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Password authentication is an essential and widespread form of user authentication on the

Internet with no other authentication system matching its dominance. When a password

on one website is breached, if reused, the stolen password can be used to gain access to

multiple other authenticated websites. Even amongst technically educated users, the

security issues surrounding password reuse are not well understood and restrictive

password composition rules have been unsuccessful in reducing password reuse. In

response, the US NIST have published standards outlining that, when setting passwords,

authentication systems should validate that user passwords have not already been

compromised or breached. We propose a mechanism to allows for clients to anonymously

validate whether or not a password has been identified in a compromised database,

without needing to download the entire database or send their password to a third-party

service. A mechanism is proposed whereby password hash data is generalized such that it

holds the k-anonymity property. An implementation is constructed to identify to what

extent the data should be generalized for it to hold k-anonymity and additionally to group

password hashes by their generalized anonymous value. The implementation is run on a

database of over 320 million leaked passwords and the results of the anonymization

process are considered.
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ABSTRACT8

Password authentication is an essential and widespread form of user authentication on the Internet with

no other authentication system matching its dominance. When a password on one website is breached,

if reused, the stolen password can be used to gain access to multiple other authenticated websites.

Even amongst technically educated users, the security issues surrounding password reuse are not well

understood and restrictive password composition rules have been unsuccessful in reducing password

reuse. In response, the US NIST have published standards outlining that, when setting passwords,

authentication systems should validate that user passwords have not already been compromised or

breached. We propose a mechanism to allows for clients to anonymously validate whether or not a

password has been identified in a compromised database, without needing to download the entire

database or send their password to a third-party service. A mechanism is proposed whereby password

hash data is generalized such that it holds the k-anonymity property. An implementation is constructed to

identify to what extent the data should be generalized for it to hold k-anonymity and additionally to group

password hashes by their generalized anonymous value. The implementation is run on a database of

over 320 million leaked passwords and the results of the anonymization process are considered.
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INTRODUCTION23

Password reuse poses a significant threat to password authentication systems, Das et al. (2014) observed24

that 43% of users reused passwords across multiple websites and notes that there have been user password25

breaches from high profile websites including Twitter, Yahoo and LinkedIn. If a password is reused26

across multiple accounts, an attacker who is able to compromise the password from one service is able27

to reuse the same password to compromise other user accounts. A users password can become known28

if it is insecurely stored in an applications database and the contents of that database are disclosed.29

Another strategy for disclosing a users password involves attempting a brute force attack by automatically30

attempting common password combinations until a users password is known, websites which do not31

challenge or rate limit high-frequency log-in attempts make good targets for this kind of attack. In32

either instance, a website which insecurely protects a users credentials can become the weakest link in33

compromising a series of accounts (Herley and Van Oorschot, 2012). In it’s worst case, password reuse34

can lead to a domino effect whereby a low value account being compromised can lead to financial disaster35

for an individual.36

In standards published by the United States National Institute of Standards and Technology (Grassi37

et al., 2017) it is a requirement, when storing or updating passwords, to ensure they do not contain values38

which are commonly used, expected or compromised. Grassi et al. (2017) cites passwords obtained39

through previous security breaches and dictionary words amongst the examples of potential sources for40

such a blacklist.41

Lists of disclosed passwords are available in bulk on the Internet; one such list, Hunt (2017), contains42

over 320 million such passwords in SHA-1 hashed form. Another such list, Hornby (2016), contains43

just under 1.5 billion passwords in raw form (without hashing). In uncompressed form such datasets are44

12.86GB and 15GB in size, respectively.45

Without downloading the entire substantial datasets of leaked passwords, users have to enter their46
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passwords into third-party websites in order to validate whether their password has or has not been leaked.47

