- 1 **Title:** Shifting from closed-source graphical-interface to open-source programming environment:
- 2 a brief tutorial on running Maxent in R
- 3
- 4 **Authors:** Xiao Feng^{1*}, Cassondra Walker², and Fikirte Gebresenbet²
- ⁵ ¹Institute of Environment, University of Arizona, Tucson, Arizona 85721-0137, USA
- ⁶ ²Department of Integrative Biology, Oklahoma State University, Stillwater, Oklahoma 74078,
- 7 USA
- 8 *Corresponding author: Xiao Feng, Institute of Environment, University of Arizona, Tucson,
- 9 Arizona 85721-0137, USA, xiao.feng@okstate.edu
- 10

11	Abstract: Ecological niche modeling (ENM) is increasingly being used in studying the
12	relationship between species distributions and environmental conditions. The development of
13	ENM software/algorithms is heading toward open-source programming, for the advantage of
14	efficiency in handling big data and incorporating new methods. Maxent is one of the commonly
15	used ENM algorithms, but there has been limited information and efforts in implementing
16	Maxent in an open-source programming environment (e.g., R). Therefore, we aim to fill the gap
17	of knowledge for using Maxent in R. More specifically, we demonstrate the general
18	implementation of Maxent in R based on a commonly used ENM procedure, provide a function
19	that bridges the Maxent algorithm and R computing environment for easier use, and demonstrate
20	the manipulation of a few crucial Maxent parameters in R. We expect our efforts will promote a
21	shift of the Maxent user community from a graphical-interface to open-source programming.
22	
23	Keywords: Maxent, R, open-source, clamping, ecological niche modeling, species distribution
24	modeling

25

26 Introduction

27 The use of ecological niche modeling (ENM; or species distribution modeling) to quantify the 28 relationship between species' presences and environmental conditions (Peterson et al., 2011) has 29 increased with the rapid development of GIS techniques and the accumulation and digitization of museum specimens. In the field of ENM, many modeling algorithms have been developed [e.g., 30 31 GARP (Stockwell, 1999), ENFA (Hirzel et al., 2002), and Maxent (Phillips et al., 2004)]. 32 Recently there is a trend toward development of open-source algorithms and software (e.g., 33 Maxent; Phillips et al., 2017), particularly in a programming environment (i.e., R; Naimi & 34 Araújo, 2016; Thuiller et al., 2016; Hijmans et al., 2017; R Development Core Team, 2017). 35 36 The use of open-source algorithms in programing environments is particularly important and 37 useful in the era of big data, when volumes and varieties of scientific data are accumulated at 38 high speed. The input for ENM are mainly species' occurrence data and environmental data, 39 which are both proliferating with advancements in technology and sampling efforts. The increase 40 in species' occurrence data is due in large part to the digitization of museum specimens (Page et 41 al., 2015; Rogers, 2016) and citizen science projects (Sullivan et al., 2009; Jackson et al., 2015). 42 This accumulation of species' locational data is most evident with the increase in records on the 43 Global Biodiversity Information Facility (GBIF; http://www.gbif.org) database which has 44 reached 0.79 billion species occurrences (accessed 25 July 2017). The other major data input for 45 ENM are environmental data derived from geospatial techniques, which have increased largely 46 from advances in Geographic Information Systems and remote sensing (Turner et al., 2003; 47 Wang et al., 2010) and the creation of practical data products from them (Waltari et al., 2014). 48 With these advances, traditional software platforms (e.g., using graphical user interface by

49 clicking) will be inadequate to handle such large amounts of data, whereas in a programing 50 environment a simple loop function can efficiently process a task thousands of times based on an 51 established procedure (e.g., Merow, 2017), with the further advantage of repeatability and 52 accuracy. In addition to the increased amounts of available data, the development of new 53 methods and tools is progressing rapidly (Muscarella et al., 2014; Qiao et al., 2015; Feng et al., 54 2017b; Kass et al., 2017). Traditional scientific software development will be insufficient in 55 keeping pace with newly developed scientific methods, because of the limited effort and insight 56 contained in a closed developing environment compared to a collective and open source 57 developing environment (e.g. Github.com). 58 59 In the field of ENM, Maxent (Elith *et al.*, 2006; Phillips & Dudik, 2008) is probably the most 60 used algorithm; likely because it is a presence only technique that is able to take advantage of the 61 large amounts of occurrence data available and its user-friendly graphical-interface (Joppa *et al.*, 62 2013). The popularity of Maxent is evident with just a quick search of literature as its 63 publications have been cited collectively thousands of times (accessed 25 July 2017). Maxent 64 was originally a closed-source software and has recently been adapted to be open-source

(Phillips *et al.*, 2017), though we believe that the graphical user interface persists as the popular
method of operation.

