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ABSTRACT13

The ascomycete pathogen Sclerotinia sclerotiorum is a necrotrophic pathogen on over 400 known host

plants, and is the causal agent of white mold on dry bean. Currently, there are no known cultivars of dry

bean with complete resistance to white mold. For more than 20 years, bean breeders have been using

white mold screening nurseries with natural populations of S. sclerotiorum to screen new cultivars for

resistance. It is thus important to know if the genetic diversity in populations of S. sclerotiorum within

these nurseries a) reflect the genetic diversity of the populations in the surrounding region and b) are

stable over time. Furthermore, previous studies have investigated the correlation between mycelial

compatibility groups (MCG) and multilocus haplotypes (MLH), but none have formally tested these

patterns. We genotyped 366 isolates of S. sclerotiorum from producer fields and white mold screening

nurseries surveyed over 10 years in 2003–2012 representing 11 states in the United States of America,

Australia, France, and Mexico at 11 microsatellite loci resulting in 165 MLHs. Populations were loosely

structured over space and time based on analysis of molecular variance and discriminant analysis of

principal components, but not by cultivar, aggressiveness, or field source. Of all the regions tested, only

Mexico (n=18) shared no MLHs with any other region. Using a bipartite network-based approach, we

found no evidence that the MCGs accurately represent MLHs. Our study suggests that breeders should

continue to test dry bean lines in several white mold screening nurseries across the US to account for

both the phenotypic and genotypic variation that exists across regions.
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INTRODUCTION31

Sclerotinia sclerotiorum (Lib.) de Bary is an ascomycete plant pathogen with a worldwide distribution32

(Bolton et al., 2006). This is a necrotrophic pathogen that is primarily homothallic (self-fertilization)33

and has the ability to survive for more than five years in soil using melanized survival structures called34

sclerotia (Bolton et al., 2006; Sexton et al., 2006). It causes disease on more than 400 plant species35

belonging to 75 families (Boland & Hall, 1994) including crops of major economic importance such as36

sunflower (Helianthus spp.), soybean (Glycine max L.), canola (Brassica napa L., Brassica campestris37

L.), and dry bean (Phaseolus vulgaris L.) (Bolton et al., 2006).38

On dry bean, S. sclerotiorum is the causal agent of white mold, a devastating disease that can be yield-39

limiting in temperate climates (Steadman, 1983). All above-ground tissues (flowers, stems, leaves, pods)40

are susceptible to infection, first appearing as wet lesions with white mycelial tufts, and then bleaching41

as the tissue senesces (Steadman, 1983; Bolton et al., 2006). For many years, white mold has been the42

most serious dry bean disease in the Northwestern United States (Otto-Hanson et al., 2011; Knodel et al.,43

2012, 2015, 2016). The impact of white mold on the dry bean industry in the Northwestern United States44
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alone has been estimated at a loss of 140 kg/ha with just 10% disease incidence (Ramasubramaniam et al.,45

2008).46

Currently, there are no commercially available resistant cultivars of dry bean (Otto-Hanson et al.,47

2011). Organized breeding efforts have used a common-garden approach with white mold screening48

nurseries in dry bean production areas across the United States with additional sites in Australia, France,49

and Mexico (Steadman et al., 2003, 2004, 2005, 2006; Otto-Hanson & Steadman, 2007, 2008; McCoy &50

Steadman, 2009). These white mold screening nurseries use no chemical or cultural treatments against S.51

sclerotiorum and employ standardized protocols for screening new cultivars for resistance to white mold52

(Steadman et al., 2003; Otto-Hanson et al., 2011). These protocols included three established cultivars53

used for comparison in the trials: Beryl (great northern bean, susceptible), Bunsi (a.k.a. Ex Rico, navy54

bean, low susceptibility), and G122 (cranberry bean, partial resistance) (Tu & Beversdorf, 1982; Steadman55

et al., 2005; Otto-Hanson et al., 2011). It was previously shown that aggressiveness (the severity of disease56

symptoms on the host) is significantly different across white mold screening nursery sites in separate57

geographic regions (Otto-Hanson et al., 2011). The genetic structure and mode of reproduction in these58

populations, however, is currently unknown.59

Understanding genetic relationships and reproduction behavior of S. sclerotiorum populations is60

beneficial for breeders seeking to develop new resistant cultivars for worldwide deployment (Milgroom,61

1996; McDonald & Linde, 2002). In particular, genetically diverse populations with high rates of sexual62

reproduction are more likely to overcome host resistance. Most populations of S. sclerotiorum are63

predominantly clonal with low genetic diversity and have a large degree of population fragmentation64

(Kohli et al., 1995; Cubeta et al., 1997; Kohli & Kohn, 1998; Carbone & Kohn, 2001; Ekins et al., 2011;65

Attanayake et al., 2012). Some studies, however have found populations that show signatures of sexual66

reproduction (Atallah et al., 2004; Sexton & Howlett, 2004; Attanayake et al., 2013; Aldrich-Wolfe et al.,67

2015).68

Nearly all population genetic studies of S. sclerotiorum employ a macroscopic assay to determine69

mycelial compatibility, the ability for fungal hyphae from different colonies to appear to grow together70

without forming a barrier of dead cells between them (known as a barrage line, Fig. S1B) (Leslie, 1993;71

Sirjusingh & Kohn, 2001). Mycelial compatibility has been used as a proxy for vegetative compatibility,72

a fungal trait controlled by several independent genes controlling the ability for two hyphae to fuse and73

grow as a single unit (Fig. S1A) (Leslie, 1993; Schafer & Kohn, 2006). Because of the genetic connection74

to vegetative compatibility, two isolates that are mycelially compatible were considered clones (Leslie,75

1993); but correlation with genetic markers, such as microsatellites, have shown inconsistent results (Ford76

et al., 1995; Micali & Smith, 2003; Jo et al., 2008; Attanayake et al., 2012; Papaioannou & Typas, 2014;77

Lehner et al., 2017). Thus, the relationship between mycelial compatibility groups and clonal genotypes78

remains unclear.79

In the present study, we analyze and characterize the genetic and phenotypic diversity of 366 S.80

sclerotiorum isolates collected between 2003 and 2012 from dry bean cultivars among different geographic81

locations in the Australia, France, Mexico, and the United States. We wanted to know if the S. sclerotiorum82

populations from white mold screening nurseries were representative of the producer fields within the83

same region. As these nurseries were not treated with any chemical or cultural control of white mold, we84

hypothesized that these nurseries would represent the natural population of S. sclerotiorum. Furthermore,85

we wanted to investigate the potential effect of cultivar on genetic diversity of the pathogen by assessing86

three dry bean cultivars with different levels of resistance, Beryl (great northern bean, susceptible),87

Bunsi (navy bean, low susceptibility), and G122 (cranberry bean, partial resistance) (Otto-Hanson et88

al., 2011). We additionally wanted to determine categorical or phenotypic variables that best predicted89

genetic structure and if there was correlation between multilocus haplotype and mycelial compatibility90

group. Knowing what variables predict genetic structure can help direct breeding efforts. By investigating91

these aims, we will effectively describe the population structure of S. sclerotiorum in the USA and make92

available our database of isolates for use in future dry bean breeding efforts.93