If such passwords are sent in their original format, it is possible for a third-party website to capture or log48

such passwords, thereby violating their secrecy and allowing for malicious use. Submitting passwords49

for validation in a hashed form still contains a number of security problems. Firstly when a password is50

successfully found to be in a blacklist, it can be possible to correlate a given password to a user based on51

characteristics of the request such as IP Address or browser signature (Eckersley, 2010). Even where a52

hash is not found in a database, such as a hash can be stored for later analysis; the stored hash can later be53

compromised if a later disclosure results in an identical hash or, if the hashing algorithm itself is found to54

be vulnerable, the plain-text may be identified.55

In this paper, an approach is presented to allow clients to anonymously check whether a password is56

in a database of breached passwords without needing to download the entire database. Password hashes57

are pre-processed such that they can be queried in ranges, this allows a client to check if their password is58

in a database of leaked passwords by only submitting the first few characters of the password hash. An59

algorithm is proposed to discover the maximum length of the hash prefix that can be searched for such60

that the query holds the property of k-anonymity. An implementation is built using the Go programming61

language, with the processed data stored in a SQLite database. By running this implementation on a list62

of over 320 million breached passwords, we are able to evaluate the practicality of using the resulting63

data set. We find that the result size of any query is small enough for a large variety of practical use-cases,64

whilst still maintaining anonymity for the original password hash that is queried.65

1 RELATED WORK66

1.1 Mechanisms for Deterring Password Reuse67

Das et al. (2014) discusses how client-side password hashing can be used to generate unique passwords68

for different websites, thus helping mitigate the risk of password reuse; this work is similar in spirit,69

however does not itself help to identify when a password has been compromised through a breach. The70

work also requires the user to install a browser extension themselves instead of allowing a website or an71

application developer to themselves take steps to help protect users of password reuse.72

Jenkins et al. (2014) discusses mechanisms for preventing password reuse and proposes analyzing73

changes in typing patterns to detect password reuse. The authors propose they are able to detect password74

reuse with 81.71% accuracy; upon detecting password reuse a just-in-time fear appeal is used to persuade75

the user to select a different password. They find that 88.41% of users who received the fear appeal later76

set unique passwords, whilst only 4.45% of users who did not receive a fear appeal would set a unique77

password. This work demonstrates that it is advantageous to alert users to password reuse, however the78

proposed mechanism still has a non-trivial margin of error. Further; when a password is auto-filled using79

a client-side password manager, typing patterns cannot identify password reuse (as the user does not enter80

in the password themselves).81

Campbell et al. (2011) discusses the impact of imposing restrictive password composition rules on82

the password choices made by users; websites can impose restrictive policies on how passwords can be83

formed (such as requiring a minimum number of special characters or utilization of upper case characters),84

the authors consider whether these enforcement policies make positive impact on users password behavior.85

By performing user research, the paper considers the implication of password composition rules on the86

resulting password. The research largely discredits the use of password composition rules, finding they87

do not make any particular difference to human behavior. With specific regard to password reuse, the88

research does not support the proposition that password composition rules decrease password reuse.89

Bonneau et al. (2012) extensively considers a vast quantity of alternative authentication mechanisms90

to act as alternatives to passwords; despite a wide-ranging search, the authors fail find an alternative91

to password authentication on the basis that such mechanisms do not retain the full set of benefits that92

passwords offer. The authors claim that as a result of failing to consider a sufficiently wide range of93

real-world constraints, many academic proposals have failed to gain traction. Gaw and Felten (2006)94

finds a gap between the technology available to limit password reuse and it’s utilization. Even amongst a95

well-connected, well-educated technologically savvy demographic their was still trouble understanding96

the nature of attacks against reused passwords and the sampled users rarely utilized technology such as97

password managers to aid in limiting password reuse. Further, Gaw and Felten (2006) demonstrated98

that password reuse becomes a greater problem as users acquire more accounts accounts online, as more99

accounts can result in greater password reuse.100
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1.2 Hash Functions101

