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ABSTRACT11

We present a linear time-varying Luenberger observer (LTVLO) using compartmental models to estimate
the unmeasurable states in patients with type 1 diabetes. The LTVLO proposed is based on the
linearization in an operation point of the virtual patient (VP), where a linear time-varying system is
obtained. LTVLO gains are obtained by selection of the asymptotic eigenvalues where the observability
matrix is assured. The estimation of the unmeasurable variables is done using Ackermann’s methodology.
Additionally, it is shown the Lyapunov approach to prove the stability of the time-varying proposal. In
order to evaluate the proposed methodology, we designed three experiments: A) VP obtained with the
Bergman minimal model; B) VP obtained with the compartmental model presented by Hovorka in 2004;
and C) real patients data set. For experiments A) and B), it is applied a meal plan to the VP, where the
dynamic response of each state model is compared to the response of each variable of the time-varying
observer. Once the observer is evaluated in experiment B), the proposal is applied to experiment C)
with data extracted from real patients and the unmeasurable state space variables are obtained with the
LTVLO. LTVLO methodology has the feature of being updated each instant of time to estimate the states
under a known structure. The results are obtained using simulation with MatlabT M and SimulinkT M . The
LTVLO estimates the unmeasurable states from in silico patients with high accuracy by means of the
update of Luenberger gains at each iteration. The accuracy of the estimated state space variables is
validated through fit parameter.

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

1 INTRODUCTION29

Diabetes is a chronic disease characterized by high levels of blood glucose (hyperglycemia). Type 130

diabetes mellitus (T1DM) occurs when the pancreas does not produce insulin due to an immune system31

response that destroys the β cells, which are responsible to produce insuline, that is the key hormone of32

carbohydrate metabolism. β cells response in a healthy person is characterized by reducing or increasing33

insulin secretion to match low or high blood glucose concentrations Pørksen (2002). An hyperglycemic34

condition leads to serious damage on many of the body’s systems in a medium-term time, especially in35

nerves and blood vessels, developing retinopathy and nephropathy among others. Since 1920 insulin36

therapy has evolved bringing the ability to mimic the average physiological profile of insulin secretion37

with the aim of trying to regulate glucose levels Grunberger (2013).38

T1DM is controlled by therapies based on the administration of exogenous insulin following multiple39

insulin injections (MDI) Control et al. (1993). Nowadays, the use of insulin pumps makes the treatment40

less invasive, reducing pain associated MDI and can improve patient lifestyle Jeandidier et al. (2008).41

The alternative treatment with insulin pumps is based on continuous subcutaneous insulin infusion42

(CSII) systems Linkeschova et al. (2002). When exogenous insulin is administered in excess appears43

hypoglycaemia events (low blood glucose levels), which is very dangerous to human body in short-term44

time.45

Patients have to decide the insulin bolus to be administered before each carbohydrate intake (CHO).46
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To fit this prandial bolus to the meal is a complex task, mainly due to the variability in insulin effects and47

the presence of CHOs with different absorption rates. People with T1DM may try to reduce the insulin48

doses to avoid hypoglycaemia, but increasing the hyperglycaemia risk.The development of an artificial49

pancreas (AP) is a field of intensive research to optimize patients CSII therapy reducing the associated50

risks and to avoid the patient dependence of his illness using closed loop algorithms.51

An AP integrates three components: an insulin pump, a subcutaneous continuous glucose monitoring52

(CGM) system and a control algorithm connected by wireless communication Hovorka et al. (2007).53

The current challenges of the scientific community working on building the AP are: develop more54

reliable CGM sensors, create faster-acting insulins, administrate the glucagon hormone to recover from55

hypoglycemia and designing control algorithms. The control algorithms should to be capable of: dealing56

with physiological inter patient and intra patient variability and working stable way against delays in57

subcutaneous glucose measurement and insulin action Lunn et al. (2011).58

Mathematical modeling is a powerful tool that allows describing the behaviour of a dynamic system.59

Mathematical models emerge as an option to save resources at the time of testing, allowing simulations that60

could be dangerous to perform with the system described by the model. The availability of mathematical61

models to deal with a specific disease does not guarantee the success of a control algorithm on the62

treatment of such disease.63

Different disturbances are taken into account by mathematical models describing T1DM; some64

disturbances are the endogenous glucose production in the liver, renal excretion, insulin-independent65

glucose utilization (brain and central nervous system) and the bioavailability of the ingested CHOs. Other66

disturbance is physical activity practicing but, still it is not considered on the mathematical models;67

another disturbances such as stress situations are not modeled as parametric variation Home (2015).68

On the other hand, it is known that in the design of control algorithms, it is necessary the complete69

knowledge of the plant (the T1DM patient in this particular case) variables, which means that all state70

space variables are measurable; but in reality this is not possible. Independently of the model chosen71

for the control algorithm design, it is only possible to measure the subcutaneous glucose concentration72

considered as the output variable and to know the model input, that is, the insulin dose amount. The main73

alternative to approach this problem is the use of linear and nonlinear observers. Such is the case of the74

Luenberger observer applied to linear and non-linear systems Fichera et al. (2013); Phat et al. (2015);75

Heydari and Demetriou (2015); Wu et al. (2012); Chen et al. (2015). Other observers are using sliding76

modes Liu (2014); Mincarelli et al. (2015); Zhang et al. (2015); Chen and Chowdhury (2010); Xia et al.77

(2015). The ones applied to artificial pancreas Palumbo et al. (2012, 2013); Kovács et al. (2007); Palumbo78

et al. (2014), among others. The strategies that use these observers result in obtaining constant gains,79

which in a general way, constitutes a good alternative in order to estimate the unmeasurable variables.80

In this paper we propose to extend the theory of Luenberger observers for time-invariant systems, to81

time-varying Luenberger observer applied to time-varying systems. These time-varying systems result82

from the linearization of two T1DM nonlinear models. This type of Luenberger linear time- varying83

observer should be capable of estimating the unmeasurable variables with a structure of known models.84