67

There has been an effort to advocate the use of Maxent in R by Hijmans *et al.* (2017), but detailed demonstration of the how is lacking, creating a gap for novice users. The other gap of knowledge is that Maxent implements 67 parameters (Phillips, 2006), which are easy to manipulate in the graphical-interface but are not straight forward to implement in R. R users may

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.3346v1 | CC BY 4.0 Open Access | rec: 13 Oct 2017, publ: 13 Oct 2017

5

72	sift through the scattered pieces of information on the Internet (e.g. Maxent-Google Groups, R
73	mailing lists, or programmer communities), but no comprehensive and detailed documentation
74	explaining or demonstrating implementation of Maxent parameters in R exists so far.
75	
76	Additionally, ENM scholars found that three settings in Maxent may greatly influence model
77	performance: features, regularization parameters, and clamping (Phillips & Dudik, 2008;
78	Moreno-Amat et al., 2015), thus manipulation of these parameters is important in model
79	comparison and evaluation. Muscarella et al. (2014) insightfully provided a function that
80	automatically implements models using different combinations of features and regularization
81	parameters, but it is also useful to allow the user to explore different regularization values for
82	different features (Phillips & Dudik, 2008).
83	
84	Inspired by this lack of information, we identified three objectives which we expect to be
85	important in promoting a shift of the Maxent user community from graphical-interface to open-
86	source programming: 1) demonstrate the general implementation of Maxent in R based on a
87	commonly used ENM procedure, 2) provide a function that bridges the Maxent algorithm and R
88	computing environment for easier use, and 3) demonstrate the manipulation of features,
89	regularization parameters, and clamping in R and explain potential tips and caveats of such
90	implementations in R.
91	
92	Summary of our case study
93	We used the nine-banded armadillo (Dasypus novemcinctus) as the study species and illustrated

94 the general use of Maxent in R via R-Markdown document based on *dismo*, *raster*, and *knitr*

95	packages (Xie, 2014; Hijmans et al., 2016; Hijmans et al., 2017). We provide detailed guidelines
96	for loading GIS layers, downloading occurrence data, preparing data input for Maxent, and
97	training and evaluating a Maxent model. We provided detailed annotations of the R scripts in the
98	R-Markdown document (Appendix S1).
99	
100	In addition to a well-documented guide, we have provided a function (Appendix S2) that bridges
101	the Maxent parameters and R computing environment for easier use. This function allows R
102	users to manipulate 26 of Maxent parameters that are commonly used in the Maxent interface but
103	are not straight forward to manipulate in R. We provided a list of the parameters and their
104	applications in Appendix S3.
105	
106	Case study analysis
107	Package Preparation
108	Our demonstration of using Maxent in R relies on the following R packages: dismo (Hijmans et
109	al., 2017), raster (Hijmans et al., 2016), rgeos (Bivand & Rundel, 2017), rJava (Urbanek, 2016),
110	and knitr (Xie, 2014). Before running Maxent in R, the Maxent executable file (i.e. Maxent.jar)
111	must be stored in a location that is accessible to the <i>dismo</i> package in R. We provided a line of
112	code that downloads "Maxent.jar" and stores the file in the appropriate folder (i.e. the folder of
113	
114	dismo package; see Thread 4 in Appendix 1). Depending on the size of data processed in
114	dismo package; see Thread 4 in Appendix 1). Depending on the size of data processed in Maxent, users may exceed the memory limit of Java Virtual Machine; to address this issue, the
114 115	
	Maxent, users may exceed the memory limit of Java Virtual Machine; to address this issue, the

118 **Occurrence Data Preparation**

119 We downloaded occurrence data of the nine-banded armadillo from GBIF using the function gbif 120 and used additional functions to further filter and refine the downloaded dataset. Specifically, we 121 eliminated records with invalid or duplicated coordinates using the functions is.na and duplicated (Thread 7 in Appendix 1). We then transformed the occurrence dataset into a spatial 122 123 dataframe based on the associated coordinates using the coordinates function (Thread 8 in Appendix 1). We further removed records with longitudes greater than -40° or less than -110° 124 125 that seemed erroneous based on ecological knowledge of the study species. The use of a loop 126 function at this point could potentially, allow users to process occurrence data for a list of focal species. 127