Given an arbitrary input x and a hash function h(input), h(x) produces an output c such that it is102

computationally difficult to find x whilst knowing only the details of the function h and the output c (Naor103

and Yung, 1989).104

The Avalanche Effect is a property of ideal hashing algorithms, whereby a tiny change in the input105

will result in a substantial change in the cipher text (Yang et al., 2017). This property means that a small106

change in the input of a hash algorithm can result in a completely different output, further, this property107

helps ensure that the input of a given hash cannot be evaluated from the hash of a similar input.108

Menezes et al. (1996) notes Collision Resistance as another such property of hash algorithms. This109

property requires that it be computational difficult to find 2 distinct inputs, x and x′, such that the resulting110

hashes have identical outputs; i.e. h(x) = h(x′). Note that as hash algorithms have a fixed size of output111

and an arbitrarily sized input, due to the Pigeonhole principle, it is inevitable that such collisions will112

occur (Paar and Pelzl, 2010).113

Hashing algorithms are deterministic; let y = h(x), no matter how many times h(x) is run, the value114

of y will be the same each time. Lists of commonly used passwords can be hashed and stored in large115

databases, such databases (Rainbow Tables) can be used to rapidly find plain-text passwords from hashes116

(Kumar et al., 2013). In order to mitigate this risk, the plain-text can be concatenated with a random salt117

prior to hashing in order to make pre-computation more difficult; the hash and the salt are then stored for118

later use. When the hash needs to be regenerated in order to compare a user input to the original hash, the119

new hash is generated by concatenating the user-input with the same salt. Password hashing algorithms120

such as BCrypt (Provos and Mazieres, 1999) or PBKDF2 (Visconti et al., 2015) incorporate mechanisms121

to salt passwords; for example, PBKDF2 will repeatedly hash a password for a number of iterations and122

each time the hashing process is repeated, the salt is suffixed to the end of the output of the last round of123

hashing. These password hashing schemes are used as the additional complexity in deriving the resulting124

hash means additional computational complexity can be required to break a given hash, dependent on the125

algorithm used. Whilst such algorithms exist, as password leaks have demonstrated, they are frequently126

insecurely implemented (Ruoti et al., 2016) or not implemented at all with passwords being stored in127

plain-text (Bauman et al., 2015).128

1.3 Anonymization of Data129

Ghinita et al. (2007) discusses the use of k-anonymity and l-diversity as a mechanism for preserving130

the privacy of an individual’s record whilst releasing workable datasets. One such utility of exposing131

such information is for hospitals to be able to release patient information for medical research. The132

k-anonymity model states that for every record in a released table there should be k− 1 other records133

identical to it. k-anonymity is often achieved by generalization (such as truncating a phone number) or134

suppression (hiding fields entirely). The concept of l-diversity builds upon this by requiring that each135

equivalence class has at least l ”well-represented” values for the sensitive attribute. Machanavajjhala136

et al. (2007) provides three possible definitions for how an equivalence-class can be well-represented, the137

simplest definition (Distinct l-diversity) requires there be at least l distinct values for the sensitive field138

in each equivalence class. Despite the introduction of l-diversity, k-anonymity remains a useful concept139

and is suitable in cases where the sensitive attribute is omitted or implicit, Ghinita et al. (2007) cites an140

example of this being a database containing information of convicted people with the crimes omitted.141

Ghinita et al. (2007) is of relevance to this work, as it covers the anonymization of one-dimensional142

identifiers. Whilst this work uses one-dimensional identifiers as quasi-identifiers (that are derived from143

multi-dimensional data), instead our use-case purely concerns the anonymization of hashes which are144

themselves a one-dimensional dataset. Xiao and Tao (2006) proposes an l-anonymization mechanism145

called Anatomy that works by hashing records into different buckets (based on their Sensitive Attribute)146

and partitions the data by randomly selecting l records from distinct buckets.147