The observer should be robust to deal with parametric variability in T1DM patients that will change within85

the day and also from day to day, due to lifestyle changes and metabolic performance Home (2015). The86

main disturbance to take into account is a meal, composed mainly of CHOs, which is usually used to87

stimulate the dynamic system of a T1DM patient.88

We design a Luenberger linear time-varying observer to the field of the AP using Bergman Bergman89

et al. (1979) and Hovorka Hovorka et al. (2004) compartmental models. The observer is used to estimate90

unmeasurable variables from patients with T1DM. The computation of the time-varying Luenberger91

gains is obtained by the correct selection of the asymptotic eigenvalues to assure convergence of the92

unmeasurable variables and Lyapunov stability proof is done. Different experiments are used to evaluate93

the methodology, using VP, and data extracted from insulin and glucose variables obtained from real94

patients. In order to validate the methodology, statistical analysis is done.95

This paper is organized as follows: in section 2 the main theoretical information regarding the T1DM96

models used in this work is explained, as well as the state space observers; in section 3, the proposed97

methodologies for the time-varying formulation and the experiments design are described; in section 4 the98

results of the present work are shown; some discussion is presented in section 5; and finally, conclusions99

are expressed in section 6.100
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2 STATE OF ART101

T1DM patients can be described physiologically through mathematical models, whose output and input102

are the glucose concentration and the insulin infusion, respectively. In this work a time variant state space103

observer is designed for two mathematical models commonly used to describe T1DM patients.104

2.1 Bergman Model105

The Bergman minimal model contains three state space variables that describe the glucose-insulin
regulatory system. With the purpose of facilitating the mathematical comprehension on later sections, in
this work the Bergman model is taken from Bergman et al. (1979) and is arranged in state space form as
follows:

ẋ1 =−p1 [x1−Gb]− x2x1 +d
ẋ2 =−p2x2 + p3 [x3− Ib]
ẋ3 =−η [x3− Ib]+ui

(1)

where x1 renames G (blood glucose concentration) (mg/dl), x2 corresponds to X (insulin influence on106

glucose concentration reduction) (1/min), and x3 replaces I (insulin concentration in plasma) (µU/ml).107

Table 1 describes the parameters and values for three T1DM patients and the information of a healthy108

person is included. The parameterization was obtained from Kaveh and Shtessel (2008) to simulate in109

silico patients with the Bergman model (1).

Table 1. Bergman model parameter values.

Healthy Patient zero∗ Patient 1 Patient 2 Patient 3
p1 0.0317 0 0 0 0
p2 0.0123 0.0112 0.0123 0.0072 0.0142
p3 8.2×10−8 4.48×10−8 8.2×10−8 3.6×10−8 1.656×10−6

γ 6.5×10−5 0 0 0 0
η 0.2659 0.2646 0.2659 0.2465 0.2814
h 79.0353 0 0 0 0

∗ Observer parameters
110

For all patients Gb = 70mg/dl and Ib = 7mU/dl are the basal glucose and basal insulin respectively.111

2.1.1 Generating VP with Bergman minimal model112

Berger and Rodbard modeled the course of insulin absorption which is basically responsible for the
characteristic form of plasma profiles for different types of insulin and how its kinetic evolves Berger and
Rodbard (1989). Below is a mathematical representation of the profile that appears in blood as the initial
insulin deposit is diluted after insulin is administered:

ui = u
s τsT s

50
τ(T s

50 + τs)2 , (2)

where u is the insulin dose that has been injected as a bolus (UI), which is represented as amplitude of113

Dirac-delta; T50 is time interval to permit 50% of injected dose to be absorbed; s is the parameter itself114

absorption type of insulin used, and τ is the time after injection.115

Lehmann and Deutsch modeled CHOs absorption via intestinal as d Lehmann and Deutsch (1992),
which is considered the main disturbance of Bergman systems, using the following function:

d = uG(t)
r1r2

r2− r1
(e−r1t − e−r2t) , (3)

where uG(t) is the amount of ingested carbohydrates (g of CHOs), r1 and r2 (1/min) are specific parameters116

for the type of CHOs that represent a slow rate of assimilation.117

The equations (2)-(3) are absorption functions added to Bergman model, which shape the absorption of118

insulin administered as a bolus and CHOs ingested amount (both depicted as delta signals in simulation),119

respectively to in silico patients. The absorption functions to generate a VP with the Bergman model use120

the next parameterization in equations (2)-(3): s = 1.7; a = 0.02 unitless and b = 1 unitless are natural121

constants of the Lispro insulin Berger and Rodbard (1989); r1 = 0.0170 1/min and r2 = 0.173 1/min122

Rodrı́guez-Herrero et al. (2010).123
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2.2 Hovorka model124

The model was built based on experimental and modeling work, which employed glucose tracers to
determine structure and parameter values of glucose kinetics Hovorka et al. (2002). The Hovorka model
described in Hovorka et al. (2004) and Wilinska et al. (2010) consists of a glucose subsystem (glucose
absorption, distribution and disposal), an insulin subsystem (insulin absorption, distribution and disposal),
and an insulin action subsystem (insulin action on glucose transport, disposal and endogenous production).
With the aim of using a common nomenclature, the Hovorka model is rewritten in terms of xi as follows:

ẋ1 = ka [G(t)− x1]

ẋ2 =−
[

f c
01

VGG(t) + x4

]
x2 + k12x3−EGP0x6 +d

ẋ3 = x4x2− [k12 + x5]x3
ẋ4 =−ka1x4 + kb1x7
ẋ5 =−ka2x5 + kb2x7
ẋ6 =−ka3x6 + kb3x7
ẋ7 =

x8
VI tmax,I

− kex7

ẋ8 =
x9

tmax,I
− x8

tmax,I

ẋ9 = u− x9
tmax,I

(4)

where x1 represents C and is glucose concentration (mmol/l) in the subcutaneous tissue. This submodel
of the interstitial glucose kinetics was added from Wilinska et al. (2010). x2 replaces Q1 and represents
the mass of glucose in the accessible compartment (mmol); x3 rewrites Q2 that is the non-accessible
glucose mass compartment (mmol); x4 corresponds to X1 and is the remote effect of insulin on glucose
distribution/transport (1/min); x5 substitutes X2 and is the remote effect of insulin on glucose disposal
(1/min); x6 renames X3 that is the remote effect of insulin on endogenous glucose production (1/min); I
is changed by x7 and is the plasma insulin concentration (mU/dl); x8 and x9 are interchanged with S2 and
S1, respectively, and are two-compartments chain representing absorption of subcutaneously administered
short-acting insulin (mU); G(t) = x2/VG is the glucose concentration in the plasma (mmol/l); u is the
insulin dose (mU). The inner and outer disturbances are expressed as:

d =UG(t)+EGP0− fR− f c
01 , (5)

where EGP0 represents the endogenous glucose production extrapolated to a 0 concentration (mmol/min) fR
is the renal glucose clearance (mmol/min) above the glucose threshold of 9 mmol/l represented as:

fR =

{
0.003(G(t)−9)VG i f G(t)≥ 9 mmol/l

0 otherwise , (6)

f c
01 (mmo/min) as the total non-insulin-dependent glucose flux corrected by the ambient glucose concen-

tration represented as:

f c
01 =

{
f01 i f G(t)≥ 4.5 mmol/l

f01
G(t)
4.5 otherwise

. (7)

