CONTROLLED-NOT FUNCTION CAN PROVOKE BIASED
INTERPRETATION FROM BELL’S TEST EXPERIMENTS

ALEXANDRE DE CASTRO

ABSTRACT. Recently, we showed that the controlled-NOT function is a per-
mutation that cannot be inverted in subexponential time in the worst case
[Quantum Information Processing. 16:149 (2017)]. Here, we show that such a
condition can provoke biased interpretations from Bell’s test experiments.

Let CNOT be the canonical two-qubit entangling gate in quantum key distribu-
tion (QKD) cryptographic protocols, where CNOT|a,z) = |a,a + x), so that the
control parameter o and the target variable x € Fy = {0,1}.

For z = a, CNOT|a,x) = |a,2® + z), since x Aox = = 22, and for = # a,
CNOT|a,z) = |a,2> + x + 1), since - =x+1=axAx+1=22+1]l]:

(i) The permutation #2+2 = x®z is a factorable polynomial (reducible) over a fi-
nite field of two elements, whose Hamming distance between its even inputs is equal
to 0 (local model), and (ii) The permutation 2% + 2+ 1 = 2 & NOT(z) is a nonfac-
torable polynomial (irreducible) over a finite field of two elements, whose Hamming
distance between its odd inputs is not equal to 0 (nonlocal model). However, these
models are deducible from each other because 2% +x (+1) =0 (+1) = 22 +z + 1
and 22 + 2 +1 (+1) =1 (+1) =22 +z [1].

Consider the Hadamard basis {|+),|—)} of a one-qubit register given by:
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The circuit below takes computational basis F» = {0,1} to Bell states:

[(=1)%z) +[1 = z)].
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Entangled states of two qubits known as the Bell states occur in conjugate pairs.
Quantum states which are conjugates of each other have the same absolute value.

Hence,

o + 21 = I 5510)0) + 01Dl =

= |%|O>|O> |1>| ) =]z? 4+ 2+ 1| and
2% + 2| = |ﬁ|0>|1> 5110} =

— | 10)[1) + LI1)[0)] = [a? + @ +1].

Therefore, |22 +z| = |22 +2+1|, since these models are deducible from each other.
Notice that we can map the elements of the Hadamard basis to the computational
basis using the group homomorphism {+1,—1, x} — {0, 1, +} so that its inverse is
also a group homomorphism.

Then, the exclusive disjunction 22 + x + 1 over F, can be rewritten as = +
NOT (z) := X’A=X", once the field’s multiplication operation corresponds to the
logical AN D operation over the field of two elements. It is not difficult to see that
for X’'=X"=X"", X’N\-X'= (X'VX"VX"") A (- X'V-X"V-X"") can be written
as a conjunctive normal form, (X' VX"VX" )N X'VX'VAX"IA(XOV-XVX?)A
(X'V-X'V- XA (XOVXOVX YA (XX VX7 )A XV XV XA (- XV
= X7?V=X"’) corresponding to the universal set {X’, X”, X’} as shown in the fol-
lowing framework.

Suppose that we take a particle in the state X and subjected to three tests with
two possible outcomes. (This is equivalent to three spinl/2 subsystems). We will
call a first test X, a second test X” and a third test X”’, and label the outcomes
pass and fail in accordance with Fig. 1 below.

pass[ passﬂ pass[

X X X
—ltest X'| —|test X7 | —ftest X7’

lfail lfail lfail

FiGURE 1. This simple experiment can also be seen as a straight-
forward probability problem, where we are going to flip a coin three
times, so that 0 represents tail, and 1 represents head.

There are 8 possible outcomes of these three tests using 0 and 1 to represent fail
and pass over a finite field of two elements.
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Let Q be the universal set {X’, X7, X”’}, then all 8 possible different outcomes
are represented by its subsets:

{0} = {000},

{X7} = {100},
{x7} = {010},
{X77} = {001},

X7, X"} = {110},

{X7, X7} = {101},

{X7, X7} = {011},

{X, X7, X7} = {111}.

The following elements shown in Table 1 are equivalent representations of the
same value over a finite field of two elements [2, p. 134]:

TABLE 1. Polynomial representation Poly(x) for all the mutually
exclusive (8) possibilities of experiment. Set theory is isomorphic
to Boolean Algebra.

Tests Probability
X' X" X" Poly(x)
111 > +r+1 Pry
110 2+ Pro
101 22 +1 Prs
100 x2 Pry
011 z+1 Prs
010 T Pre
001 1 Pre
000 0 Prs

In third column of Table 1, Pr;, with ¢ = 1,...8, is the probability of a specific
outcome occurring in the sample space including all possible outcomes.