2 IMPLEMENTATION148

For our implementation; we seek to provide an API service which allows remote web services and clients149

to validate whether a password is or is not in a database of leaked passwords, without ever needing to send150

the password itself. In order to achieve this anonymity, a Range Query can be used such that the client151

will request all passwords in a particular search range. This Range Query will return multiple matching152

results, from here the client is able to determine if one of the passwords that is returned is identical to the153
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password supplied by the user. An interceptor or the operator of the API service cannot themselves tell154

if the client queried for a password that was breached, as the only query was for a range of data (that is155

associated to multiple possible entries).156

2.1 Mitigating Background Knowledge Attacks157

In anonymizing text data, it is possible to infer attributes about the contents based on the search query.158

For example; a search request is put to the API service for all leaked passwords starting with ”8StJoh”159

and it is known the requester resides at the address ”8 St Johns Road”, it is possible to infer the password160

even if it is not in the database of leaked passwords itself. This is a known restriction in k-anonymity and161

has been discussed extensively in Machanavajjhala et al. (2007) where l-diversity is proposed in order162

to help mitigate such Background Knowledge Attacks. As such, it is important to ensure the ranges of163

passwords queried do not become quasi-identifier attributes themselves.164

As a result of the Avalanche Effect, when highly-similar plain-text values are hashed they can result165

in completely different hash values. This has the benefit of ensuring that when searching for a particular166

range of hashes, the results do not necessarily have anything which connects the values together. For167

example; should we query all hashes which start with the hexadecimal value 0FF56, the resulting168

hashes do not necessarily have a common meaning in plain-text. As such, we can mitigate a variety of169

Background Knowledge Attacks by simply processing every plain-text password in the database through170

a hash algorithm which is known to maintain the Avalanche Effect property (Yang et al., 2015).171

Note that unlike when passwords are normally hashed, the aim here is not to ensure that the hashed172

passwords cannot be restored to their plain-text. These values can be hashed without the need for salting173

or using password derivation functions like BCrypt (Provos and Mazieres, 1999). The plain-text values of174

these passwords is already known as they have been previously leaked and uniquely salting the passwords175

would make it impractical for them to be searched. The purpose of hashing the passwords here is to176

prevent the plain-text used in the Range Query from becoming a quasi-identifier attribute. It is to ensure177

that a particular Range Query of passwords doesn’t correlate to any underlying meaning in the plain-text.178

2.2 Distributing Hashes into Buckets179

For hashes to be able to be easily queried by third-party services, they are split into buckets which consist of180

a set of hashes. Let S = {h1,h2,h3, . . . ,hS} where S represents a set of password hashes and let l represent181

the minimum amount of hashes in an individual bucket. Our aim is to find A = {b1,b2,b3, . . . ,bn} such182

that bn ⊂ S whilst ∑
|A|
i=1 bi = |S| and |bn| ≥ l.183

Friedman et al. (2006) discusses how a decision tree can be used for searching a dataset whilst184

maintaining k-anonymity. In this instance, as we are anonymizing one-dimensional data, it is possible185

to implement a tree structure to allow third-parties to search for password hashes so long as any search186

query will return a multiple hashes.187

Take the example of a crude theoretical hashing algorithm that produces it’s output as an integer188

between 1 and 30, with the breached hash values stored in a decision tree of a similar structure to Fig. 1.189

The service is exposed via an API service; when a consumer wishes to run a query to check whether a190

given hash is in the database, they will first submit an API call an endpoint which will return the range191

of hashes available in the database and will state which questions the client needs to answer in order to192

continue the search. This decision tree will continue until the query achieves it’s desired level of accuracy,193

at which point the complete set of hashes matching that query is returned.194

1≤n≤30

≤15

1,2,5,7,14,15

>15

≤23

16,17,20,23

>23

24,27,30

Figure 1. Example Decision Tree
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As the number of hashes stored in the decision tree increases, in order reduce the amount of values195

returned by the leaf nodes, the depth of the decision tree must also increase. B-Tree is a simple example196

of a decision tree; with n items, the longest path of a B-Tree of order d is at most logd n nodes (Comer,197