The Glucose absorption is a fundamental process affecting postprandial glucose excursions. In
Hovorka model (4), the gut absorption rate UG(t) (mg/min) is represented by:

UG(t) =
DGAGτe

−τ
tmax,G

tmax,G
, (8)

where tmax,G is the time-of-maximum appearance rate of glucose in the accessible glucose compartment,125

DG is the amount (mg) of CHOs ingested, AG is carbohydrate bioavailability (unitless).126

Table 2 includes the parametric values of six Hovorka patients (VP#1 - VP#6) and a VP#0, whose127

parameterization is contained around a mean considering a standard deviation of the other six patients128

Hovorka et al. (2002).129

The parameters plasma insulin elimination rate ke = 0.138(1/min), CHOs bioavailability AG =130

0.8(unitless), CHOs absorption max time tmax,G = 40(min) and max time of short action insulin absorption131

tmax,I = 55(min) are equal for the six patients and patient zero.132
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Table 2. Hovorka model parameter values and description.

Symbol Description Value per patient
/ units zero∗ 1 2 3 4 5 6

k12 Transfer rate 0.066 0.0343 0.0871 0.0863 0.0968 0.0390 0.0458
(1/min)

ka1 Deactivation rate 0.006 0.0031 0.0157 0.0029 0.0088 0.0007 0.0017
(1/min)

ka2 Deactivation rate 0.06 0.0752 0.0231 0.0495 0.0302 0.1631 0.0689
(1/min)

ka3 Deactivation rate 0.03 0.0472 0.0143 0.0691 0.0118 0.0114 0.0285
(1/min)

VI Insulin volume 0.12 0.18 0.13 0.22 0.14 0.14 0.13
(l/kg) distribution

VG Glucose volume 0.16 0.18 0.13 0.22 0.14 0.14 0.13
(l/kg) distribution

kb1 Insulin elimination 3.584 2.076 6.932 2.9435 9.471 4.6457 1.0823
(1/min) rate ∗10−9 ∗10−9 ∗10−9 ∗10−9 ∗10−9 ∗10−10 ∗10−9

kb2 Insulin elimination 5.74 1.541 3.327 1.2437 1.7743 2.2875 5.0527
(1/min) rate ∗10−9 ∗10−9 ∗10−9 ∗10−8 ∗10−9 ∗10−8 ∗10−9

kb3 Insulin elimination 1.82 4.3112 1.2797 4.9925 1.062 1.0042 7.695
(1/min) rate ∗10−7 ∗10−7 ∗10−7 ∗10−7 ∗10−7 ∗10−7 ∗10−8

EGP0 EGP extrapolated
(mmol/kg to 0 insulin 0.0161 0.0148 0.0143 0.0156 0.0213 0.0200 0.0105

1/min) concentration
F01 Glucose flux

(mmol/kg non insulin 0.0097 0.0121 0.0075 0.0103 0.0119 0.0071 0.0092
1/min) dependent

ICR Insulin-CHOs 0.1 0.13 0.1 0.12 0.1 0.07 0.12
(U/g) ratio
BIR Basal insulin 0.8 0.89 0.95 0.9 1.05 1.2 1.1

(U/hr) ratio
∗ Observer parameters

3 METHODOLOGY133

In this section, the proposed method is described in generic terms, where the time-varying observer design134

and its implementation are presented. Additionally, it is shown the Lyapunov approach in order to prove135

the stability of the time-varying proposal.136

3.1 Linear time-varying Luenberger observer design137

In order to introduce the proposed method let us consider a continuous-time nonlinear Single-Input-
Single-Output (SISO) disturbed system, which represents the structure of the Hovorka and Bergman
compartmental models, as follows:

ẋ = f(x)+g(x)u+d, (9)
y = h(x), (10)

where x∈ℜn×1 is the state space vector, u is the input signal; y∈ℜ1×n represents the output of the system,
with n as the state dimension; f(x) and g(x) constitute smooth vector functions; d represents the vector
function of external and internal disturbance; h(x) is a smooth function continuous and differentiable.
For both afformentioned models Bergman (1) and Hovorka (4) u is the insulin infusion dose; the output
signal in Bergman’s model (1) y = x1 = G is the plasma glucose concentration and in Hovorka’s model (4)
y = x1 =C is the interstitial glucose concentration measured through CGM sensor. Then, system (9)-(10)
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is linearized using the Jacobian of the following form Isidori (2000):

A =
∂ f(x)
∂x

∣∣∣∣
x=ρ

, b =
∂g(x)

∂u

∣∣∣∣
x=ρ

, c =
∂h(x)

∂x

∣∣∣∣
x=ρ

. (11)

In order to avoid the loss of information by the linearization process, the operation point ρ used to
evaluate the resulting matrices from the Jacobian, is going to be updated with the new values of state
variables at each instant of time (t), resulting the following linear time-varying system:

ẋ = A(t)x+bu+d, (12)
y = c x . (13)

where A(t) is the time-varying state matrix containing the dynamic information of linearized state space138

variables; b is the input vector, u is the control signal; c is the ouput vector. For this particular application139

d is considered as disturbance due to real amount of CHOs intake.140

The conventional Luenberger observer has been a popular approach to state estimation for linear
dynamical systems. In the well known linear Luenberger observer, the output of the system (subcutaneous
glucose measurement) is compared with the estimated output by the observer (estimated glucose). With
the estimated state vector x̂, then is calculated the output estimation error (e = y− cx̂) passing through an
n×1 constant gain vector l is used as correcting term, in order to estimate the state x of system (12)-(13)
Chen (1995). If the gain l is properly designed, the difference will drive the estimate state to the actual
state. Such estimator is called an asymptotic estimator and is described by the following equation:

