wish to test is to list it in the
update option of umxModify:

ACE2 = umxModify(ACE1, update = "c_rlcl", name = "dropC")

Peer] Preprints | https://doi.org/10.7287/peerj.preprints.3354v1 | CC BY 4.0 Open Access | rec: 19 Oct 2017, publ: 19 Oct 2017

Timothy C. Bates, Hermine Maes, and Michael C. Neale 19

As shown in the resulting table of fit comparison table (Table 8), this parameter could be
dropped without significant loss of fit.

Model | EP | A-2LL | Adf | p AIC | Compare with
ACE 4 19515.23
dropC 310 1 1.000 | 19513.23 | ACE

Table 8: Fit comparison of full ACE model and AE model.

We next discuss a nested model, the common pathway model.

3.3. Common-pathway model

The common-pathway (CP) model provides a powerful tool for theory-based decomposition
of genetic and environmental differences (Neale and Maes 1996)). This allows one to test,
for instance if genes and environment work through a common latent personality trait (Lewis
and Bates 2014), or to test claims regarding the specificity or generality of a theorized latent
psychological or other construct (Lewis and Bates 2010). umxCP supports common-pathway
modeling for pairs of MZ and DZ twins reared together to model the genetic and environmental
structure of multiple phenotypes according to one or more common pathways. As can be seen
at the bottom of Figure 6, each phenotype also has A, C, and E influences specific to that
phenotype.

Like the ACE model, the common pathway model decomposes phenotypic variance into
additive genetic (A), unique environmental (E) and, optionally, either common or shared-
environment (C) or non-additive genetic effects (D). Unlike the Cholesky, however, these
factors do not act directly on the phenotype. Instead latent A, C, and E impact on latent
factors (by default 1) which then account for variance in the phenotypes (see Figure 6).

Note: Often researchers use only a single common pathway. Such models seldom provide a
good fit to multivariate data, and umxCP supports the more theoretically plausible situation
of multiple common pathways simply by setting the nFac parameter from its default (1) to
the desired number of common pathways to be modeled.

As with umxACE, umxCP can transparently handle mixtures of continuous and ordinal (binary or
multi-level ordered factor data) inputs. Similar options are available for controlling parameters
such as the DZ genetic correlation, and plot and umxSummary implement comprehensive model
reporting and graphical output. Note for comparison of this common-pathway model with
the independent pathway model to be discussed next, one would set the number of common
factors (nFac) to 3.

We endeavored to keep the matrix names used in the behavior genetic models memorable
(thus, expMean, a, ¢, and e in the ACE model). For the common pathway model, the
loadings of a, ¢, and e, on the common pathway factors are stored in matrices a_cp, c_cp, and
e_cp, and the specific loadings in the diagonals of matrices as, ce, and es respectively. The
loadings of the common factors onto variables stored in matrix cp_loadings. Thus for when
the researcher wishes to drop paths, it is in these matrices that they would find the labels to
set to zero. For instance, to drop the shared environmental effect specific to variable 2 in a
common pathway model, the user would modify the model, updating cs_r2¢2 to be fixed at
Z€ero.

Peer] Preprints | https://doi.org/10.7287/peerj.preprints.3354v1 | CC BY 4.0 Open Access | rec: 19 Oct 2017, publ: 19 Oct 2017

20 umx SEM package

Figure 6: Common pathway twin model with three common factors (CF1, CF2, and CF3),
for five measured variables (phenotypes) var 1 thru 5. The specific ACE specific structure is
shown at the base of the figure (drawn for only first and last phenotypes.)