1979). Whilst logn difficulty can be considered small for many applications, it is important to note that at198

each decision point an API call will need to be made. Where Internet connections have high latency (such199

as in developing countries or for those over mobile connections) multiple API requests can be incredibly200

slow, especially when performed in a web browser using JavaScript, and therefore this approach was not201

suitable.202

A similar approach could be to provide a map file which flattens a tree structure into a single index203

file, an example of the data tree Fig. 1 represented in a flat file format is demonstrated in Fig. 2.204

1.txt: 1 ≤ n ≤ 15

2.txt: 15 ≤ n ≤ 23

3.txt: 23 ≤ n ≤ 30

Figure 2. Example Flattened Tree

As a greater number of hashes are added, instead of the tree depth increasing, the size of the index file205

would increase. In other words, we’d simply be trading a large amount of API requests for a single, but206

significantly larger, index file. Decreasing the index file would require an increase in the order of the tree207

itself (thereby increasing the amount of hashes stored in an individual leaf). As a result this solution also208

seemed impractical.209

By allowing the client to itself perform the generalization of a password hash, we would eliminate the210

need for there to be a tree entirely. Instead the client would not need to follow a decision tree and instead211

would itself know how a given hash should be generalized for anonymity. For this to occur, the client212

would apply a generalization to the user-supplied password and request all hashes which matched the213

same generalization.214

One mechanism of doing this would be through performing arithmetic operations on the hashes.215

Firstly the database is pre-processed by calculating the minimum possible numeric value of a hash216

in the database alongside the maximum numeric value. For the final step in the pre-processing, we217

calculate the maximum distance between l values in the entirety of the dataset and this becomes our218

step value. This data is presented in an index file for the API, an example structure is shown in219

Fig. 3. In order to determine which hashes are then split into which files, a simple formula is used:220

f ile = ⌊(largestHash− smallestHash)/step⌋+1.221

Start: 5

End: 25

Step: 5

Figure 3. Example Index File

When a client wishes to check if their hash is in a given database, they can generalize their hash by222

re-running the formula locally, with the appropriate values obtained from the APIs index file. They then223

perform another API request to obtain all password hashes listed in the same file as the generalization and224

can locally validate if any of these hashes match the user provided password. Whilst this approach seems225

promising, there is still a significant drawback. Hashes typically are large numbers, outside the maximum226

integer value of a variety of programming languages and as such, developers would need to implement227

Big Integer libraries to perform such calculations.228

A simpler alternative to anonymize hash data is to instead truncate the hashes such that the a query229

is made to an API service on the basis of prefix of a hash. This idea is not completely novel, this230

concept is briefly discussed in Lu and Tsudik (2010) and Manweiler et al. (2009). Lu and Tsudik231

(2010) proposes an alternative Domain Name System for the Internet which utilizes Distributed Hash232

Tables. In essence, clients retrieve all values whose hash value matches a Hash Prefix, thereby achieving233
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anonymity. Manweiler et al. (2009) also discusses the utilization of Hash Prefixes to preserve k-anonymity234

when sending messages in location-based social networks. Neither of these concepts consider to the235

anonymization of password hashes and therefore the work in determining the prefix length is not applicable236

to this use-case.237

This approach can be implemented in a relatively simple way. Suppose a user enters the password test238

into a login form and the service they’re logging into is programmed to validate whether their password is239

in a third-party database of leaked password hashes. Firstly the client will generate a hash (in our example240

using SHA-1) of a94a8 f e5ccb19ba61c4c0873d391e987982 f bbd3. The client will then truncate the hash241

to a predetermined number of characters (for example, 5) resulting in a hash prefix of a94a8. This hash242

prefix is then used to query the remote database for all hashes starting with that prefix (for example, by243

making a HTTP request to example.com/a94a8.txt). The entire hash list is then downloaded and each244

downloaded hash is then compared to see if any match the locally generated hash. If so, the password is245

known to have been leaked.246

Determining Hash Prefix Length247

A critical decision to make, prior to anonymizing data, is the length of the Hash Prefix that is used for248

clients to be able to search the database. For a range of password hashes to hold the property of l-diversity,249

there must be at least l distinct password hashes which start with the same Hash Prefix. When every Hash250