MATERIALS AND METHODS94

Isolate collection95

Several (156) of the isolates used for this study were collected as reported in previous studies using96

the same methods (Otto-Hanson et al., 2011). Broadly, isolates were collected from two sources: white97

mold screening nurseries (wmn) or producer fields. White mold screening nurseries were 5m x 10m in98
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size and maintained without application of fungicides to observe natural incidence of white mold. The99

early nursery plots were incorporated with a basal dressing of N:P:K = 1:3:2 and side dressing of 0:3:2100

during the growing season (Steadman et al., 2003).101

Sampling was carried out by collecting sclerotia from diseased tissue in zig-zag transects across field102

plots. Because sampling depended on disease incidence, the number of samples isolated varied from103

year to year. Although the nursery locations were the same over sampling years, sampling plots within a104

location varied for sampling years.105

Sclerotia of S. sclerotiorum were collected over several years from grower fields and/or wmn in 11106

states of the Australia, France, Mexico, and the United States (Table S1). After collection, sclerotia were107

stored in Petri plates lined with filter paper, then stored at 20 ◦F or -4 ◦C. Sclerotia were surface-sterilized108

with 50% Clorox bleach (at least 6% NaOCl, The Clorox Company, Oakland, CA) solution for 3 min,109

and double rinsed with ddH2O for 3 min. The sterilized sclerotia were then placed on water agar plates110

(16g of Bacto agar per liter of ddH2O, BD Diagnostic Systems, Sparks, MD), with four to five sclerotia of111

each isolate separated on each plate and stored on the counter top at room temperature for 5 to 6 days.112

An 8-mm plug from a 5- or 6-day-old culture was transferred from the advancing margin of the mycelia113

onto a plate of Difco potato dextrose agar (PDA at 39 g/liter of ddH2O) (Otto-Hanson et al., 2011). In114

combination with the 156 isolates described previously, we collected 210 isolates for a total of 366 isolates115

(Otto-Hanson et al., 2011).116

Mycelial compatibility117

MCG was determined as described previously through co-culturing pairs of 2-day-old isolates 2.5118

cm apart on Diana Sermons (DS) Medium (Fig. S1) (Cubeta et al., 2001). Incompatibility of different119

MCGs resulted in formation of a barrage line accompanied by formation of sclerotia on either side of the120

barrage line, indicating the limits of mycelial growth (Kohn et al., 1990; Leslie, 1993; Otto-Hanson et121

al., 2011). Isolates were compared in a pairwise manner for each site and then representatives among122

sites were compared to determine mycelial compatibility groups by scoring compatible and incompatible123

interactions (Otto-Hanson et al., 2011). No MCGs were compatible with any other MCG.124

Aggressiveness125

Aggressiveness of each isolate was assessed using a straw test as described in Otto-Hanson et al.126

(2011) that rated necrotic lesion size (Petzoldt & Dickson, 1996; Teran et al., 2006). Briefly, the straw127

test uses 21-day-old G122 plants as the host in a greenhouse setting. Clear drinking straws cut to 2.5 cm128

and heat sealed were used to place two mycelial plugs of inoculum on the host plant after removing plant129

growth beyond 2.5 cm above the fourth node. Measurements of the necrotic lesion were taken 8 days later130

using the Modified Petzoldt and Dickson scale of 1–9, where 1 is no disease and 9 is plant death (Petzoldt131

& Dickson, 1996; Teran et al., 2006).132

Microsatellite genotyping133

Prior to DNA extraction, isolates were grown on PDA and plugs were subsequently transferred to134

Potato Dextrose Broth (PDB) where they were grown until there was significant mycelial growth, but135

before the mycelial mat became solidified (4–5 days). Each mycelial mat was collected in a filtered136

Büchner funnel, agar plugs removed, lyophilized and pulverized manually in Whirl-pak R© HDPE sampling137

bags (Sigma-Aldrich, St. Louis, MO). Lyophilized mycelia was then stored in microcentrifuge tubes at138

-20 ◦C until needed for DNA extraction. DNA from 25mg of pulverized mycelia was purified using a139

phenol-chloroform extraction method followed by alcohol precipitation and evaporation, suspending the140

DNA in 200µl TE (Sambrook et al., 1989). Suspended DNA was stored at 4 ◦C until genotyping.141

We genotyped each S. sclerotiorum isolate using 16 microsatellite primer pairs developed previously142

(Sirjusingh & Kohn, 2001). PCR was carried out as described previously, using primers labeled with143

FAM fluorophore. Resulting amplicons were first resolved in a 1.5% agarose gel stained with ethidium144

bromide to ensure product was within the expected size range prior to capillary electrophoresis. Capillary145

electrophoresis (fragment analysis) of amplicons, with size standard GeneScanTM 500 LIZ R©, was146

performed using an ABI 3730 genetic analyzer (Life Technologies Corporation, Carlsbad, CA) at the147

Michigan State University Genomic Sequencing Center (East Lansing, MI). Alleles were scored using148

PeakScanner version 1.0 (Life Technologies Corporation, Carlsbad, CA) and recorded manually in a149

spreadsheet.150
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Data processing and analysis151

All data processing and analyses were performed in a Rocker “verse” project container running R ver-152

sion 3.4.2 (Boettiger & Eddelbuettel, 2017; R Core Team, 2017) and are openly available and reproducible153

at https://github.com/everhartlab/sclerotinia-366/. Of the 16 microsatellite loci154

genotyped, five included compound repeats, which made it challenging to accurately/confidently bin alle-155

les into fragment sizes expected for each locus based on the described repeat motif. Loci with compound156

repeats were removed for the reported statistics. To ensure the integrity of the results we additionally157

processed these loci and included them in concurrent analyses. We assessed the power of our 11 markers158

by generating a genotype accumulation curve in the R package poppr version 2.5.0, looking for evidence159

of saturation, which would indicate that loci were sufficiently sampled to adequately represent the full set160

of haplotypes (Arnaud-Hanod et al., 2007; Kamvar et al., 2015). To avoid including isolates potentially161

collected from the same plant (which increases the probability of collecting sclerotia from the same point162

of infection more than once), data were clone-corrected on a hierarchy of Region/Source/Host/Year—163

meaning that duplicated genotypes were reduced to a single observation when they were collected in the164

same year from the same host cultivar located in the same source field (wmn or producer)—for subsequent165

analysis. We assessed haplotype diversity by calculating Stoddart and Taylor’s index (G) (Stoddart &166

Taylor, 1988), Shannon’s index (H) (Shannon, 1948), Simpson’s index (λ ) (Simpson, 1949), evenness167

(E5), and the expected number of multilocus haplotypes (eMLH) (Hurlbert, 1971; Heck et al., 1975;168

Pielou, 1975; Grünwald et al., 2003). To assess the potential for random mating, we tested for linkage169

disequilibrium with the index of association, IA and its standardized version, r̄d using 999 permutations170