Peer] Preprints | https://doi.org/10.7287/peerj.preprints.3354v1 | CC BY 4.0 Open Access | rec: 19 Oct 2017, publ: 19 Oct 2017

Timothy C. Bates, Hermine Maes, and Michael C. Neale 21

Example Common Pathway model

In this example Common Pathway model, we first set up the data for an analysis of height
and weight using the built-in twinData data.frame:

load twin data built into umx
data("twinData")

Selecting the 'ht' and 'wt' variables

selDVs = c("ht", "wt")

create dataset consisting of MZ and DZ female twins respectively.
mzData = subset(twinData, zygosity == "MZFF",)

dzData = subset(twinData, zygosity == "DZFF",)

The next section shows how umxCP allows the user to build the Common Pathway model
in one line, followed by calls to umxSummary, and plot to show the fit, parameter estimates
(shown in Tables 9 thru 12), and render and display in DiagrammR, graphviz or as pdf
(Figure 7). The following code will build and run a Common Pathway model:

Run and report a common-pathway model

CP1 = umxCP(selDVs = selDVs, dzData = dzData, mzData = mzData, suffix = "")
A C E
Common factor 1 0.98 . 0.21

Table 9: Common Pathway model common-factor path loadings.

CP1
Height 0.85
Weight 0.55

Table 10: Common Pathway model common factor path-loadings for each trait.

Asl As2 Csl Cs2 Esl Es2
htl -0.44 . -0.29
wtl . 0.75 . . . 0.37

Table 11: Common Pathway model standardized specific-factor loadings.

A straightforward way to test dropping all the shared environment paths from this model is
shown below, with the comparative fit shown in Table 13.

make a list of paths to drop
paths = c("c_cp_ricl", "cs_rlcl", "cs_r2c2")
CP2 = umxModify(CP1, update = paths, name = "dropC", comparison = TRUE)

For users who understand the syntax of regular expression, we can select the same subset of
labels using a pattern match:

Peer] Preprints | https://doi.org/10.7287/peerj.preprints.3354v1 | CC BY 4.0 Open Access | rec: 19 Oct 2017, publ: 19 Oct 2017

22 umx SEM package

rAl rA2 1C1 rC2 rE1 rE2
height 1.00 0.51 1.00 0.93 1.00 0.16
weight 0.51 1.00 0.93 1.00 0.16 1.00

Table 12: Common Pathway model genetic and environmental correlations.

t1

t1

Lo

Figure 7: Common Pathway model for height and weight plot output.

Peer] Preprints | https://doi.org/10.7287/peerj.preprints.3354v1 | CC BY 4.0 Open Access | rec: 19 Oct 2017, publ: 19 Oct 2017

Timothy C. Bates, Hermine Maes, and Michael C. Neale 23

CP2 = umxModify(CP1, regex = "("cs_)|("c_cp_)", name = "dropC")

umxSummary (CP2, comparison = CP1)
Model | EP | A -2LL Adf | p AIC | Compare with Model
CPp 13 -751.0117

dropC | 10 | 2.0414365 | 3 0.564 | -754.9703 | CP

Table 13: Fit comparison dropping shared environment effects from Common Pathway model
CP1.

3.4. Independent-pathway model

The basic Independent Pathway (IP) model is nested within the 3-factor Common Pathway
model (it is essentially a Common Pathway model with each of A, C, and E acting on only
one factor. The Independent Pathway models are created using umxIP. In this model, one
or more latent A, C, and E factors are proposed, each influencing all manifests. In addition,
each manifest (phenotype) has A, C, and E influences specific to itself (See Figure 8).

Data input and additional control parameters for umxIP closely reflect those available for
umxCP and umxACE, making it easier to move between these functions. Likewise the plot
and umxSummary transparently handle model reporting and graphical output functionality
identically to how it is implemented for other models, again lowering the learning curve and
increasing productivity. Users can of course implement ACE, CP, and IP models, then submit
these as nested comparisons using umxCompare to test which of these models is preferred.

3.5. Gene x Environment models

umxGxE implements the (Purcell 2002) gene-environment interaction single-phenotype model.
In this model, a standard ACE model is modified to include a moderator variable, measured
for each subject. This moderator (known as a definition variable because it is defined for each
subject), is represented on the path diagram as a diamond (or, in this case, we write the path-
formula on the path, including the definition-variable moderator, rather than drawing paths
from a diamond). In GXE models, the moderator is included in the means model, removing
any heritable effects it has on the DV of interest, and also moderates the A, C, and E path
values (See Figure 9). A common application of this type of model has been to examine
changes in heritability (and environmentality) across a range of values of a moderator such
as, in human twin research, developmental stress or parental socio-economic status (Bates,
Lewis, and Weiss 2013; Bates, Hansell, Martin, and Wright 2016).