˙̂x = Ax̂+bu+d1 + l (y− cx̂) (14)

where x̂ = [x̂1 x̂2 · · · x̂n]
> is the estimated state vector, and l ∈ ℜn×1 represents the Luenberger gain141

vector, d1 is the meal absorption used in the observer. The idea of this observer is to compute the constant142

gain vector l such that all eigenvalues of matrix [A− lc] from equation (14), can be set arbitrarily in the143

left-half of the complex plane using Ackermann’s methodology. This can be done if and only if the pair144

(A,c) of system (12)-(13) is observable Ackermann (1972).145

In the present paper, the linear Luenberger observer theory for time-invariant systems is extended for146

linear time-varying Luenberger observer. These time-varying systems result from the linearization of two147

T1DM nonlinear models (Bergman and Hovorka) treated in this work.148

In order to estimate the dynamic of nonlinear system (9)-(10) and including the available information
about external and internal disturbances d, we propose to extend the linear time-invariant theory from
equation (14) designing a time-varying Luenberger observer for a system with the form (12)-(13), as:

˙̂x = A(t)x̂+bu+d1 + l(t)(y− cx̂) , (15)

where A(t) is the linear time-varying state matrix, b is the input vector, d1 are the general disturbances149

used in the observer, l(t) is the Luenberger’s time-varying gain vector, which includes the time-varying150

feature of the present proposal, and (y− cx̂) is the estimation error computed as the difference between151

measurable output y and estimated output cx̂.152

The procedure to obtain the time-varying formulation consists of two stages, which are explained153

in the flow diagram presented in Figure 1. In this diagram, the block enclosed by short dashed line154

corresponds to Stage I, where it is tested the observability condition; this stage is executed only one time155

at beginning of the process. The block enclosed by long dashed line corresponds to Stage II, where it is156

obtained the estimation of state space variables, this stage is executed as infinite loop. These stages are157

detailed as follows:158

Stage I. It is proved the observability property of system (12) at instant time t0:159

a) The system (9)-(10) is linearized around an operation point ρ , through Jacobian at time t0. The160

operation point ρ is selected when output y = x1 = 90 mg/dl and are extracted the other state161

variables values to evaluate (11).162
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Figure 1. Luenberger time-varying state space estimator.

b) It is proved the observability condition in t0 of system (12)-(13): the n-dimensional pair (A(t), c) is
observable at t0 if there exists a finite interval of time t1 > t0 such that:

rank


N0(t1)
N1(t1)

...
Nn−1(t1)

= n , (16)

where163

Nq+1(t) = Nq(t)A(t)+
d
dt

Nq(t), q = 0,1, · · · ,n−1 , (17)

with

N0(t) = c . (18)

Thus, if condition (16) holds, then the SISO system (12)-(13) is observable at time t0. This means164

that for any unknown initial state x0, there exists a finite t1 > t0 such that it is possible to determine165

the initial state x0 with the knowledge of the input u (insulin) and the output y (glucose). Otherwise166

system (12)-(13) is said to be unobservable at time t0 Chen (1995).167

c) The desired observer eigenvalues λ1, λ2, . . . ,λn are selected to be located to the left of the168

eigenvalues of matrix A at t = 0, in the left-half of the complex plane. With this, the negative169

eigenvalues regulate the exponential rate of decay of estimation error and it is guaranteed the170

asymptotic convergence of the time-varying observer at instant time t1 > t0. Noticed that the desired171

eigenvalues can be set in the real axis or complex conjugate.172

Stage II. To compute the time-varying Luenberger gains vector, in order to estimate the unmeasurable173

state space variables:174
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a) The matrix A obtained from process (11) becomes time-varying A(t) on Stage II, as it was175

described before; this is evaluating the matrix A at each instant of time with the current values of176

a(t).177

b) The desired characteristic polynomial is obtained through the desired observer eigenvalues as
follows:

φ(s) = (s−λ1)(s−λ2) · · ·(s−λn) = sn +α1sn−1 + · · ·+αn−1s+αn , (19)

where λ1,λ2, . . . ,λn represents the desired observer eigenvalues, and α1,α2, · · · ,αn are used for
compute φ(A(t)) as follows:

φ(A(t)) = An(t)+α1An−1(t)+ · · ·+αn−1A(t)+αnI , (20)

where I is the n×n identity matrix.178

c) Once the observability condition is fulfilled at instant of time t > t0 with condition (16), it is
necessary to compute the time-varying observability matrix at t > t0. The compute of time-varying
observability matrix is done at each instant of time as follows:

O(t) =


c

cA(t)
...

cAn−1(t)

 . (21)

For the particular cases treated in this work, it is assumed that observability matrix (21) is invertible179

at each instant of time.180

d) The required l(t) Luenberger gains vector in (15) is determined by Ackermann’s methodology,
which is extended to time-varying case as:

l(t) = φ(A(t))O(t)−1


0
...
0
1

 . (22)

e) The l(t) Luenberger time-varying gains are used as correcting term in order to update the estimated181

state variables x̂ at instant time t, where the estimation error (y− x̂1) converges to 0.182

f) The estimated state space variables x̂ are employed to update the time-varying terms (a1(t), a2(t), . . . , an(t))183

in matrix A(t) on the next iteration.184

g) Finally, the estimated state space variables are available.185

3.2 Linear time-varying Luenberger observer implementation186

The observer goal is to estimate asymptotically the unmeasurable state space variables x̂, through the
knowledge of the output y (subcutaneous glucose measurement) and the input u (insulin). In this
subsection, it is treated the observer implementation for Bergman (1) and Hovorka (4) T1DM models.
This implementation is the procedure explained in Stages I and II presented in subsection 3.1. For this,
let us define the estimation error as follows:

e = x− x̂, (23)

and its dynamics is described as:

ė = ẋ− ˙̂x. (24)

8/18

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.3341v1 | CC BY 4.0 Open Access | rec: 12 Oct 2017, publ: 12 Oct 2017



Then, substituting equations (12) and (15) into (24), yields:

ė = A(t)x+bu+d−A(t)x̂−bu−d1− l(t)(y− c(x̂))
= [A(t)− l(t) c] (x− x̂)+(d−d1) .