(Brown et al., 1980; Smith et al., 1993; Agapow & Burt, 2001). Both haplotype diversity and linkage171

disequilibrium were calculated in poppr (Kamvar et al., 2014).172

Assessing importance of variables173

Distance-based redundancy analysis174

A distance-based redundancy analysis (dbRDA) (Legendre & Anderson, 1999) was performed with175

the function capscale() in the vegan package version 2.4.4 (Oksanen et al., 2017). This method176

uses constrained ordinations on a distance matrix representing the response variable to delineate relative177

contribution of any number of independent explanatory variables. We used this method to delineate178

the phenotypic (Aggressiveness, Mycelial Compatibility Group (MCG)), geographic (Region, Host,179

Location), and temporal (Year) components in predicting genetic composition of the populations. The180

distance matrix we used as the response variable was generated using Bruvo’s genetic distance from181

clone-corrected data (procedure described above) as implemented in poppr, which employed a stepwise182

mutation model for microsatellite data (Bruvo et al., 2004; Kamvar et al., 2014). Because aggressiveness183

measures differed between isolates that were reduced to a single observation during clone-correction,184

aggressiveness was first averaged across clone-corrected isolates. To identify explanatory variable(s)185

correlated with genetic variation, a forward-backward selection process was applied with the vegan186

function ordistep(). An analysis of variance (ANOVA) was then performed to test for significance of187

the reduced model and marginal effects using 999 permutations. The varpart() function of vegan was188

used to determine variation partitioning of explanatory variables.189

Aggressiveness assessment190

We used ANOVA to assess if aggressiveness (determined via straw test on a scale of 1–9 as described191

above) was significantly different with respect to Region, MCG, or multilocus haplotype (MLH). To192

minimize complications due to small sample sizes, we chose the top 10 MCGs, representing 56.5% of the193

isolates collected, the 10 most abundant MLHs representing 26.7% of the isolates, and populations with194

more than five isolates. If ANOVA results were significantly different at α = 0.05, pairwise differences195

were assessed using Tukey’s HSD test (α = 0.05) using the HSD.test() function in the package196

agricolae version 1.2.8 (Mendiburu & Simon, 2015).197

Correlating multilocus haplotypes with mycelial compatibility groups198

We wanted to assess if there was correlation between MLHs and MCGs. This was performed using a199

network-based approach where both MLHs and MCGs were considered nodes and the number of isolates200

in which they were found together was the strength of the connection between an MLH and and MCG201

node. The network-based approach allowed us to assess the associations between MLHs and MCGs.202

To construct the network, a contingency table was created with MLHs and MCGs and converted to a203
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directed and weighted edgelist where each edge represented a connection from an MCG to an MLH,204

weighted by the number of samples shared in the connection. This was then converted to a bipartite205

graph where top nodes represented MLHs and bottom nodes represented MCGs. To identify clusters of206

MLHs and MCGs within the network, we used the cluster walktrap community detection algorithm as207

implemented in the cluster walktrap() function in igraph version 1.1.2 (Csardi & Nepusz, 2006;208

Pons & Latapy, 2006). This algorithm attempts to define clusters of nodes by starting at a random node209

and performing short, random “walks” along the edges between nodes, assuming that these walks would210

stay within clusters. For this analysis, we set the number of steps within a walk to four and allowed the211

algorithm to use the edge weights in determining the path. All of the resulting communities that had fewer212

than 10 members were then consolidated into one. Community definitions were used to assess the average213

genetic distance (as defined by Bruvo’s distance) within members of the community (Bruvo et al., 2004).214

Genetic diversity215

Population differentiation216

We used analysis of molecular variance (AMOVA) with Bruvo’s genetic distance in poppr to test for217

differentiation between populations in wmn and producer fields from the same region and collected in218

the same year (Excoffier et al., 1992; Bruvo et al., 2004; Kamvar et al., 2014). To identify Regions with219

greater differentiation, we used discriminant analysis of principal components (DAPC) as implemented in220

adegenet version 2.1.0, assessing the per-sample posterior group assignment probability (Jombart, 2008).221

This method decomposes the genetic data into principal components, and then uses a subset of these as222

the inputs for discriminant analysis, which attempts to minimize within-group variation and maximize223

among-group variation (Jombart et al., 2010). To avoid over-fitting data, the optimal number of principal224

components was selected by using the adegenet function xvalDapc(). This function implements a225

cross-validation procedure to iterate over an increasing number of principal components on a subset226

(90%) of the data, trying to find the minimum number of principal components that maximizes the rate of227

successful group reassignment. To assess if cultivar had an influence on genetic diversity between wmn,228

we first subset the clone-corrected data to contain only samples from wmn and from the cultivars Beryl,229

Bunsi, and G122 and tested differentiation using AMOVA and DAPC as described above. We additionally230

assessed population stability over time by calculating DAPC over the combined groups of Region and231

Year as described above.232

Analysis of shared multilocus haplotypes233

We wanted to evaluate patterns of connectivity between shared multilocus haplotypes across geo-234

graphic regions. We first tabulated the multilocus haplotypes shared between at least two populations235

(defined as states or countries) with the poppr function mlg.crosspop() (Kamvar et al., 2014). From236

these data, we constructed a graph with populations as nodes and shared haplotypes as edges (connections)237

between nodes using the R packages igraph (Csardi & Nepusz, 2006), dplyr version 0.7.4 (Wickham et238

al., 2017), and purrr version 0.2.4 (Henry & Wickham, 2017). Each node was weighted by the fraction of239

shared MLHs. Each edge represented a single MLH, but because a single MLH could be present in more240

than one population, that MLH would have a number of edges equivalent to the total number of possible241

connections, calculated as (n*(n-1))/2 edges where n represents the number of populations crossed. Edges242

were weighted by 1−Psex, where Psex is the probability of encountering the same haplotype via two243

independent meiotic events (Parks & Werth, 1993; Arnaud-Hanod et al., 2007). This weighting scheme244

would thus strengthen the connection of edges that represented genotypes with a low probability of being245

produced via sexual reproduction. We then identified communities (among the Regions) in the graph246

using the cluster optimal() function from igraph (Csardi & Nepusz, 2006). The graph was plotted247

using the R packages ggplot2 version 2.2.1 (Wickham, 2009) and ggraph 1.0.0 (Pedersen, 2017). To248

ensure that we captured the same community signal, we additionally performed this analysis including249

the five polymorphic markers described above.250

RESULTS251

A total of 366 isolates were collected from 2003 to 2012 (except 2006 and 2011) from diseased dry252

bean plants in 11 states in the United States as well as Australia, France, and Mexico (Table S1). With the253

11 loci used in the analyses (Table 1), we observed a total of 165 MLHs (215 with 16 loci). These 11254

loci are located on 7 chromosomes in the S. sclerotiorum genome with a minimum distance of 55Kbp255
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between two loci on the same chromosome. Over 50% of the isolates came from four states, MI (62), ND256

(60), WA (59), NE (47). Four regions had fewer than 10 isolates, Australia (6), WI (2), NY (1), ID (1).257

We observed 87 MCGs, the most abundant of which (‘MCG 5’) was represented by 73 isolates over 37258