As with all umx functions, examples of this type of analysis are included in the help documents
linked to each function. As the moderator is crucial to the estimated model, all rows much
have the moderator present, and rows with NA in the moderator are excluded (umxGxE will
do this for the user if necessary, reporting the quantity of data loss).

Example Gene x Environment model

As usual, we first setup the input data. Because G xE models use definition variables (variables
with a value for each subject in the data), rows must not contain NA for any definition variable

Peer] Preprints | https://doi.org/10.7287/peerj.preprints.3354v1 | CC BY 4.0 Open Access | rec: 19 Oct 2017, publ: 19 Oct 2017

24 umx SEM package

Figure 8: Independent pathways model with a single independent general factor for each of A,
C or D and E loading on all phenotypes (Var 1 thru Var 5), and showing the residual specific
ACE structure modeled for each phenotype (drawn for variables 1 and 5 only for clarity).

Peer] Preprints | https://doi.org/10.7287/peerj.preprints.3354v1 | CC BY 4.0 Open Access | rec: 19 Oct 2017, publ: 19 Oct 2017

Timothy C. Bates, Hermine Maes, and Michael C. Neale 25

MZ=1.0
DZ=05,_1.0
%{ o
c+cM c+cM
a+aM e+eM a+aM e+eM
Y1 YZ
by + byM by + byM

Figure 9: Univariate Gene x measured shared-environment twin model.

Peer] Preprints | https://doi.org/10.7287/peerj.preprints.3354v1 | CC BY 4.0 Open Access | rec: 19 Oct 2017, publ: 19 Oct 2017

26 umx SEM package

used in the model. umxGxE takes care of this by removing these rows (reporting explicitly to
the user what it has done for MZ and DZ data separately).

data("twinData')

create age variables for twin 1 and twin 2
twinData$agel = twinData$age2 = twinData$age

Define the DV and definition variables
selDVs c("bmil", "bmi2")
selDefs = c("agel", "age2")
selVars = c(selDVs, selDefs)

Create datasets
mzData = subset(twinData, zygosity == "MZFF")
dzData = subset(twinData, zygosity == "DZFF")

With setup out of the way, what remains is to call umxGxE, allowing the model to auto-run.
The user can request a custom umxSummary if desired. In this case, the summary is reported
as a plot, which may be either the raw or standardized output, in two side-by side plots, or
in separate plots (see Figure 10).

Build, run and report the GxE model using selected DV and moderator
umxGxE will remove and report rows with missing data in definition variables.
GE1 = umxGxE(selDVs = selDVs, selDefs = selDefs,

dzData = dzData, mzData = mzData, dropMissingDef = TRUE)

Shift the legend to the top right
umxSummary (GE1, location = "topright")

Plot standardized and raw output in separate graphs
umxSummary (GE1, separateGraphs = TRUE)

As with all umx functions, all parameters are consistently labeled, and umxModify can be
used to, for instance, drop the moderated additive genetic path by label, and requesting a
test of change in likelihood for significance:

GE2 = umxModify(GE1, update = "am_rilcl", comparison = TRUE)

Note likelihood ratio tests for dropping parameters are not always asymptotically distributed
as chi-squared with df equal to the difference in the number of parameters. For single variance
components, in the univariate case the p-values can be divided by 2, but this does not extend to
the multivariate case (Dominicus, Skrondal, Gjessing, Pedersen, and Palmgren 2006; Visscher
2006; Wu and Neale 2013). Moderating parameters, being unbounded, do not typically suffer
from this problem.