(25)

Thus

ė = [A(t)− l(t) c]e+(d−d1) . (26)

Assumption 1: The linearized system obtained in (12)-(13) is observable at each instant time t > t0.187

Assumption 2: The time-varying observability matrix (21) at instant time t > t0 is nonsingular.188

The elements of matrix A(t) that are time-varying correspond to the values, which are time-updated from189

estimated states in each instant t > t0 by the asymptotic Luenberger observer.190

Assumption 3: The matrices A(t) and O(t) are Hurwitz at each instant of simulation time. Then, the191

time-varying observability matrix (21) at instant time t > t0 is nonsingular and it is possible to192

compute the time-varying l(t) Luenberger gains, which are obtained in each instant t > t0 using the193

Ackermann’s methodology shown in (22).194

Theorem 1 For system (12)-(13), the time-varying Luenberger observer (15) obtained from the Acker-195

mann’s methodology (22), ensures that the estimation error (23) is semi globally uniformly ultimately196

bounded (SGUUB).197

The proof of Theorem 1 is presented in A.198

Now, it is going to be implemented the procedure to design a LTVLO. For the case of nonlinear
Bergman model (1) with the form (9)-(10), it is applied the linearization procedure (11). In this procedure,
the resulting matrix A(t) and vector c are:

A(t) =

 a1(t) a2(t) 0
0 −p2 p3
0 0 −η

 , c =
[

1 0 0
]
, (27)

where a1(t) =−x̂2, a2(t) =−x̂1 and the parameters are described in Table 1. Note that the time-varying
values a1(t) and a2(t) in (27) involve the estimated variables x̂1 and x̂2, which updates their values for the
next iteration. These estimated variables give the feature of linear time-varying to the present proposal.
As it was explained before, vector c is time-invariant due to the output y = x1 = G of system (1), which
constitutes the plasma glucose concentration. Once the linearized procedure is done, it is proved the
observability condition (16) at instant time t0 of the pair (A(t),c) (27) as:

rank

 1 a2(t) a2
2(t)+ p2a2(t)+ p3 [Ib−a3(t)]

0 a1(t) a1(t) [2a2(t)− p1− p2]− p1Gb
0 0 −p3a1(t)

> = 3. (28)

where a3(t) = x̂3. The evaluation of (28) is only done in t0 to prove the observability condition of the199

pair (A(t),c). As the diagonal of matrix (28) depends on a1(t) (say x̂1), and as x̂1 6= 0 due to system (1)200

the glucose can not be null, so the eigenvalues are chosen to avoid this variable (x̂1) no crosses by zero201

during the transitory period. As there not exists zero crosses by a1(t), the condition (16) in matrix (28) is202

achieved (rank of matrix (28) = 3). Therefore, the linearized system with the form (12)-(13) obtained203

from system (1) with the pair (A(t),c) (27) is observable at time t0.204

Next, the desired observer eigenvalues are adjusted to be located in the left-half of complex plane.205

In general way, it is recommendable that these eigenvalues are located to the left of the eigenvalues of206

matrix A(t) at t0. This results a good practice in order to assure faster convergence of the observer and to207

consider the system response is dominated by the observer eigenvalues.208

With the desired observer eigenvalues chosen as: λ1 =−2.659, λ2 =−0.126 and λ3 =−0.12, it is
obtained the characteristic polynomial of the form (19). The matrix φ (A(t)) of the form (20) is computed
each instant of time, in such manner as the time-varying observability matrix (21) is:

O(t) =

 1 0 0
a2(t) a1(t) 0
a2

2(t) a1(t) [a2(t)− p2] p3a1(t)

 . (29)
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Then, it is computed the time-varying Luenberger gain vector l(t) (22) as:

l(t) =


2.905+η− p2−a1(t)

− 2.905η−2.905p2−p2(η−p2)+η2+0.6692
a2(t)

− (25η+3)(200η2+557η+67)
5000p3a2(t)

 . (30)

The designed LTVLO for Bergman model with the form (15) is:

˙̂x1 = −x̂1x̂2 +d(t)+ l1(t)(y− x̂1)
˙̂x2 = −p2x̂2 + p3x̂3− p3Ib + l2(t)(y− x̂1)
˙̂x3 = −η x̂3 +ηIb +u+ l3(t)(y− x̂1)

(31)

where the parameters p2, p3, η and Ib corresponds to the mean of the parameters of three patients shown209

in Table 1; with all the elements of formulation (15) are estimated the unmeasurable state variables x̂ for210

T1DM Bergman model (1).211

The same procedure explained for the Bergman model (1) is applied to the Hovorka model (4) (Stages212

I and II of subsection 3.1). For simplicity, the description of this procedure applied to the Hovorka model213

is not shown. The asymptotic Luenberger oberver is initialized around ±10% of initial values of VP. This214

is due to biological conditions of VP wich allows faster convergence.215

3.3 Experiments design216

In this subsection, the experiments design explanation is done for each T1DM model described in this217

work. We proposed three experiments: A) VP modeled with Bergman model (1) and LTVLO with the218

same structure, B) VP modeled with Hovorka model (4) and LTVLO with the same structure, and C) data219

come from real patients and observer is with Hovorka model structure proposed in experiment B.220

3.3.1 Experiments definition221

The implementation as models as observers is done in the continuous time domain, using numerical222

integration with fixed step-size = 1s, and with Runge Kutta solver. In order to obtain the results, MatlabT M
223

and SimulinkT M are used. The time simulation is 48 hours, taking for the analysis 24hrs, which starts224

from 00:00hrs of the second day and ends at 23:59hrs the same day. The meal plan was identical for all225

VP. The plan was composed of: breakfast at 7:30hrs, 40g of CHOs; snack at 11:00hrs, 15 g of CHOs;226

lunch at 13:00hrs, 90g of CHOs; dinner at 19:00hrs, 80g of CHOs; and snack at 23:00hrs, 15g of CHOs227