MLHs (Fig. 1A,C).259

The number of observed alleles per locus ranged from two to 10 with an average of 6.27 (Table260

1). Locus 20-3, which contained only 2 alleles, showed low values of both h (0.0533) and evenness261

(0.42), indicating that there was one dominant allele present. Analysis of the haplotype accumulation262

curve showed no clear plateau for 11 or 16 loci (See section on ‘Loading Data and Setting Strata’ in the263

MLG-distribution.md1 file in the supplemental files (Kamvar et al., 2017)), indicating that we would264

likely obtain more multilocus haplotypes if we were to genotype more loci.265

After clone-correction on the hierarchy of Region/Source/Host/Year, a total of 48 isolates were266

removed from the data set, resulting in 318 isolates representing 165 MLHs that were used in subsequent267

analyses (Table 2). The results showed that, in terms of genotypic diversity (H, G, and λ ), WA was the268

most diverse population with both G (54.3) and eH (55.3) being close to the observed number of MLHs269

(56). This indicated that there are few duplicated genotypes in WA (Table 2). A more useful metric to270

compare populations, however, is E5, which scales from 0 to 1, where 1 indicates all unique genotypes271

(Grünwald et al., 2003). Evaluating by E5 shows that both MI and NE exhibit lower than average values,272

indicating that there are over-represented genotypes in the popualtions (table 2). When we look at Mexico,273

we observed that it had relatively high values of E5 and genotypic diversity, but low richness, as measured274

by eMLG. Moreover, Mexico had the lowest value for h, which is a measure of allelic diversity. Nearly275

all populations showed evidence of linkage (Table 2), which serves as evidence for clonal reproduction276

or other forms of non-random mating. The only exceptions were CA (P = 0.043) and Australia (P =277

0.052). Both of these populations showed only moderate significance with r̄d values of 0.03 and 0.12,278

respectively.279

Table 1. Allelic diversity on full data set at loci used in this study. h = Nei’s Gene Diversity (Nei, 1978).

Average h = 0.583, average Evenness = 0.693, average no. alleles = 6.27

Locus Range Repeat Motif No. alleles h Evenness

5-2 318–324 (GT) 4 0.45 0.62

6-2 483–495 (TTTTTC)(TTTTTG)(TTTTTC) 3 0.64 0.95

7-2 158–174 (GA) 7 0.73 0.76

8-3 244–270 (CA) 7 0.74 0.79

9-2 360–382 (CA)(CT) 9 0.35 0.41

12-2 214–222 (CA) 5 0.58 0.78

17-3 342–363 (TTA) 7 0.55 0.53

20-3 280–282 (GT)GG(GT) 2 0.05 0.42

55-4 153–216 (TACA) 10 0.72 0.66

110-4 370–386 (TATG) 5 0.76 0.91

114-4 339–416 (TAGA) 10 0.83 0.80

1Direct link: https://github.com/everhartlab/sclerotinia-366/blob/master/results/

MLG-distribution.md#loading-data-and-setting-strata
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Table 2. Genotypic diversity and Linkage Disequilibrium summary for geographic populations arranged

by abundance after clone-correction by a hierarchy of Region/Source/Host/Year. Pop = Population, N =

number of individuals (number of MLH in parentheses), eMLH = expected number of MLHs based on

rarefaction at 10 individuals (standard error in parentheses), H = Shannon-Weiner Index, G = Stoddardt

and Taylor’s Index, λ = Simpson’s Index, h = Nei’s 1978 gene diversity, E5 = Evenness, r̄d = standardized

index of association. An asterix indicates a significant value of r̄d after 999 permutations, P ≤ 0.001.

Pop N eMLH H G λ E5 h r̄d

WA 58 (56) 9.95 (0.23) 4.0 54.3 0.98 0.98 0.60 0.07*

MI 58 (43) 9.3 (0.79) 3.6 29.0 0.97 0.78 0.54 0.14*

ND 41 (35) 9.44 (0.73) 3.5 25.9 0.96 0.82 0.54 0.1*

NE 37 (28) 8.93 (0.94) 3.2 17.8 0.94 0.75 0.55 0.25*

CO 34 (28) 9.46 (0.67) 3.3 24.1 0.96 0.92 0.56 0.27*

France 21 (14) 8.5 (0.85) 2.6 12.6 0.92 0.95 0.48 0.11*

CA 18 (15) 9.12 (0.72) 2.7 13.5 0.93 0.94 0.51 0.03

OR 17 (13) 8.52 (0.85) 2.5 10.7 0.91 0.89 0.47 0.1*

Mexico 15 (9) 7.1 (0.85) 2.1 7.3 0.86 0.89 0.28 0.37*

MN 9 (7) 7 (0) 1.9 6.2 0.84 0.93 0.47 0.19*

Australia 6 (6) 6 (0) 1.8 6.0 0.83 1.00 0.48 0.12

WI 2 (2) 2 (0) 0.7 2.0 0.50 1.00 0.27 -

NY 1 (1) 1 (0) 0.0 1.0 0.00 NaN NaN -

ID 1 (1) 1 (0) 0.0 1.0 0.00 NaN NaN -

Variable assessment280

Variable contributions281

The forward-backward selection process of the dbRDA models on clone-corrected data revealed Year,282

Region, Host, and MCG to be the optimal variables for the reduced model, accounting for 45% of the283

total variation. ANOVA showed that the reduced model was significant with an adjusted R2 of 0.0675284

(P = 0.001). Assessment of the marginal effects showed that all varibles significantly explained genetic285

variation (P ≤ 0.007). We found that there was multicollinearity when MCG was combined with any286

other variable, so repeated the analysis, dropping MCG from the list of potential predictors. From these287

results, Year, Region, Host, and Aggressiveness were found to be optimal, accounting for 17.6% of the288

total variation. ANOVA revealed significant effects with an adjusted R2 of 0.0325 (P = 0.001). While289

the marginal effect assessment revealed that Year, Region, and Host significantly explained variation290

at P = 0.001, and Aggressiveness significantly explained variation at P = 0.039. Much of the variation291

appeared to be driven by isolates from Mexico and 2005 (Fig. 2). Variance partitioning of the independent292

variables without MCG indicated aggressiveness to be the least influential factor with 0.1% contributing293

to explaining the variation of molecular data, whereas the combination of variables accounted for 3.3%.294

Aggressiveness295

Aggressiveness of the isolates ranged from 1.4 to 7.9 with a mean of 5.02 and median of 4.85. The296

group mean averages were 4.88, 5.13, and 5.19 for Region, MCG, and MLH, respectively. A strip plot297

showing the distribution of severity across these three variables simultaneously can be seen in Fig. S2.298

Our assessment of aggressiveness in association with Region showed a significant effect (P < 1.00e-4),299

with means that ranged from 5.8 (MN) to 4.0 (CA) (Fig. 3, Table S2). MCGs also showed a significant300

effect (P < 0.001), with means that ranged from 6.0 (‘MCG 44’) to 4.6 (‘MCG 49’; Table S3). We301

additionally found a significant effect for MLHs (P < 0.001), with means that ranged from 6.0 (‘MLH302