In order to facilitate theory-driven model reduction, umx implements the umxReduce function
which, if it knows about the type of model input, can intelligently reduce the model, outputting

Peer] Preprints | https://doi.org/10.7287/peerj.preprints.3354v1 | CC BY 4.0 Open Access | rec: 19 Oct 2017, publ: 19 Oct 2017

Timothy C. Bates, Hermine Maes, and Michael C. Neale 27

Raw Moderation Effects Standardized Moderation Effects
. o .
_— genetic % < _— genetic
g 4 T shared PO N B shared
unique ye e unique
''''''''' total .
©
8 3 1
0 | 3
o & o |
& o
8 =
g QA g
S i
> B
S =
c o -
v _| S h T T
- 7]
o | [V ST
- o
o -
I - o
=g
T T T T T T T T T T T T T T
18 20 22 24 26 28 30 18 20 22 24 26 28 30
age1 agel

Figure 10: GxE analysis default plot output.

a table of model comparisons. In the case of umxGxE models, there is a standard set of
comparisons, and these have been implemented in umxReduce. Functionality continues to
improve for other model types. This is shown for the example GxE model in Table 14.

Reduce the model and output a comparison table
umxReduce (GE1)

3.6. Window-based GxE

umxGxE_window (Briley, Harden, Bates, and Tucker-Drob 2015) also implements a gene-
environment interaction model. It does this not by imposing a particular function (linear
or otherwise) on the interaction, but by estimating the model sequentially on windows of
the data. In this way, it generates a spline-style interaction function that can take arbitrary
forms (See Figure 11). The function linking genetic influence and context is not necessarily
linear, but may react more steeply at extremes of the moderator, take the form of known
growth functions of age, or take other, unknown forms. To avoid obscuring the underlying
shape of the interaction effect, local structural equation modeling (LOSEM) may be used,
and umxGxE_window implements this model. LOSEM is non-parametric, estimating latent in-
teraction effects across the range of a measured moderator using a windowing function which
is walked along the context dimension, and which weights subjects near the center of the win-
dow highly relative to subjects far above or below the window center. This allows detecting
and visualizing arbitrary GXE (or CxE or EXE) interaction forms.

Example GxE windowed analysis

Peer] Preprints | https://doi.org/10.7287/peerj.preprints.3354v1 | CC BY 4.0 Open Access | rec: 19 Oct 2017, publ: 19 Oct 2017

28 umx SEM package

Model EP A -2LL | A df p AIC | Compare with
G by E 9 1000958.352

No lin mean 8| -44684.14 | 1 1.000 | 956272.216 | G by E
No quad mean 8 1 -999320.62 | 1 1.000 1635.730 | G by E
No means moderation 7 1 -999097.00 | 2 1.000 1857.350 | G by E
DropA 8| 149404.86 | 1 < 0.001 | 1150361.208 | G by E
DropC 8 15192.63 | 1 < 0.001 | 1016148.987 | G by E
No mod on A 8 | 692656.81 | 1 < 0.001 | 1693613.165 | G by E
No mod on C 8| 520231.54 | 1 < 0.001 | 1521187.896 | G by E
No mod on E 8 | 286226.09 | 1 < 0.001 | 1287182.445 | G by E
No moderation 6| -999259.71 | 3 1.000 1692.639 | G by E
No A no mod on A 71 732979.50 | 2 < 0.001 | 1733933.851 | G by E
No C no mod on C 71 520664.23 | 2 < 0.001 | 1521618.585 | G by E
No ¢ no ce mod 6 | 1325976.22 | 3 < 0.001 | 2326928.580 | G by E
No ¢ no moderation 5| -999259.71 | 4 1.000 1690.639 | G by E

Table 14: Model reduction table, generated for the example GxE model using umxReduce.

Again we need to setup the data correctly for the analysis. umxGxE_window takes a data.frame
consisting of a moderator and two DV columns: one for each twin. The model also assumes
two groups: MZ and DZ. Moderator cannot be missing, so to be explicit, we delete cases with
missing moderator prior to analysis. The first three lines open the built-in “twinData” dataset
of Australian twins, and define the name of the moderator column in the dataset (“age” in
this case), along with the DV (“bmi”).

require (umx) ;
data("twinData")
mod = "age"
selDVs = c("bmil", "bmi2")