Prefix in the entire password database holds the property of l-diversity, the entire database can be said to251

have l-diversity (Li et al., 2007).252

Algorithm 1 demonstrates a simple algorithm to find a Maximum Hash Prefix Length that ensures253

every Hash Prefix represents at least more than one hash from the entire dataset. This algorithm uses a254

method defined in Algorithm 2 for determining the similar prefix between two individual hashes. The first255

step that Algorithm 1 performs is order all hashes in alphabetical order, this allows for rapid checking256

to find the similarity in the prefix of two hashes as the program only needs to look at two other values257

instead of searching the entire text to locate another hash with the same prefix. This property helps save258
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memory utilization when dealing with large sets of hashes.259

Data: passwordHashes

Result: prefixLength

S = {};

prefixLength = 40;

// Default prefix length set to SHA-1 hash length

passwordHashes = sortAlphabetically(passwordHashes);

while passwordHashes as hash do

Sn = hash;

if |S| == 3 then

A = similarPrefix(S1, S2);

B = similarPrefix(S2, S3);

similarity = max(A, B);

if similarity < prefixLength then

prefixLength = similarity;

end

delete(S1);

end

end

Algorithm 1: Calculate Truncation to Anonymize Hashes

260

Function SimilarPrefix(a, b):

for length = 0; length ≤ length(a); length+1 do

aPrefix = truncate(a, length);

bPrefix = truncate(b, length);

if aPrefix == bPrefix then

similarity = length;

continue;

end

break;

end

return similarity;

return

Algorithm 2: Similar Prefix Method

261

Distributing Hashes into Buckets by Prefix262

With the Hash Prefix length determined, we use Algorithm 3 to group every password hash together by263

their respective Hash Prefix. This algorithm takes input with a set of password hashes and the desired264

truncation length that’s required.265

Data: passwordHashes, truncationLength

Result: results

results = {};

while passwordHashes as hash do

n = truncate(hash, truncationLength);

// Hash Prefix is stored in n

resultsn.insert(hash);

// Hash Prefix (n) stored in results set, with individual hashes

stored as a subset (in resultn)

end

Algorithm 3: Generate Anonymized Hash Information

266

In Algorithm 3, we create a set results which contains Hash Prefix values. Each of these Hash Prefix267

values act as sets which then contain a subset consisting of the hashes associated to the relevant Hash268

Prefix.269
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Open Questions270

We have covered a theoretical approach for performing a Range Query by using a Hash Prefix; however,271

there still remain a number of open questions. Consider the distribution of the hashes, if password hashes272

are overwhelmingly more likely to start with one particular Hash Prefix over others, this leaves potential273

for a number of problems. A Range Query which returns a small amount of hashes for for one prefix274

may instead return a vast number of hashes for another Hash Prefix. If this is the case, we would have275

to consider an implementation approach which also utilizes an alternative search mechanism for further276

filtering (such as a Decision Tree). In order to determine whether distribution is a problem, we can277

evaluate the implementation on a trial dataset.278

EVALUATION279

To evaluate the performance of Algorithms 1 and 3, we build an implementation that processes Hunt280

(2017), a list of over 320 million leaked passwords. The passwords already come hashed using the SHA-1281

algorithm, saving a step.282

With the hashed passwords collected in a simple text file, the hashes are pre-processed to ensure all the283

values are unique and additionally to sort the hashes into ascending alphabetical order such that Algorithm284

1 can work effectively. The output of this pre-processing is passed into a text file which contains the285