78’) to 4.3 (‘MLH 140’) (Table S4).303

Correlation of mulitlocus haplotypes and mycelial compatibility groups304

In our analysis, we found 165 MLHs with 70 singletons and 87 MCGs with 43 singletons (Fig. 1A,B)305

where the eight most abundant MCGs represented > 51% of the data over 11 Regions, and all years306

except for 2012. Our network-based approach to correlating MLHs with MCGs revealed a large and307

complex network (Fig. 1, Table 3). Community analysis showed 51 communities, 15 of which consisted308
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Figure 1. Associations between Mycelial Compatibility Groups and Multilocus Haplotypes. A) Barplot

of Mycelial Compatibility Group (MCG) abundance in descending order. Singletons (46) were truncated,

leaving 41 MCGs. White bars represent sample counts and grey bars represent counts of unique

multilocus haplotypes (MLH). The transparency of the bars represent the evenness of the distribution of

the MLHs within a given MCG. A dashed box surrounds the eight most common MCGs representing

> 51% of the data. B) Full graph-representation of the relationship between MCGs (open circles) and

MLHs (filled circles). Details in Fig. S3. C) A subset of B representing the 8 most common MCGs and

their associated MLHs (dashed box in A). Filled nodes (circles) represent MLHs and open nodes

represent MCGs. Node area scaled to the number of samples represented (range: 1–73). Numbers inside

nodes are the MLH/MCG label (if n > 1). Edges (arrows) point from MLH to MCG where the weight

(thickness) of the edge represents the number of shared isolates (range: 1–19). Edges extending from

MLHs displayed to other MCGs are not shown.
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of a single MLH unconnected with any other community indicating that just 9.09% of the 165 MLHs309

are unable to cross with any other MLH in this data set (Fig. S3). The three communities with the most310

members contained eight of the 10 most abundant MCGs. Comparing these communities with Bruvo’s311

genetic distance showed an average distance of 0.451 among communities and an average distance of312

0.437 within communities, which were not significantly different. When we assessed the number of times313

two different MLHs that are in the same MCG, considering these as potential heterothallic pairings that314

could result in sexual recombination, we found an average of 14.3 potential heterothallic parings per315

MLH. Representing just four isolates, ‘MLH 75’ had 57 neighbors that shared the same MCG (Fig. 1,316

S3). Overall, there was no clear pattern to the association between MLH and MCGs.317

Table 3. The five most abundant Multilocus Haplotypes (MLH) with the probability of second

encounter (Psex), Mycelial Compatibility Groups (MCG), and Regions with sample sizes in parentheses.

MLH Psex MCG Region

25 0.016824 5 ND (15), CO (2), MI (2)

13 ND (3)

60 ND (2), WA (1)

1 NE (1)

4 MI (1)

163 0.049932 45 CO (5), ND (2), NE (1)

5 MI (7)

65 0.000071 44 NE (10)

5 MI (1)

140 0.000155 8 CO (5)

5 MI (3)

20 MI (2)

66 0.000016 9 NE (4), CO (2), MI (2)

Structure of shared multilocus haplotypes318

The most abundant MLH was represented by 27 isolates (Table 3) from five Regions (NE, MI, WA,319

CO, and ND). Within Regions, haplotypes were relatively evenly distributed with moderate to high320

diversity (Table 2). Of the 165 MLHs, 76 (46%) were found in at least two Regions, except those found in321

WI (2), ID (1), and Mexico (18) (Fig. 4).322

We had performed an analysis on a network where the connections represented shared MLHs across323

populations, weighted by 1−Psex (Fig. 4, Table 3). Community analysis of the MLHs shared between324

populations revealed 4 communities with a modularity of 0.17: A coastal community (CA, OR, WA, and325

NY), a Midwest community (CO, ND, NE, MI), and an international community (Australia, France, MN).326

Although analysis with 16 loci resulted in the removal of the NY node because it no longer shared a327

haplotype with OR, the same overall community structure was present with a modularity of 0.2 (Fig. S4).328

Relative to the US, the international community appears to be driven by MLH 4, which is shared between329

all three populations and has a Psex value of 2.87e-5, in contrast to the abundant MLH 25, which has a Psex330

value of 0.0168.331

Population differentiation332

Analysis of molecular variance333

The AMOVA for clone-corrected samples over the hierarchy of Region, Source, and Year showed334

significant variation between Regions and Years, but no significant variation between wmn and producer335

fields (Table 4). In contrast, when we compared the three cultivars, Beryl, Bunsi, and G122, we found no336

significant differentiation (See section on ‘Host Differentiation’ in the wmn-differentiation.md2 file in the337

supplemental files (Kamvar et al., 2017)).338

2Direct link: https://github.com/everhartlab/sclerotinia-366/blob/master/results/

wmn-differentiation.md#host-differentiation
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Figure 4. Network of populations (nodes/circles) and their shared multilocus haplotypes (MLH)

(edges/lines) genotyped over 11 loci. Each node is labeled with name (number of MLHs

shared/number of MLHs total). The shade and area of the nodes are proportional to the number of

unique MLHs within the node and the inner nodes are proportional to the number of private MLHs to the

region (bottom legend). Each edge represents a single MLH where its thickness represents the number of

populations that share the MLH and the shade represents the value of Psex, or the probability of

encountering that MLH from two independent meiotic events.

Table 4. Comparison of populations in the white mold screening nurseries (wmn) and producer fields

using an analysis of molecular variance (AMOVA) on Bruvo’s genetic distance showing no apparent

differentiation between wmn and other sources. The hierarchy was constructed as Source/Region where

source is defined as belonging to a wmn or producer field. Bold Φ values indicate significant difference

(P < 0.05). S.S. = Sum of Squares, d.f. = degrees of freedom.

Hierarchy d.f. S.S. % variation Φ statistic P

Between Region 13 10.19 8.45 0.0845 0.031

Between Source within Region 8 2.74 -2.29 -0.0250 0.497

Between Year within Source 22 9.37 16.28 0.173 0.001

Within Year 274 47.30 77.56 0.224 0.001
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Figure 5. Discriminant Analysis of Principal Components (DAPC) on regions showing that Mexico is

differentiated from other populations. A) Scatter plot of first two components from DAPC. Points

represent observed individuals connected to the population centroids with ellipses representing a 66%

confidence interval for a normal distribution. The center of each component is represented as black grid

lines. B) Mean population assignment probability from the DAPC for all populations with N > 10

(facets). Populations represented along the horizontal axis and probability of assignment on the vertical.

Numbers next to source populations indicate population size. All values sum to one.