We next pull out the younger cohort from the data, remove rows where the moderator is
missing, and generate the MZ and DZ subsets of the data:

select the younger cohort of twins
twinData[twinData$cohort == "younger",]
Drop twins with missing moderator

tmpTwin =

tmpTwin = tmpTwin[!is.na(tmpTwin[mod]),]
mzData = subset(tmpTwin, zygosity == "MZFF", c(selDVs, mod))
dzData = subset(tmpTwin, zygosity == "DZFF", c(selDVs, mod))

Next, we run the analysis.

toggle auto-plot off, so we don't plot every

level of the moderator

umx_set_auto_plot (FALSE)

Run the GxE analyses across all the windows

umxGxE_window(selDVs = selDVs, moderator = mod, mzData = mzData, dzData =
umx_set_auto_plot (TRUE)

dzData)

Peer] Preprints | https://doi.org/10.7287/peerj.preprints.3354v1 | CC BY 4.0 Open Access | rec: 19 Oct 2017, publ: 19 Oct 2017

Timothy C. Bates, Hermine Maes, and Michael C. Neale 29

The software reports to the user as it works through each level of the moderator encountered,
and produces a graph at the end of this run, plotting the A, C, and E windowed estimates at
each level of the moderator (see Figure 11). It is possible to run the function at only a single
level or chosen range of moderator values, and of course the model results may be subjected
to additional tests (Briley et al. 2015).

bmi1std variance

1.0 B a
mE
0.8
o 0.6
o
c
8
S
>
o
® 04
0.2
0.0

| | | | | | | |
20 30 40 50 60 70 80 90

age

Figure 11: Output graphic from a windowed or “LOSEM” G x Age analysis.

4. Summary

umx offers a variety of functions for rapid path-based modeling, a growing set of twin models,
and helpful plotting and reporting routines. It makes available a set of data-processing func-
tions, especially suitable for twin or wide-format data. Helping to lower the learning curve, a
tutorial blog site operates at http://tbates.github.io. In addition, a help forum for users
of the package is provided at the OpenMx website http://openmx.ssri.psu.edu/forums/

Peer] Preprints | https://doi.org/10.7287/peerj.preprints.3354v1 | CC BY 4.0 Open Access | rec: 19 Oct 2017, publ: 19 Oct 2017

30 umx SEM package

third-party-software/umx.

It is hoped that the package is useful to those learning and undertaking behavior genetics,
but also to the wider set of users seeking to utilize the power of structural modeling in their
work and who seek approachable but powerful open-source solutions for this need.

References

Archontaki D, Lewis G, Bates T (2013). “Genetic Influences on Psychological Well-being:
a Nationally Representative Twin Study.” Journal of Personality, 81(2), 221-30. ISSN
1467-6494 (Electronic) 0022-3506 (Linking). doi:10.1111/j.1467-6494.2012.00787.x. J
Pers. 2012 Mar 20. doi: 10.1111/;.1467-6494.2012.00787.x., URL http://www.ncbi.nlm.
nih.gov/pubmed/22432931.

Bates T, Lewis G, Weiss A (2013). “Childhood Socioeconomic Status Amplifies Genetic Effects
on Adult Intelligence.” Psychological Science, 24(10), 2111-6. ISSN 1467-9280 (Electronic)
0956-7976 (Linking). doi:10.1177/0956797613488394. URL http://www.ncbi.nlm.nih.
gov/pubmed/24002887.

Bates TC, Hansell NK, Martin NG, Wright MJ (2016). “When does socioeconomic status
(SES) moderate the heritability of IQ? No evidence for g x SES interaction for IQ in a
representative sample of 1176 Australian adolescent twin pairs.” Intelligence, 56, 10-15.
doi:10.1016/j.intell.2016.02.003.

Boker S, Neale M, Maes H, Wilde M, Spiegel M, Brick T, Spies J, Estabrook R, Kenny
S, Bates TC, Mehta P, Fox J (2011). “OpenMx: An Open Source Extended Struc-
tural Equation Modeling Framework.” Psychometrika, 76(2), 306-317. doi:10.1007/
511336-010-9200-6.