128

129

Training Data Preparation

130 In our example, we used bioclimatic variables (downloaded from http://www.worldclim.org) as 131 predictor variables for the ENM. We saved all environmental layers in one folder and loaded the 132 desired files (i.e., files with .bil extension) through regular expression (Thread 5 in Appendix 1). 133 Instead of using a world map or whole continent, we used a relatively smaller area for model 134 training (i.e., buffers around occurrences; Thread 11 in Appendix 1). We restricted the 135 bioclimatic layers to the study area using the functions *crop* and *mask* (Thread 12 in Appendix 136 1). Applying the *crop* function before *mask* is expected to save computation time by only 137 masking a smaller extent.

138

139 We selected 10,000 random background points from the study area using the function

140 sampleRandom. To make this random sampling reproducible, we specified a fixed seed for the

8

141 sampleRandom function (Thread 13 in Appendix 1). Similarly, we randomly split the occurrence 142 data into testing and training using a fixed seed. 143 144 Maxent can use either spatial or tabular data as inputs. The spatial data refer to spatial points 145 (i.e., geographic coordinates) and raster layers of predictors, whereas tabular data pertain to 146 presences and background records with associated environmental conditions. We employ tabular 147 data in our example because it allows for more flexibility in model implementation, such as 148 background data manipulation (e.g., Barbet-Massin et al., 2012). Tabular data require formatting 149 the environmental conditions for both occurrences and background points (Thread 15 in 150 Appendix 1), and requires a binary vector of 1s and 0s that correspond to records of presence and 151 background points (Thread 16 in Appendix 1). 152 153 Model Training, Projecting, and Evaluation 154 While constructing our model, we specified the output folder using parameter *path*; however, 155 more parameters of Maxent can potentially be implemented via the parameter args. To facilitate 156 the application of Maxent parameters, we designed a function called *prepPara* that allows for 157 straight forward implementation of Maxent parameters in R. In particular, users can specify a 158 desired combination of features, such as linear and quadratic, designate a beta-multiplier for

160

159

We demonstrated two methods for model projection. The first method is similar to the procedure used by the Maxent interface, where the model projection is completed immediately after model training, by specifying the projection layers/data (Thread 23 in Appendix 1). The second method

different features, and enable or disable the clamp module of Maxent (Appendix 2).

164	is to complete the projection post hoc using the function <i>predict</i> after obtaining a Maxent model
165	(Thread 18 in Appendix 1). A Maxent model can be projected on a set of GIS layers or a
166	dataframe that includes the same predictors used in model training.
167	
168	After obtaining a Maxent model, the <i>evaluate</i> function can calculate the training AUC value if
169	training occurrences and background points are provided, or the testing AUC value given testing
170	occurrences (Thread 19 in Appendix 1). Threshold dependent evaluation indices can also be
171	calculated if the threshold parameter tr is provided (Thread 20 in Appendix 1).
172	
173	Discussion
174	Maxent is undoubtedly a robust modeling algorithm that will continue to attract research
175	interests in invasive species distribution, climate change, conservation, and epidemic outbreaks
176	(Reed et al., 2008; Mainali et al., 2015; Feng et al., 2017a). We demonstrated the general usage
177	of Maxent in R, provided a function that bridges the Maxent parameters and R computing
178	environment, and exemplified the manipulation of a few crucial Maxent parameters in R. We
179	hope our demonstration of using Maxent in R will help users learn necessary skills, as well as
180	strengthen the efficiency of future research in the field of ENM. We hope that bridging Maxent
181	and R will lower the threshold of methodology explorations for the Maxent community. In the
182	era of big data, scientific software that is single client-based, closed-source graphical-interface
183	will likely be replaced by working environments featured by open-source and programming, or
184	potentially be replaced by server-based/cloud-based web application (Qiao et al., 2012; Feng et
185	<i>al.</i> , 2017b).