Discriminant analysis of principal components339

DAPC was performed by grouping Region with the first 21 principal components, representing340

88.1% of the total variance. The first discriminant axis (representing 63.9% of the discriminatory power)341

separated the centroid for the Mexico isolates from the rest of the data, indicating strong differentiation342

(Fig. 5b). The second discriminant axis, representing 10.8% of the discriminatory power, separated the343

centroid for the CA isolates. The mean population assignment probabilities for all populations with n >344

10 showed that only isolates from Mexico, CA, and France had > 50% probabilities of being reassigned345

to their source populations (Fig. 5a).346

DAPC grouping by cultivar used the first 20 principal components, representing 89% of the total347

variance. The first two discriminant axes (representing 100% of the discriminatory power) failed to348

separate any of the cultivars where the mean posterior assignment probabilities were 34% (G122), 35.9%349

(Beryl), and 30.1% (Bunsi). DAPC grouping by Region and Year used the first 15 principal components,350

representing 80.3% of the total variance. The North Central USA populations (NE, MI, CO, ND) did not351

appear to have any variation across time in contrast to WA, which showed a shift in population structure352

in the last year of sampling, 2008 (Fig. 6). Further analysis of this population revealed that all 12 isolates353

in WA circa 2008 originated in a wmn; nine haplotypes were shared with CA, and three were shared with354

France (Fig. 4, S4).355

DISCUSSION356

In this study, we characterized the diversity of Sclerotinia sclerotiorum from dry bean fields across357

the United States. Our results suggest that, broadly, populations from white mold screening nurseries358

reflect the populations of the surrounding regions, indicating that resistance screening may be successful359

within regions. We found significant population differentiation by geographic region and year, mainly360

differentiated into three broad North American groups based on shared haplotypes and posterior groupings,361

a Coastal Region, Midwestern Region, and Mexico. To date, with 366 isolates, this is the largest single362

population genetic study of S. sclerotiorum assessing population structure within managed and unmanaged363

agricultural environments. These findings indicate that the white mold screening nurseries can be effective364

at screening for potential resistant lines within growing regions.365

We found that the best predictors of genetic structure are Region and Year, supporting the hypothesis366
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Figure 6. Scatter plot of Discriminant Analysis of Principal Components (DAPC) on Regions and Years
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representing a 66% confidence interval for a normal distribution. The center of each component is

represented as black grid lines. A more detailed view is shown in Fig. S5.

that S. sclerotiorum populations are spatially structured (Carbone & Kohn, 2001). Borrowing a technique367

often used in the ecological literature, we used dbRDA to elucidate the effect of all variables (MCG,368

Region, Source, Year, Host, and Aggressiveness) (Legendre & Anderson, 1999). From the initial results,369

it appeared that the most important factors for predicting genetic structure were MCG, region, and year.370

When we inspected the biplot of the initial results, we saw that the most important predictors were371

‘MCG 44’, ‘MCG 5’, and ‘MCG 9’. We believe that this was driven by the fact that these particular372

MCGs have uneven MLH distributions, meaning that they are heavily associated with one particular373

MLH (Fig. 1). We note these results with caution because of the apparent multicolinearity between374

MCG and Region, which is a violation of the analysis (Legendre & Anderson, 1999). While the results375

indicated that Mexico and the year 2005 were the two most important variables, it’s worth noting that all376

Mexico isolates were collected in 2005 (Fig. 2). The results also show that the Vista cultivar explains377

some of the variance, but this represents six isolates in MI, and thus we cannot draw broad conclusions378

from this axis. Aggressiveness and source field had little to no effect on prediction of genetic diversity.379

These results are in agreement with studies that examined differentiation based on Host (Aldrich-Wolfe380

et al., 2015) and Aggressiveness (Atallah et al., 2004; Attanayake et al., 2012, 2013) reporting little381

or no correlation of genetic diversity to these variables. This indicates that a) breeders should keep in382

mind regional differences when assessing resistance and b) it is possible that we have not yet measured383

biologically relevant variables that can predict genetic differentiation, which could include variables such384

as soil community composition.385

While aggressiveness was not shown to predict genetic structure, it is an important factor in breeding386

efforts, and we observed significant differences in aggressiveness based on Region (Fig. 3, Table S2).387

These results show a similar pattern to what was found previously in Otto-Hanson et al. (2011) with the388

exception of North Dakota, which increased in mean aggressiveness from 5 to 5.77. This increase was389

due in part to new data from producer field isolates collected after the previous study. These straw tests390

were performed by a different person for these later isolates, which could suggest a more lenient or strict391

scoring system. However, when we examined the within-region differences, we found no significant effect392

by individual. Many of the ND isolates fell within the 6–7 range, which denotes a physical boundary393

(disease symptoms around the second node) between intermediate and susceptible (Otto-Hanson et al.,394

2011). Thus, we observed a shift in aggressiveness without a significant shift in genotypic structure,395

which may indicate that aggressiveness may be controlled by environmental factors as opposed to genetic396

profile.397
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The primary interest of this study was to assess if isolates sampled from white mold screening398

nurseries represent isolates from producer fields within the region (Steadman et al., 2003; Otto-Hanson399

et al., 2011). According to our AMOVA results, we have evidence for differentiation at the Region and400

Year, but little to no differentiation between wmn isolates and production field isolates (Table 4). This401

lack of differentiation, however, may reflect the breeder practice of inoculating screening plots with402

sclerotia collected from sources within the region. When we analyze the AMOVA results in light of the403

DAPC results (Fig. 5), it becomes clear that the regional patterns of differentiation are largely driven by404

isolates from Mexico and CA. Isolates from these Regions had a higher posterior probability (> 0.75) of405

being reassigned to their own populations than any other (Fig. 5A). All other populations in comparison406

(except France) has reassignment probabilities of < 0.5, which is reflected in the failure of the first two407

discriminant functions to separate these populations (Fig. 5B).408

Despite the evidence that Mexico and CA contributed to much of the population differentiation,409

Regions like WA still had a large amount of internal variation. The two distinct clusters for the WA Region410

showed that the 2008 population appeared differentiated and, under further investigation, we found that411

all the haplotypes from this year were shared between CA and France (Fig. 4, 6, S5). All of the isolates412

from WA in 2003–2005, and 2008 came from the same wmn; within the wmn, those in 2003–2005 came413

a Northeastern field location cropped with dry bean since 2002, and those in 2008 from a Southeastern414

field that was previously cropped with brassica, sundgrass, peas, beans, and potatoes (Miklas, Phil Pers.415

comm.). Both of these fields were inoculated with sclerotia in 2002, the Northeastern field with sclerotia416

provided by a commercial bean producer and the Southeastern field with sclerotia from peas (although417

this was thought to be unsuccessful). Despite this information, it is still unclear what has contributed418

to the differentiation of the 2008 population from WA or why it shares haplotypes with CA and France.419

When we assessed agressiveness between the two fields across years with an ANOVA model, we found420

that there was a slight effect based on field (P = 0.0127). While the evidence may suggest host as being a421

factor, previous studies have shown no significant differentiation across host species (Aldrich-Wolfe et422

al., 2015). It was of interest to compare our data with that of Aldrich-Wolfe et al. (2015), but we found423

that, due to differences in data generation, we were unable to confidently perform a comparison (See424

supplemental file compare-aldrich-wolfe.md3 (Kamvar et al., 2017)).425

With the exception of the WA Region, populations that were sampled across several years appeared to426

be relatively stable over time with overlapping distributions in the DAPC (i.e. NE and MI, Fig. 6). DAPC427

is based on the principal components of allele counts (Jombart et al., 2010). Unlike Bruvo’s distance,428

this does not take into account the magnitude of the difference between alleles, which could inflate the429

distance measure in the presence of private alleles (Bruvo et al., 2004). While we found no evidence430

of private alleles in the Mexico and CA isolates, we did find that the alleles driving the first axis in Fig.431