Briley DA, Harden KP, Bates TC, Tucker-Drob EM (2015). “Nonparametric Estimates of
Gene x Environment Interaction Using Local Structural Equation Modeling.” Behavior
Genetics, 45(5), 581-96. ISSN 1573-3297 (Electronic) 0001-8244 (Linking). doi:10.1007/
s10519-015-9732-8. URL http://www.ncbi.nlm.nih.gov/pubmed/26318287.

Dominicus A, Skrondal A, Gjessing HK, Pedersen NL, Palmgren J (2006). “Likelihood Ratio
Tests in Behavioral Genetics: Problems and Solutions.” Behav Genet, 36(2), 331-40. ISSN
0001-8244 (Print) 0001-8244 (Linking). doi:10.1007/s10519-005-9034-7. URL http:
//www.ncbi.nlm.nih.gov/pubmed/16474914.

Duncan OD, Haller AO, Portes A (1968). “Peer Influences on Aspirations: a Reinterpretation.”
American Journal of Sociology, pp. 119-137.

Fox J, Nie Z, Byrnes J (2014). “sem: Structural Equation Models.” URL http://CRAN.
R-project.org/package=sem.

Hershberger SL (2003). “The Growth of Structural Equation Modeling: 1994-2001.” Struc-
tural Equation Modeling: A Multidisciplinary Journal, 10(1), 35-46. doi:10.1207/
$15328007sem1001_2.

Peer] Preprints | https://doi.org/10.7287/peerj.preprints.3354v1 | CC BY 4.0 Open Access | rec: 19 Oct 2017, publ: 19 Oct 2017

Timothy C. Bates, Hermine Maes, and Michael C. Neale 31

IBM Corp (2013). IBM SPSS Statistics for Macintosh, Version 22.0. Armonk, NY. URL
http://www.sas.com/.

Joreskog KG (1969a). “A General Approach to Confirmatory Maximum Likelihood Factor
Analysis.” Psychometrika, 34(2P1), 183-202. ISSN 0033-3123. doi:10.1007/Bf02289343.

Joreskog KG (1969b). “A General Method for Analysis of Covariance Structures.” Biometrics,
25(4), 794—. ISSN 0006-341X.

Knopik VS, Neiderhiser JM, DeFries JC, Plomin R (2016). Behavioral Genetics. 7 edition.
Worth Publishers, London.

Lewis G, Bates T (2010). “Genetic Evidence for Multiple Biological Mechanisms Under-
lying Ingroup Favoritism.” Psychological Science, 21(11), 1623-1628. doi:10.1177/
0956797610387439. URL http://www.ncbi.nlm.nih.gov/pubmed/20974715.

Lewis G, Bates TC (2014). “How Genes Influence Personality: Evidence from Multi-facet
Twin Analyses of the HEXACO Dimensions.” Journal of Research in Personality, 51,
9-17. ISSN 00926566. doi:10.1016/j.jrp.2014.04.004.

MacCallum RC (2003). “Working with imperfect models.” Multivariate Behavioral Research,
38, 113-139. doi:10.1207/515327906MBR3801_5.

Maes HH, Sullivan PF, Bulik CM, Neale MC, Prescott CA, Eaves LJ, Kendler KS (2004).
“A Twin Study of Genetic and Environmental Influences on Tobacco Initiation, Regular
Tobacco use and Nicotine Dependence.” Psychol Med, 34(7), 1251-61. ISSN 0033-2917.
URL http://www.ncbi.nlm.nih.gov/pubmed/15697051.

Martin N, Jardine R (1986). “Eysenck’s Contributions to Behaviour Genetics.” Hans Eysenck:
consensus and controversy, pp. 13—47.

Martin NG, Eaves LJ, Heath AC, Jardine R, Feingold LM, Eysenck HJ (1986). “Transmission
of Social Attitudes.” Proceedings of the National Academy of Sciences of the United States
of America, 83(12), 4364-8. ISSN 0027-8424 (Print) 0027-8424 (Linking). URL http:
//www.ncbi.nlm.nih.gov/pubmed/3459179.

McArdle JJ, Boker SM (1990). RAMpath. Lawrence Erlbaum, Hillsdale, NJ.

Muthén L, Muthén B (1998-2016). Mplus UseraAZs Guide. 7 edition. Muthén Muthén, Los
Angeles, CA.