Anguita et al. (2003). The prandial bolus was fitted to each patient with his insulin CHOs ratio and the228

snacks do not have insulin boluses. In order to demonstrate the observer convergence ability estimating229

the state variables, three different experiments are proposed, which are described as follows:230

a) Bergman in silico involves three VP. The LTVLO is designed with Bergman model structure (1)231

and parameterized with a mean of three VP shown in Table 1. First, the LTVLO methodology is232

applied to Bergman model because is it simpler to understand. The observer is tested to estimate233

the variables of the three different patients.234

b) Hovorka in silico imply six VP. Then, the approach of time-varying observer is extended to a more235

complex system, as it is the Hovorka model (4). The observer is parameterized with values of236

patient zero from Table 2.237

c) Estimation of the inner variables from real patients. Data were obtained from a clinical study Capel238

et al. (2014) about a glucose control algorithm in real T1DM patients, where along the day it is239

only known continuous glucose measurements, insulin doses and amount of ingested CHOs, and240

with this information the Luenberger time-varying observer estimates the corresponding Hovorka241

variables. Each patient was equipped with a CGM device (Paradigm R© REAL-Time; Medtronic,242

Minneapolis, MN) and an insulin pump Animas R© 2020 (Animas Corp., West Chester, PA). The243

measurement period and infusion period was 5 minutes. The LTVLO remains the same as designed244

in experiment B with Hovorka model structure and parameterized with values of patient zero in245

Table 2.246
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3.3.2 Experiments evaluation247

The graphs of results exhibit a qualitative performance of LTVLO. However, it is necessary to employ a
quantitative parameter. In this sense, the parameter fit of estimated variables to model variables offer a
quantitative reliability of estimation capacities of Finan et al. (2006) the designed Luenberger observer.
The fit parameter expressed in percentage is calculated for every state as in 32:

fit =

√
1− ∑

N
t=1 [x(t)− x̂(t)]2

∑
N
t=1 [x(t)−x]2

×100% , (32)

where N is the amount of iterations that the simulation executes, x(t) are the state space variables of the248

model and x̂(t) are the corresponding estimated variables.249

4 RESULTS250

In this section, it is shown the performance of the LTVLO. For simplicity, only 24 hours of simulation are251

presented, where in results figures, the initial time of simulation corresponds to 00:00 hrs of second day,252

and the triangles that appear in those Figure, constitute the moment in which the intake is acquired by the253

patient according to the meal plan.254

4.1 Experiment A: Estimating Bergman variables255

The proposed methodology is applied to design an observer to Bergman model (1), which is parameterized256

by a mean of the model parameters (patient zero). The LTVLO is tested with VP generated by the three257

patients parameter described Kaveh and Shtessel (2008).258

Figure 2 shows the three states of VP#1, estimated states, and their corresponding time-varying gains259

when the intake plan is applied. Each observer variable estimates asymptotically its corresponding model260

variable in approximately 100s of simulation, tracking them for the rest of simulation. The states X (x2),261

insulin influence and I (x3), plasma insulin, are increased due to insulin dose applied at 7:15hrs. When262

the VP#1 is having breakfast at 7:30 hrs, the state G (x1) plasma glucose, is increased due to CHOs intake.263

The gains l1(t), l2(t) and l3(t) change suddenly when the model variables present high rate of change.
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Figure 2. VP#1 states from Bergman model, states estimated from LTVLO and their respective
time-varying gains: a) comparative of plasma glucose x1 vs. x̂1; b) gain l1(t) relative to x̂1; c) comparative
of insulin influence x2 vs. x̂2; d) gain l2(t) relative to x̂2; e) comparative of plasma insulin x3 vs. x̂3; f)
gain l3(t) relative to x̂3.

264

Table 3, shows the reliability percentage on estimated variables by the LTVLO; having over 94%265

of confidence on the three observed variables. These results represents an accurate estimation of the266

non-measurable variables.267
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Table 3. fit (%) of LTVLO to Bergman model.

Variable renamed x1 x2 x3
VP#1 100 99.99 94.31
VP#2 100 99.99 99.68
VP#3 100 99.99 97.78

4.2 Experiment B: Estimating Hovorka variables268

The proposed methodology is applied to develop an observer to Hovorka model (4), which is parameterized269

with the patient zero (mean of six patient parameters included in Hovorka et al. (2002)). The LTVLO is270

tested with the other six VP generated from the parameters in Hovorka et al. (2002).271

Figure 3 shows three state variables (x1, x3 and x7) of the Hovorka model, in particular to VP#6, the272

behaviour of the observer states estimated, and their corresponding time-varying gains, when the intake273

plan is applied. The states x3, non-accessible glucose (Q2) and x7, plasma insulin (I), are increased due to274

insulin dose applied at 7:15 hrs. When the VP#6 is breakfasting at 7:30 hrs, the state x1 subcutaneous275

glucose (C), is increased due to CHOs intake. The gains l1(t), l3(t) and l7(t) change suddenly when276

the model variables present high rate of change. Even when the states observer variables (x3 and x7)277

do not match accurately the state model variables (Q2 and I), qualitatively have similar profile as their278

corresponding model variable. This is due to different parametrization of VP#6 and the LTVLO. In Table279

4, it is shown the reliability percentage on estimated variables by the Luenberger time-varying observer to280

Hovorka model.281
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Figure 3. VP#6 states from Hovorka model, states estimated from Luenberger time-varying observer
and their respective time-varying gains: a) comparative of CGM sensor x1 vs. x̂1; b) gain l1(t) relative to
x̂1; c) comparative of non-accessible glucose x3 vs. x̂3; d) gain l3(t) relative to x̂3; e) comparative of
plasma insulin x7 vs. x̂7; f) gain l7(t) relative to x̂7.

Table 4. fit (%) of LTVLO to Hovorka model.