186

187	Supporting Information
188	Appendix S1. A brief tutorial on runing Maxent in R; available at
189	https://github.com/shandongfx/workshop_maxent_R/blob/master/code/Appendix1_case_study.m
190	<u>d</u>
191	Appendix S2. Source code of a function that prepares Maxent parameters; available at
192	https://github.com/shandongfx/workshop_maxent_R/blob/master/code/Appendix2_prepPara.R
193	Appendix S3. Implementation of Maxent parameters; available at
194	https://github.com/shandongfx/workshop_maxent_R/blob/master/code/Appendix3_maxentParam
195	eters_v2.pdf
196	
197	
198	References
199	Barbet-Massin, M., Jiguet, F., Albert, C.H. & Thuiller, W. (2012) Selecting pseudo-absences for
200	species distribution models: how, where and how many? Methods in Ecology and
201	<i>Evolution</i> , 3 , 327-338.
202	Bivand, R. & Rundel, C. (2017) rgeos: interface to Geometry Engine - Open Source (GEOS). R
203	package version 0.3-23. Retrieved from <u>https://cran.r-project.org/package=rgeos</u> .
204	Elith, J., Graham, C.H., Anderson, R.P., et al. (2006) Novel methods improve prediction of
205	species' distributions from occurrence data. <i>Ecography</i> , 29 , 129-151.
206	Feng, X., Castro, M.C., McBee, K. & Papeş, M. (2017a) Hiding in a cool climatic niche in the
	Teng, A., Casuo, M.C., Mebee, K. & Lapeş, M. (2017a) maing in a cool eminate mene in the
207	Tropics? an assessment of the ecological biogeography of hairy long-nosed armadillos

209	Feng, X., Castro, M., Linde, E. & Papeş, M. (2017b) Armadillo Mapper: a case study of an
210	online application to update potential distribution estimates. Tropical Conservation
211	<i>Science</i> , 10 , 1-5.
212	Hijmans, R.J., Phillips, S., Leathwick, J. & Elith, J. (2017) dismo: species distribution modeling.
213	R package version 1.1-4. Retrieved from <u>http://cran.r-project.org/package=dismo</u> .
214	Hijmans, R.J., Etten, J.v., Cheng, J., Mattiuzzi, M., Sumner, M., Greenberg, J.A., Lamigueiro,
215	O.P., Bevan, A., Racine, E.B. & Shortridge, A. (2016) raster: geographic data analysis
216	and modeling. R Package version 2.5-8. Retrieved from http://cran.r-
217	project.org/web/packages/raster/.
218	Hirzel, A.H., Hausser, J., Chessel, D. & Perrin, N. (2002) Ecological-niche factor analysis: how
219	to compute habitat-suitability maps without absence data? Ecology, 83, 2027-2036.
220	Jackson, M.M., Gergel, S.E. & Martin, K. (2015) Citizen science and field survey observations
221	provide comparable results for mapping Vancouver Island White-tailed Ptarmigan
222	(Lagopus leucura saxatilis) distributions. Biological Conservation, 181, 162-172.
223	Joppa, L.N., McInerny, G., Harper, R., Salido, L., Takeda, K., O'Hara, K., Gavaghan, D. &
224	Emmott, S. (2013) Troubling trends in scientific software use. Science, 340, 814-815.
225	Kass, J.M., Vilela, B., Aeillo-Lammens, M.E., Muscarella, R. & Anderson, R.P. (2017) Wallace:
226	A modular platform for reproducible ecological modeling. Version 0.6.3. Available at:
227	(accessed
228	Mainali, K.P., Warren, D.L., Dhileepan, K., McConnachie, A., Strathie, L., Hassan, G., Karki,
229	D., Shrestha, B.B. & Parmesan, C. (2015) Projecting future expansion of invasive
230	species: comparing and improving methodologies for species distribution modeling.
231	<i>Global Change Biology</i> , 21 , 4464-4480.

- 232 Merow, C. (2017) *BIEN range methods description*. Available at:
- 233 <u>http://bien.nceas.ucsb.edu/bien/wp-</u>
- 234 <u>content/uploads/2017/06/BIEN3RangeMethodsSummary.pdf</u> (accessed September 19
 235 2017).
- 236 Moreno-Amat, E., Mateo, R.G., Nieto-Lugilde, D., Morueta-Holme, N., Svenning, J.-C. &
- 237 García-Amorena, I. (2015) Impact of model complexity on cross-temporal transferability
- in MaxEnt species distribution models: an assessment using paleobotanical data.
- *Ecological Modelling*, **312**, 308-317.
- 240 Muscarella, R., Galante, P.J., Soley-Guardia, M., Boria, R.A., Kass, J.M., Uriarte, M. &
- 241 Anderson, R.P. (2014) ENMeval: An R package for conducting spatially independent
- evaluations and estimating optimal model complexity for Maxent ecological niche

243 models. *Methods in Ecology and Evolution*, **5**, 1198-1205.