320,335,236 hashes.286

An implementation is created for Algorithm 1 which works by starting up one process which reads287

hashes piped into the program and passes them down a channel. A separate worker process then iterates288

through the values in the channel and calculates how similar the prefix of any individual hash is to any289

other hash in the dataset. Any time a given hash has a common prefix which is shorter in length than the290

previous shortest common prefix, the value is recorded. After the program has finished execution we find291

out the Maximum Hash Prefix Length of the password hashes. If every password hash was truncated to292

the Maximum Hash Prefix Length, no truncated hash would be unique.293

Note that we concurrently read hashes from the text file into the channel, whilst running the worker294

to run calculations. As the file containing all the hashes measures 12.86GB it is impractical on most295

computers to load the entire file into memory prior to processing. As a result, we feed the contents of the296

file into a channel and the worker processes the values as they are loaded, thus reducing the amount of297

hashes that need to be stored in memory at a particular time. The software to perform the evaluation was298

written in Go due to the level of ease of introducing concurrency into a program.299

With the Hash Prefix Length determined, it is then possible to run Algorithm 3 to actually group300

together hashes by their prefix. The simplest implementation for this would be to write a text file for each301

Hash Prefix containing a list of all hashes associated to that prefix. For instance; a file called 19FCF.txt302

would contain all hashes starting with 19FCF .303

At first glance, this seems like an elegant and practical solution. These files could be placed on a web304

server in static format, then when a third party wishes to run a query on the basis of a given Hash Prefix,305

they simply send a HTTP query for where the file should exist (e.g. example.com/191FCF.txt) and if the306

file exists, the client checks to see if any of the hashes within the text file match the local hash.307

This approach can rapidly become impractical as the number of Hash Prefix increases in size. As308

hexadecimal contains 16 distinct symbols, the total amount of possible files where the Hash Prefix is 4309

characters long is 164 = 65,536. This seems manageable, but when the Hash Prefix is increased to 5310

the total amount of possible files becomes 165 = 1,048,576 and when the Hash Prefix is raised to 6 the311

possible amount of files becomes 166 = 16,777,216. File management tools can struggle to handle such312

a vast quantity of files and, without adopting a directory structure, file systems can even reach their limit313

for the number of files in a single directory.314

As an alternative, it is possible to create a simple 2 column database structure which connects Hash315

Prefixes to individual hashes. For the database system, our implementation uses SQLite which acts as an316

embedded database with all the data stored in a single binary file. As a hash should only need to be stored317

once throughout the database, a unique property can be applied to the database column. Additionally to318

accelerate the searching of hashes when querying by the Hash Prefix, an index can be set-up on the Hash319

Prefix column.320

To expose this SQLite database as an Internet API service, a simple web application can be created to321

receive a Hash Prefix from a HTTP GET request and query the SQLite database for all corresponding322
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hashes which start with that prefix. The hashes can then be returned in plain-text or in a format like JSON.323

Should performance become a constraint, HTTP caching can be used as necessary.324

RESULTS325

Upon running Algorithm 1 on Hunt (2017), the ideal Maximum Hash Prefix Length was found to be 5.326

Comparison of the first 2 hashes found the common Hash Prefix size to be 8, though this incrementally327

decreased to 7, then 6 and eventually 5 as the dataset was processed further.328

We therefore set the Hash Prefix size to 5 when running Algorithm 3. Splitting the hashes into buckets329

by Hash Prefix would mean a maximum of 165 = 1,048,576 buckets would be utilized, assuming that330

every possible Hash Prefix would contain at least one hash. In the final dataset we found this to be the case331

and the amount of distinct Hash Prefix values was equal to the highest possible quantity of buckets. Whilst332

for secure hashing algorithms it is computationally inefficient to invert the hash function, it is worth noting333

that as the length of a SHA-1 hash is a total of 40 hexadecimal characters long and 5 characters is utilized334

by the Hash Prefix, the total number of possible hashes associated to a Hash Prefix is 1645 ≈ 8.40×1052.335