5A (alleles 174, 256, and 372 in loci 7-2, 8-3, and 9-2, respectively) were overrepresented in Mexico432

(where >75% of the alleles came from the region). However, all three of these alleles, i) conform to the433

expected stepwise mutation model (Bruvo et al., 2004) and ii) are at or near the extremes of the total range434

(except for allele 372 at locus 9-2). Moreover, the fact that we find three alleles at three independent loci435

segregating the Mexican genotypes suggests that the pattern separating these populations from the others436

was not an artifact. We believe that the differences in populations observed from Mexico may be due to437

differences in climate that allow greater diversification via sexual outcrossing.438

Many of the isolates in our study were from temperate climates and the only isolates representing a439

sub-tropical climate were from Mexico. It has been proposed within the S. sclerotiorum literature that440

isolates from sub-tropical and tropical climates are differentiated or more variable than populations from441

temperate climates (Carbone & Kohn, 2001; Attanayake et al., 2013; Lehner & Mizubuti, 2017). This442

has been attributed to the notion that the fungus has the chance to undergo more reproductive cycles in443

the warmer climate (Carbone & Kohn, 2001; Attanayake et al., 2013). The strongest evidence to date444

supporting this hypothesis is from Attanayake et al. (2013), showing that populations in sub-tropical445

regions of China have been found to be more variable, sexually reproducing, and unrelated to populations446

in temperate regions of the USA. This result however, may be driven more by geography and agricultural447

practice as opposed to climate.448

The results from our shared haplotype analysis showed several populations with at least one haplotype449

between them, except for Mexico and two states that had fewer than three samples each (Fig. 4). Our450

3Direct link: https://github.com/everhartlab/sclerotinia-366/blob/master/results/

compare-aldrich-wolfe.md
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network-based approach by treating the haplotypes as edges and weighting each edge with the inverse451

of Psex treated the edges as springs connecting the populations with the strength proportional to the452

probability of obtaining the same haplotype as a clone. This allowed us to use a graph walking algorithm453

to see how close the populations were, simply based off of the proportion of clones they shared. The454

most abundant haplotype was shared across four populations, but its high value of Psex meant that it did455

not contribute significantly to the overall structure. The graph walking algorithm was able to divide the456

network into three groups, but had a modularity of 0.17, which indicates that the groups are only weakly457

differentiated.458

The widespread nature of multilocus haplotypes in both wmn and production fields with relatively459

small values of Psex may indicate the spread of inoculum between regions. While seedborne transmission460

is thought to be of insignificant epidemiological importance (Strausbaugh & Forster, 2003), it has since461

been shown that S. sclerotiorum infections can be transmitted through seed (Botelho et al., 2013). Thus,462

we hypothesize that shared haplotypes between populations may arise due to transmission events of seed463

or sclerotia. This could explain the fact that we see shared haplotypes with low Psex values shared between464

Australia, France, and the United States. While we speculate that these transmission events are rare due to465

the genetic structuring by Region, these results suggest that seedborne infections may indeed reflect a466

source of inoculum. This may, in turn increase the risk of introducing new sources of genetic variation467

through potential outcrossing events.468

When we tested for sexual reproduction, we were unable to find evidence for it in any region except469

for Australia and CA. While the Australia population had a non-significant value of r̄d—which would470

suggest that we cannot reject the null hypothesis of random mating—the sample size was insufficient471

from which to draw conclusions (Milgroom, 1996; Agapow & Burt, 2001). The low value of r̄d in the CA472

population may represent sexual reproduction, but we can see in Fig. 6 that there is differentiation by year.473

Thus, this could also be an artifact of sampling two different populations, which is known to reduce the474

value of r̄d (Prugnolle & de Meeûs, 2010).475

The previous study of the white mold screening nursery populations used MCGs to assess genotypic476

diversity (Otto-Hanson et al., 2011). Historically, MCGs have been used as a proxy for clonal lineages,477

and thus, of interest in this study was testing the association between multilocus haplotypes (MLHs) and478

mycelial compatibility groups (MCGs) (Kohn et al., 1990; Leslie, 1993; Kohn, 1995; Carbone et al., 1999;479

Schafer & Kohn, 2006; Otto-Hanson et al., 2011). Our results, however, do not support this assumption.480

It can be seen in Fig. 1A that the most abundant MCG contains several MLHs, but the diversity of those481

MLHs are low as indicated by the evenness (transparency), which indicates that there is one dominant482

MLH (‘MLH 25’). What is not shown in Fig. 1A is the MLHs that are shared between MCGs. This is483

illustrated in both Table 3 and Fig. 1B,C. It could be argued, however that ‘MLH 25’, with its high value484

of Psex represents different true MLHs across the five MCGs it occupies, but this does not account for the485

overall structure of Fig. S3 where, for example, ‘MLH 75’ (Psex = 1.81e-4) is compatible with 57 other486

haplotypes through three MCG when the population structure of S. sclerotiorum is known to be clonal.487

Over the past few years, researchers have noticed inconsistencies among the relationship between488

MCGs and MLHs (Carbone et al., 1999; Attanayake et al., 2012; Aldrich-Wolfe et al., 2015; Lehner et al.,489

2015). Either several MCGs belong to one MLH, which could be explained by insufficient sampling of490

loci; several MLHs belong to one MCG, which could be explained by clonal expansion; or a mixture of491

both. Some studies have shown a correlation between MCG and MLH (Carbone et al., 1999; Aldrich-492

Wolfe et al., 2015; Lehner et al., 2015), whereas other studies have shown no apparent correlation, even493

on small spatial scales (Atallah et al., 2004; Attanayake et al., 2012, 2013).494

One long-held assumption was that MCGs (as determined via barrage reaction) represent vegetative495

compatibility groups (VCGs) (Kohn et al., 1990; Schafer & Kohn, 2006; Lehner et al., 2015), which are496

known to have a genetic component (Saupe, 2000; Hall et al., 2010; Strom & Bushley, 2016). While497

our protocol for assessing MCGs utilized Diana Sermons Medium (Cubeta et al., 2001) as compared498

to Patterson’s Medium or Potato Dextrose Agar (Schafer & Kohn, 2006) for the MCG reactions, the499

patterns we observe are not dissimilar from what have previously been reported in the literature. It500

has been demonstrated in several Ascomycetes—including Neurospora crassa (Micali & Smith, 2003),501

Sclerotinia homoeocarpa (Jo et al., 2008), Verticillium dahliae (Papaioannou & Typas, 2014), and S.502

sclerotiorum (Ford et al., 1995)—that barrage reactions are independent from stable anastomosis. Thus,503

the inconsistencies in this study and other studies indicate that researchers studying S. sclerotiorum should504

not rely on MCG data derived from barrage reactions as an indicator for genetic diversity.505
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Limitations506