- Naimi, B. & Araújo, M.B. (2016) sdm: a reproducible and extensible R platform for species
 distribution modelling. *Ecography*, **39**, 368-375.
- 246 Page, L.M., MacFadden, B.J., Fortes, J.A., Soltis, P.S. & Riccardi, G. (2015) Digitization of
- biodiversity collections reveals biggest data on biodiversity. *BioScience*, **65**, 841-842.
- 248 Peterson, A.T., Soberón, J., Pearson, R.G., Anderson, R.P., Martínez-Meyer, E., Nakamura, M.
- 249 & Araújo, M.B. (2011) Ecological Niches and Geographic Distributions. Princeton
- 250 University Press, Princeton, NJ.
- 251 Phillips, S.J. (2006) *A brief tutorial on Maxent*. Available at:
- 252 <u>http://www.cs.princeton.edu/~schapire/maxent/tutorial/tutorial.doc</u> (accessed 1 August
- 253 2012).

254	Phillips, S.J. & Dudik, M. (2008) Modeling of species distributions with Maxent: new extensions
255	and a comprehensive evaluation. <i>Ecography</i> , 31 , 161-175.
256	Phillips, S.J., Dudík, M. & Schapire, R.E. (2004) A maximum entropy approach to species
257	distribution modeling. In: Proceedings of the Twenty-First International Conference on
258	Machine Learning, pp. 655–662. ACM press, Banff, Alberta, Canada.
259	Phillips, S.J., Anderson, R.P., Dudík, M., Schapire, R.E. & Blair, M.E. (2017) Opening the black
260	box: an open-source release of Maxent. <i>Ecography</i> , doi: 10.1111/ecog.03049.
261	Qiao, H., Lin, C., Ji, L. & Jiang, Z. (2012) mMWeb - an online platform for employing multiple
262	ecological niche modeling algorithms. PLoS ONE, 7, e43327.
263	Qiao, H., Lin, C., Jiang, Z. & Ji, L. (2015) Marble algorithm: a solution to estimating ecological
264	niches from presence-only records. Scientific Reports, 5, 14232-14232.
265	R Development Core Team (2017) R: a language and environment for statistical computing.
266	Retrieved from <u>http://www.r-project.org/</u> .
267	Reed, K.D., Meece, J.K., Archer, J.R. & Peterson, A.T. (2008) Ecologic niche modeling of
268	Blastomyces dermatitidis in Wisconsin. PLoS ONE, 3, e2034.
269	Rogers, N. (2016) Museum drawers go digital. Science, 352, 762-765.
270	Stockwell, D. (1999) The GARP modelling system: problems and solutions to automated spatial
271	prediction. International Journal of Geographical Information Science, 13, 143-158.
272	Sullivan, B.L., Wood, C.L., Iliff, M.J., Bonney, R.E., Fink, D. & Kelling, S. (2009) eBird: a
273	citizen-based bird observation network in the biological sciences. Biological
274	Conservation, 142 , 2282-2292.

14

275	Thuiller, W., Georges, D., Engler, R. & Breiner, F. (2016) biomod2: ensemble platform for
276	species distribution modeling. R package version 3.3-7. Retrieved from https://cran.r-
277	project.org/package=biomod2.
278	Turner, W., Spector, S., Gardiner, N., Fladeland, M., Sterling, E. & Steininger, M. (2003)
279	Remote sensing for biodiversity science and conservation. Trends in Ecology &
280	Evolution, 18, 306-314.
281	Urbanek, S. (2016) rJava: low-level R to Java interface. R package version 0.9-8. Retrieved
282	from <u>https://cran.r-project.org/package=rJava</u> .
283	Waltari, E., Schroeder, R., McDonald, K., Anderson, R.P. & Carnaval, A. (2014) Bioclimatic
284	variables derived from remote sensing: assessment and application for species
285	distribution modelling. Methods in Ecology and Evolution, 5, 1033-1042.
286	Wang, K., Franklin, S.E., Guo, X. & Cattet, M. (2010) Remote sensing of ecology, biodiversity
287	and conservation: a review from the perspective of remote sensing specialists. Sensors,
288	10 , 9647-9667.
289	Xie, Y. (2014) knitr: a comprehensive tool for reproducible research in R. Implementing
290	Reproducible Computational Research (ed. by V. Stodden, F. Leisch and R.D. Peng), p.
291	448. CRC Press, Chapman and Hall.

292