The Hash Prefix EDC9E had the fewest amount of hashes associated to it at 215 hashes, by contrast336

the Hash Prefix with the largest amount of hashes associated to it was 00000 which had 420 hashes337

associated to it. The median amount of hashes associated to a given Hash Prefix was 305, the mean338

amount was also 305 hashes.339

The Hash Prefix 00000 contained 25 more hashes than the second largest Hash Prefix (2456B which340

was associated to 395 hashes). It can be expected for the 00000 Hash Prefix to contain the most amount341

of hashes, as small hash values are left-padded with 0s to ensure the hexadecimal strings are 40-characters342

long. Despite this, the largest hash bucket was only 95% larger than the smallest, with the largest Hash343

Prefix still containing few enough hashes for relatively fast computational evaluation. Depending on the344

Hash Prefix, each bucket of hashes can range from 8.6KB to 16.8KB in size, with the median size being345

12.2KB.346

Whilst not directly relevant to this evaluation; it may be of interest to note that if hashes are truncated347

to a single character (i.e. the Hash Prefix becomes only the first character of the hash), the Hash Prefix F348

becomes the most common (containing 20,104,332 hashes), with 3 being the least common (containing349

19,905,086 hashes). The distribution of hashes by their first character is demonstrated in Fig. 4. In this350

configuration, the difference between the hashes associated to the largest and the smallest Hash Prefix351

was ≈ 1%.352

Figure 4. Number of Hashes by their First Character
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CONCLUSION353

Password reuse poses a significant threat to the integrity of password authentication systems, however so354

far no alternative authentication systems have been developed which retain the complete set of benefits355

offered by password authentication. Additionally, restrictive password composition rules have been356

proven ineffective at mitigating password reuse. Even the most technologically-educated users are often357

unequipped to understand the risks of passwords reuse, however just-in-time fear appeal have had success358

at persuading users to replace breached passwords. Recent security standards have caught up with this359

knowledge, with the U.S. National Institute of Science and Technology adding requirements to dissuade360

users from reusing passwords in authentication standards.361

Lists of passwords obtained from data breaches have been published on the Internet, however in order362

for users to check whether their password has been leaked they must either trust a third-party site with363

their password or download the entire database of leaked passwords and check whether it contains their364

leaked password. Hashing of passwords provides limited security benefits in this context, as the input365

hash needs to be compared to a database, password hashes cannot be protected using unique salts.366

This paper presents a mechanism for providing a service to validate whether a password has been367

in a data breach by using an anonymized version of the password hash. An implementation is designed368

for password hashes to be generalized to hold property of k-anonymity. The implementation performs369

generalization by truncating all password hashes to a specific length until any individual password hash is370

indistinguishable from at least one other generalized hash. The original password hashes are then grouped371

together by their generalization. Remote consumers are able to request all hashes associated to a particular372

generalization.373

For a client to evaluate whether a password has been breached, they will locally generalize a password374

hash by truncating it and will then query a remote service for all password hashes which start with the375

same prefix. From here the client can then locally validate whether their own password hash matches any376

of the hashes provided by the remote service.377

This implementation is evaluated on a dataset of over 320 million breached passwords and we find the378

Maximum Prefix Length that all hashes can be truncated to, whilst maintaining the property k-anonymity,379

is 5 characters. When hashes are grouped together by a Hash Prefix of 5 characters, we find the median380

amount of hashes associated to a Hash Prefix is 305. With the range of response sizes for a query varying381

from 8.6KB to 16.8KB, the dataset is usable in many practical scenarios.382

Further work can consider how the uneven usage distribution of leaked passwords can impact k-383

anonymity when searching for a hash which is connected to a previously leaked password. Additionally,384

it can be of use to see how password security notifications affect completion rates of a website sign-up385

forms. There is potential to explore these topics in greater detail in further work.386
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