Neale MC, Hunter MD, Pritikin JN, Zahery M, Brick TR, Kirkpatrick RM, Estabrook R,
Bates TC, Maes HH, Boker SM (2016). “OpenMx 2.0: Extended Structural Equation
and Statistical Modeling.” Psychometrika, p. in press. ISSN 1860-0980 (Electronic) 0033-
3123 (Linking). doi:10.1007/s11336-014-9435-8. URL http://www.ncbi.nlm.nih.
gov/pubmed/25622929.

Neale MC, Maes HH (1996). Methodology for Genetics Studies of Twins and Families. 6th
edition. Kluwer, Dordrecht, The Netherlands.

Neale MC, Martin NG (1989). “The Effects of age, sex, and Genotype on Self-report Drunken-
ness Following a Challenge Dose of Alcohol.” Behavior Genetics, 19(1), 63—78. ISSN 0001-
8244. doi:10.1007/BF01065884. URL http://www.ncbi.nlm.nih.gov/pubmed/2712814.

Peer] Preprints | https://doi.org/10.7287/peerj.preprints.3354v1 | CC BY 4.0 Open Access | rec: 19 Oct 2017, publ: 19 Oct 2017

32 umx SEM package

Pearl J (2009). Causality: Models, Reasoning and Inference. 2 edition. Cambridge University
Press, Oxford.

Purcell S (2002). “Variance Components Models for Gene-environment Interaction in Twin
Analysis.” Twin Res, 5(6), 554-571. URL http://www.ncbi.nlm.nih.gov/entrez/query.
fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=12573187.

Ritchie S, Bates T (2013). “Enduring Links from Childhood Mathematics and Read-
ing Achievement to Adult Socioeconomic Status.” Psychological Science, 24(7), 1301-8.
ISSN 1467-9280 (Electronic) 0956-7976 (Linking). doi:10.1177/0956797612466268. URL
http://www.ncbi.nlm.nih.gov/pubmed/23640065.

Rosseel Y (2012). “lavaan: An R Package for Structural Equation Modeling.” Journal of
Statistical Software, 48(2), 1-36. URL http://www. jstatsoft.org/v48/102.

SAS Institute Inc (2003). SAS/STAT Software, Version 9.1. Cary, NC. URL http://www.
sas.com/.

semTools Contributors (2016). semTools: Useful tools for structural equation modeling. R
package version 0.4-11, URL http://cran.r-project.org/package=semTools.

Stata Corp LP (2016). Stata Statistical Software: Release 14. College Station, TX. URL
http://www.stata.com/.

Visscher PM (2006). “A Note on the Asymptotic Distribution of Likelihood Ratio Tests to
Test Variance Components.” Twin Res Hum Genet, 9(4), 490-5. ISSN 1832-4274 (Print)
1832-4274 (Linking). doi:10.1375/183242706778024928. URL http://www.ncbi.nlm.
nih.gov/pubmed/16899155.

von Oertzen T, Brandmaier AM, Tsang S (2015). “Structural Equation Modeling With II'nyx.”
Structural Equation Modeling: A Multidisciplinary Journal, 22(1), 148-161. ISSN 1070-
5511.

Wu H, Neale MC (2013). “On the Likelihood Ratio Tests in Bivariate ACDE Models.”
Psychometrika, 78(3), 441-63. ISSN 1860-0980 (Electronic) 0033-3123 (Linking). doi:
10.1007/s11336-012-9304-2. URL http://www.ncbi.nlm.nih.gov/pubmed/25106394.

Yong-Kyu Kim E (2009). Handbook of Behavior Genetics. 1 edition. Springer, New York.

Affiliation:

Timothy C. Bates

University of Edinburgh

7 George Square, EH8 9J7Z

UK

E-mail: tim.bates@ed.ac.uk

URL: http://www.psy.ed.ac.uk/people/view.php?name=timothy-bates

Peer] Preprints | https://doi.org/10.7287/peerj.preprints.3354v1 | CC BY 4.0 Open Access | rec: 19 Oct 2017, publ: 19 Oct 2017