Variable renamed x1 x2 x3 x4 x5 x6 x7 x8 x9
VP#1 99.35 92.77 58.68 98.59 99.88 68.45 73.23 99.98 100
VP#2 99.99 92.97 97.03 94.86 82.49 70.97 91.04 99.98 100
VP#3 99.90 79.45 95.43 96.98 94.18 94.07 88.15 99.99 100
VP#4 99.99 99.46 31.27 94.66 98.19 61.45 60.74 99.99 100
VP#5 98.94 99.65 90.20 99.74 64.51 69.80 55.89 99.98 100
VP#6 99.96 96.55 88.88 99.14 95.52 99.22 55.07 99.98 100

The fit of the estimation variables x1, x3 and x7 for the six patients is between the values of 31.27%282
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and 100%. This is explained because these variables are directly influenced by known information,283

glucose, insulin, and CHOs absorption via gut. Variable x2 for VP#3 is 79.45%, which can be due to the284

parametrization of the LTVLO. As it can be seen in Figure 3 c), the estimation is not as accurate as it285

seems to be. Nevertheless, its corresponding fit value for patient six, is acceptable (88.88%). In general,286

fit values between 50% and 90% can be associated to the extremely sensitive metric of fit parameter to287

differentiate between means of estimated variables and model variables. The fit value for variable x3 for288

patient 4 (31.27%) corresponds to a poor estimation of this variable.289

4.3 Experiment C: Estimating real T1DM patients unmeasurable variables290

The LTVLO is employed to estimate the corresponding Hovorka model state variables from real patient291

data, for simplicity are showing results only for a set of patient data. Figure 4 a) displays the estimation of292

variable x1 by its corresponding time-varying observer variable, the glucose measured with the sensor293

having a fit= 99.61%; b) shows the corresponding gain evolution. c) and e) correspond to unmeasurable294

variables of non-accessible glucose compartment and plasma insulin, respectively. Frame d) is the gain295

adjustment for the non-accessible glucose compartment and f) is the shape depicting the evolution at each296

iteration of Luenberger gain for the plasma insulin. The CHOs intake of this particular real patient is297

depicted with black triangles, corresponding to 20g at 7:00hrs, 60g at 10:00hrs, 80g at 15:15hrs and 80g298

at 21hrs.299
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Figure 4. Estimation of the inner variables from real patients, states estimated from Luenberger
time-varying observer and their respective time-varying gains: a) comparative of subcutaneous glucose x1
vs. x̂1; b) gain l1(t) relative to x1; c) non-accessible glucose estimation x̂3; d) gain l3(t) relative to x3; e)
plasma insulin estimation x̂7; f) gain l7(t) relative to x7.

5 DISCUSSION300

The LTVLO provides helpful information about unavailable variables to measurement in real-time to use301

it as base of a control law design in a future work. We have used the Luenberger methodology to build a302

T1DM observer, although it exists other methods as sliding modes observers or artificial neural networks,303

because Luenberger methodology is easy to understand and allows to select the desired dynamic of the304

estimated variables.305

Even when linear time-varying systems results a challenge to guarantee the observability condition,306

we guarantee such condition in each instant of time. Although, to the particular cases treated in this307

work, the observability condition depends on the parameter values, which define the VP dynamics and are308

determined by the author of the model. These parametric values characterized the model dynamic used to309

design the observer, but we could explore others parameters to guarantee the observability; e.g. setting310

the VP parameters on the observer according to real patient behaviour classifying them by their insulin311

sensibility.312
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The location of desired observer eigenvalues λn to the left of eigenvalues of matrix A(t) at t0, results313

in a good practice assuring faster convergence of the observer and to consider the system response is314

dominated by the observer eigenvalues. The best location of the eigenvalues, is out of the scope of this315

paper.316

The equilibrium point ρ is chosen from a basal patients period (y = 90mg/dl); with the aim of having317

the desired dynamic on the patient when this one is not disturbed and the linearization of the model is318

made concerning an stable operating point.319

We have chosen the fit parameter to evaluate the performance of the observer. This is because it is a320

percentage measurement defined independent from the variable scale versus the mean square error.321

In experiment A) the fit parameter indicates a high precision estimation mainly due to simplicity of the322

Bergman model. There is only one variable between the interaction of the output variable (blood glucose)323

and the variable that contains the input (insulin infusion), which facilitates the calculus of the Luenberger324

gains. The plasma glucose G (x1) is estimated with 100%, and the plasma insulin I (x3) above 94%.325

In experiment B) the variables C (x1), Q2 (x3) and I (x7) were chosen in order to reduce the employee326

space demonstrating how the LTVLO reduce the estimation error for the measurable variable and it is327

able to estimate the unmeasurable variables with the established parametrization. Luenberger gains show328

variation due to high rate of updating made at each simulation instant; this complicates the Luenberger329

gains calculus because when the observer reduces at minimum the estimation error of the measurable330

variable (subcutaneous glucose), the gains keep varying upon a mean.331

As can be seen on Table 4, the fit parameter for patient 4 of variable Q2 (x3), the value 31.27%,332

quantitatively is indicating that the observer is little reliable because is not estimating well its corresponding333

variable. Nevertheless, qualitatively is seen that estimated variables by the observer, are conditioned to334

the parametrization of LTVLO. This parametrization causes the existence of differences between VP335

variables profiles and the estimated variables.336

The reliability in estimated variables by LTVLO to Hovorka VP in C (x1) is above 98% but in state I337

(x7) is over 55% due to the observer always proposed a high value of x̂7. This result can be good when is338

pretended to design a control law because the excess of insulin can conditioned the control behaviour to339

do it less sensible and therefore avoiding the hypoglycaemic events. Information provided from Table 4,340

it can be seen that state variable x2 would be used as main variable to feedback a control law, because is341

the plasma glucose the desired variable to control.342

Table 5 summarizes the minimum values of the fit parameter shown in Tables 3 and 4. The minimum343

values of the variables are grouped by their physiological relation.344

Table 5. Summarize of minimum fit (%) to VP population.