One of the main limitations of this study is the focus on P. vulgaris as a host. It has been shown507

that S. sclerotiorum in the midwestern United States does not have a particular preference for host508

(Aldrich-Wolfe et al., 2015). If the distribution of S. sclerotiorum is even across agricultural hosts in the509

USA, then our sample may yet be representative of the genetic pool present in other crops and weedy510

species. Additionally, while we found no signficant association between genotype and aggressiveness, it511

is important to note that the straw test is only one measure of aggressiveness. Additional phenotypes for512

aggressiveness should be evaluated for future studies.513

Another limitation was the microsatellite markers used for this particular study (Sirjusingh & Kohn,514

2001). The haplotype accumulation curve showed no indication of a plateau, indicating that if we had515

sampled more loci, we would have resolved more multilocus haplotypes. While 16 loci showed us516

similar results and began to show a plateau for the haplotype accumulation curve, we were unable to517

use these results due to our uncertainty in the allele calls for these five extra loci. With the availability518

of an optically-mapped genome (Derbyshire et al., 2017), future studies describing the genetic diversity519

of S. sclerotiorum should employ techniques such as Genotyping-By-Sequencing (Davey et al., 2011),520

Sequence Capture (Grover et al., 2012), or Whole Genome Sequencing.521

Conclusions522

This study represents the largest genetic analysis of S. sclerotiorum from the USA to date, giving us a523

unique insight to continent-wide population structure and relationships between phenotypic and genotypic524

variables. Populations in wmn appear to show no significant differentiation when compared to their525

production field counterparts, suggesting that the wmn populations of S. sclerotiorum may be considered526

representative of the surrounding regions. While we found no direct relationship between haplotype and527

severity, it is evident that there is a gradient of severity by region, further supporting the need for screening528

in multiple locations. Based on our analysis of the relationships between MCG and MLH, we found529

no clear evidence that the two are directly related, suggesting that MCG does not necessarily represent530

vegetative compatibility groups and thus should not be used as a proxy for identifying clones.531
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SUPPLEMENTARY INFORMATION562

Table S1. Description of Sclerotinia sclerotiorum isolates used in this study. N = Number of Isolates.

Key abbreviations: wmn = white mold screening nursery, producer = producer field, unk = unknown

cultivar.

Country State Field Code Year Host N

USA CA wmn 2004, 2005 Beryl, Bunsi, G122 18

USA CO producer 2007, 2010 Pinto, Yellow 41

wmn 2003 GH 1

USA ID producer 2003 GH 1

USA MI wmn 2003, 2004, 2005,

2008, 2009

11A, 37, 38, B07104, Beryl,

Bunsi, Cornell, G122, Orion,

PO7863, WM31

43

producer 2003, 2008, 2009 BL, Black, Fuji, GH, Merlot,

SR06233, unk, Vista, Zorro

19

USA MN wmn 2003, 2004 Beryl, Bunsi, G122 11

USA ND producer 2007, 2010 unk 53

wmn 2005 Beryl, Bunsi, G122 7

USA NE wmn 2004, 2005, 2008,

2010

Beryl, Bunsi, G122, PO7683,

unk

27

producer 2003, 2007, 2009,

2010

Beryl, Emerson, GH, Orion,

Pinto, Weihing

20

USA NY producer 2003 GH 1

USA OR wmn 2003, 2004 Beryl, Bunsi, G122 15

producer 2003 G122, GH 2

USA WA wmn 2003, 2004, 2005,

2008

11A, 37, 38, Beryl, Bunsi,

Cornell, G122, Orion, PO7

104, PO7863, WM31

36

producer 2003, 2007 GH, Merlot, Pinto, Redkid 23

USA WI producer 2003 GH 2

Mexico - wmn 2005 Beryl, Bunsi, G122 18

France - wmn 2004, 2005 Beryl, Bunsi, G122 18

producer 2012 unk 4

Australia - wmn 2004 Beryl, Bunsi, G122 4

producer 2004 Beryl 2

Table S2. Mean aggressiveness ratings for Regions with more than five samples; groupings according

to 95% family-wise confidence interval.

Region Mean Aggressiveness Group

MN 5.84 a

ND 5.77 a

NE 5.29 ab

MI 5.13 abc

OR 4.84 abcd

CO 4.72 bcd

WA 4.67 cd

France 4.66 cd

Mexico 4.58 cd

Australia 4.12 cd

CA 4.01 d
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Table S3. Mean aggressiveness ratings for the 10 most abundant MCG; groupings according to 95%

family-wise confidence interval.

MCG Mean Aggressiveness Group

44 6.03 a

3 5.50 ab

5 5.40 b

2 5.25 b

9 5.11 b

1 4.95 b

45 4.88 b

4 4.87 b

53 4.69 b

49 4.60 b

Table S4. Mean aggressiveness ratings for the 10 MLH most abundant; groupings according to 95%

family-wise confidence interval.

MLH Mean Aggressiveness Group

78 6.07 a

65 5.94 a

9 5.67 ab

25 5.41 ab

66 5.30 ab

104 5.22 ab

160 4.80 ab

163 4.80 ab

165 4.34 b

140 4.31 b
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Figure S1. Example of MCG test plates showing (A) a compatible reaction with mycelia from two

strains overgrowing each other and (B) an incompatible reaction with a barrage line of dead tissue

forming between the two strains. Photo Credit: Rebecca Higgins.
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Figure S2. Strip plot of aggressiveness for the eight most abundant MCGs partitioned by region. Filled

circles indicate one of the five most abundant MLHs and open circles indicate a MLH of lesser abundance.
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Figure S3. Graph showing complex associations between Mycelial Compatibility Groups (MCG)

(dotted nodes) and Multilocus Haplotypes (MLH) (full nodes) where the number in each node represents

the MLH/MCG assignment. Node size reflect the number of samples represented by each node (circle).

Edges (arrows) point from MLH to MCG where the weight (thickness) of the edge represents the number

of samples shared. Node color represents the community assignment based on the walktrap algorithm

with a maximum of four steps (Pons & Latapy, 2006). An interactive version of this network can be

recreated using the code in the “Interactive visualizations” section of the mlg-mcg.md file in the

supplementary information (Direct Link:

https://github.com/everhartlab/sclerotinia-366/blob/master/results/

mlg-mcg.md#interactive-visualizations) (Kamvar et al., 2017).
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Figure S4. Network of populations (nodes/circles) and their shared multilocus haplotypes (MLH)

(edges/lines) haplotyped over 16 loci. Each node is labeled with name (number of MLHs

shared/number of MLHs total). The shade and area of the nodes are proportional to the number of

unique MLHs within the node and the inner nodes are proportional to the number of private MLHs to the

region (bottom legend). Each edge represents a single MLH where its thickness represents the number of

populations that share the MLH and the shade represents the value of Psex, or the probability of

encountering that MLH from two independent meiotic events.
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Figure S5. Scatter plot of Discriminant Analysis of Principal Components on Regions and Years

showing temporal variation across all Regions. Points (text labels) represent observed individuals

connected to the population centroids with ellipses representing a 66% confidence interval for a normal

distribution. The center of each component is represented as black grid lines.
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