Bergman LTVLO performance Hovorka LTVLO performance
(From Table 3) (From Table 4)

Variable f it (%) Patient Patient f it (%) Variable

G
lu

co
se 5 98.94 x1

x1 100 All 3 79.45 x2
4 31.27 x3

In
su

lin
ef

fe
ct

s 4 94.66 x1
x2 99.99 All 5 64.51 x5

4 61.45 x6

In
su

lin 6 55.07 x7
x3 94.31 1 1,2,5,6 99.98 x8

All 100 x9

As can be seen in Table 5 values of glucose compartments for Bergman and Hovorka present345

high accuracy. The intermediate insulin effects compartments and plasma insulin compartment are the346

inaccuracy fit results of the LTVLO, due to the observer always adjusted a high value to these variables. To347
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Hovorka LTVLO results insulin compartments and glucose compartments have the better fit performance348

because these state variables are directly connected with available information.349

The fit values between 90% and 100% constitute a very accurate estimation, which means that the350

estimation error e≈ 0. A fit value between 50% and 90% means that the correlation error between the351

model variable and estimated variable is increased in some periods. The fit value between 1% and 50%352

means that the coincidence between the model variable and estimated variable occurs during small periods353

and majority of the time keeps differences between them. A fit value of 0% means that the estimated354

variable does not match its corresponding variable, but the LTVLO is providing helpful information biased355

by its parametrization.356

In experiment C) the unmeasurable variables are estimated under a well-known model structure,357

although the measurement by the CGM is noisy. The model structure matches the output variable358

(subcutaneous glucose) and input variable (insulin dose) with the data available from real patients. With359

the Hovorka model structure on the LTVLO, it is possible to incorporate information about the main360

disturbances (CHOs intake) available with the patients data. The chosen variables C, Q2 and I graphed361

for this experiment demonstrate how the LTVLO reduce the estimation error for the measurable variable362

and it is able to estimate the unmeasurable variables.363

However, we do not know the CGM sensor accuracy. The measured variable by a CGM is objective364

because comes from a sensor. Both meal and doses are recorded by the patients and sometimes they365

forget to write down some data. The LTVLO in front of a CGM sensor calibration or loss of information366

becomes oscillating or unstable. For this reason the LTVLO needs to be strengthened against those367

adversities to be applied in a real scenario with T1DM patients.368

6 CONCLUSION369

This paper proposes a Luenberger time-varying observer applied to Bergman and Hovorka T1DM models.370

The observer has the feature of being updated each instant of time in order to estimate the states under a371

known structure, and only with the knowledge of the insulin dose, the CGM information and the intake of372

CHOs. Lyapunov stability proof stablishes the operation boundedness of the time-varying proposal. The373

time-varying formulation is used to estimate unmeasurable states in real patients. The results obtained in374

the designed experiments validate the applicability of the proposed observer. Additionally, a time-varying375

observer used to estimate the unmeasurable variables with a well-known structure, opens a possibility to376

apply a control law (employed in other areas with success) in order to improve the design and development377

of the ambulatory artificial pancreas.378
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A PROOF OF THEOREM 1385

Proof: Let e = 0 be an equilibrium point asymptotically stable for the Luenberger time-varying system
(15) represented in the error dynamic (26). Lyapunov’s candidate function positive definite is
described in terms of the error as:

V (e,t) = e>P(t)e , (33)

where P(t) is continously differentiable, bounded and positive definite symetric matrix Khalil and
Grizzle (1996). The derivative of Lyapunov candidate function is computed as:

V̇ (e, t) = e>P(t)ė+ ė>P(t)e+ e>Ṗ(t)e , (34)

where Ṗ(t) must be negative definite to guarantee that function (34) is negative definite. Using the
Riccati’s function as:

Ṗ(t) =−P(t)ΛΛΛ(t)−ΛΛΛ(t)>P(t)−Q(t) , (35)
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for Ṗ(t) = 0 and ΛΛΛ(t) = [A(t)− l(t) c] from (26), Q(t) must be continuous, positive definite and
symmetric. Then, it is computed the matrix P(t) such that fulfill the aforementioned characteristics.
Now replacing (26) and (35) into (34), yields:

V̇ (e, t) =−e>Q(t)e+(d−d1) , (36)

which is negative definite with |e>Q(t)e| ≥ |d− d1|, showing that the LTVLO (15) in the error
dynamics (26) is an asymptotically stable estimator. The derivative of V (e, t) along the trajectories
of (26) is given by:

V̇ (e, t) =
∂V
∂ t

+
∂V
∂e

f (e, t)+
∂V
∂e

g(e, t) , (37)

where f (e, t) are the state space functions in the error dynamic and g(e, t) are the functions related
to the disturbances. Then, applying the derivative along the trajectories (37), it is obtained:

V̇ (e, t) =−||e||21 +2l(t)e2
1ϕ f +2(d−d1)e1ϕg , (38)

where ϕ f and ϕg correspond to the coefficients of second and third terms of equation (37), respec-
tively. Suppose l(t)≤ ζ−1

−2K2 , where 0≤ ζ ≤ 1 ∀ |e1| ≤ K, and using the inequality (d−d1)≤ δ ,
where δ is the maximum value of (d−d1) and ϕge1 ≤ ||e||1 |ϕg|, yields:

V̇ (e, t)≤−ζ ||e||21 +2δ |ϕg| ||e||21 , (39)

where ζ ≤ (1−2l(t)K2) ∀ |e1| ≤ K, with K as the upper bound on |e1|. Suppose that:

θ ≤
2δ |ϕg|
ζ ||e||1

. (40)

Then

V̇ (e, t)≤−(1−θ)ζ ||e||21, (41)

where 0≤ θ ≤ 1. From (40), it is established that:

||e||1 ≤ µ =
2δ |ϕg|

ζ θ
. (42)

In order to estimate the bound K, let Ωc = {e ∈ℜn | V (e, t)≤ c}. For any positive constant c, the
set Ωc is closed and bounded. The boundary of Ωc is the Lyapunov surface V (e, t). The largest
value of |e1| on the surface V (e, t) = c, can be determined by differentiating the surface equation
partially with respect to eq, where q = 2, . . . ,n (for Bergman Model n = 3 and for Hovorka model
n = 9), as:

∂V
∂eq

= 0 . (43)

By simple calculations to evaluate the Lyapunov candidate function with the partial derivatives,
concludes that:

V (e, t)
∣∣∣∣

∂V
∂eq

=0
= ϒ(e1, t) . (44)

Then, the largest value of e2
1 on the Lyapunov surface is c

ϒ
. Therefore, all points inside Ωc satisfy386

the bound |e1| ≤ K, where K2 = c
ϒ

.387

Thus, if l(t)≤ ϒ(ζ−1)
2c and δ is so small that µ2λmax(P(t))< c, then Bµ ⊂Ωc and all trajectories

starting inside Ωc remain for all future time in Ωc. Therefore, the solutions of the disturbed system
are uniformly ultimately bounded by:

B = µ

√
λmax(P(t))
λmin(P(t))

. (45)

It is important to mention that l(t) and (d−d1) are treated differently as two disturbance terms,388

since the first term vanishes at the origin, while the second one does not. �389
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