The probabilities Pr; are nonnegative, and therefore Prs + Pry < Prs + Pry +
Pra+Pry within the framework conceived by Wigner [3, 4, 5], as described in detail
in [6, p. 227-228]. (If we assume, with Wigner, the existence of these probabilities,
his inequality must be true, because the existence of these probabilities corresponds
in essence to Kolmogorov’s consistency conditions).

Let an event E; be a set of the outcomes of experiment, i.e, a subset of the
sample space ). If each outcome in the sample space 2 is equally likely, then
the probability that event E; occurs is Pr; = %, where the bars | - | denote the
cardinality of sets. As each bit string can be written as a polynomial over a finite
field of two elements, then the cardinality of 2, and for each E;, is the modulus
of a polynomial. Hence, |2% + 1| + [2?] < |22 + 1| + |2?| + |22 + 2| + |1], because
|2] = 1, since the universal set 22 + x + 1 = 1 for z = {0,1}. Consequently,
|22 + 1+ 22| < |22+ 1+ 2% + 2% + 2+ 1|, once the all polynomials are nonnegative.

Considering that field’s multiplication corresponds to the logical AND, then
2?2 =, since v Ax = . Hence, |22 +1+z|<|z+1+z+2>+z+1|

Rearranging this inequality, we get |v2 + z + 1| < |22 + |, because the field’s
addition operation z+4x = 0 corresponds to the logical X OR operation. Notice that
the polynomial 2% + 2 = NOT (22 + z + 1) for = {0, 1}. Therefore, |2% +z + 1| <
|1 — (22 + = + 1)| since, algebraically, the negation NOT (z* + = + 1) is replaced
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with complement 1 — (22 + x + 1). Hence, |22 + x4+ 1| <1 — |2? + x + 1| because
0<z24z+1<1.

It is straightforward to see that |22 +z +1| < m, consequently, m <
1 1 _ 1

L = ooy Where oy = (|x2+z+1\) :

As a result,

2
1 1

1 S g S
M (rem) = e

The polynomial z2 4+ = + 1 over a finite field with a characteristic 2 corresponds
to the exclusive disjunction z & NOT (z), where NOT(z) = 2% @ 1 for = |0) or

oo 0=(5) (1) = (2)
) = @ - ((1)> ) (j) |

so that |0) = <(1)) and |1) = <(1)), where the normalizing constant \% was omitted.
This logical operation can also be regarded as the Fourier transform [7, p. 50] on

. 1 1\ .
the Galois field of two elements Ha|z),_ o,y = |&), where Hy = % (1 _1) is
the Hadamard matrix of order 2.

Fig. 2 depics the Hadamard basis {|+), |—)} of a one-qubit register on the Hilbert
space. Notice that the ratio m in Ineq. 1 corresponds to sin 45° over R2, since
the vectors with coordinates (+1,+1) have the same direction as the unit vectors
%|O) + % [1) that make half a right angle with the axes in the plane. Hence, Ineq.

1 stays (sin#)? < 1 —sin 6 for 6 = 45°.

NOT(x)
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FIGURE 2. The Hadamard gate operates as a reflection around
= § that maps the z-axis to the 45° line, and the NOT (z)-axis to
the —45° line.
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M)lh Then, the equali

3 . , quality
1—sinf = 2(sin g)2 holds, since cos @ = sin 6 for § = 45°. Consequently, (sin 45°)? <
2(sin 22.5°)2.

Rearranging this last inequality, we get:

Consider the trigonometric identity | sin () | = (

1 1 1
2) 5 (6in45°)? < 5 (sin 22.5%)% + 5 (sin 22.5°),

that is the inequality obtained by Bell is his paper [0, p. 230][8], where 45° and
22.5° are Bell test angles, these being the ones for which the quantum theory gives
the greatest violation of the inequality, i.e., 0.2500 < 0.1464(i).

Remember that {X’, X”} is a subset of the universal set {X’, X7, X"}, hence,
the cardinality of subset {X’, X”} is less than or equal to the cardinality of set
{X’, X7, X"’}. Then, obviously, the inequality |2% + z| < |22 + 2 + 1| holds. (If we
trust standard set theory, this axiomatic inequality has to be true).

So, Ineq. 1 is reversed:

1 1 1
(3) 5 (si045%)? > 2 (sin 22.5°)% + £ (sin 22.5°)?,

as opposed to Ineq. 2. Consequently, 0.2500 > 0.1464(ii).

The inequalities (i) and (ii) exist at once for Bell test angles, which shows that
there is an ambiguity in axiomatic set theory on which Wigner [3] relied to derive
a general form of Bell’s inequalities. As a consequence, we have that |22 + x| <
|22 + 2 + 1] and |22 + 2 + 1| < |22 + z|, where 2|2% + 2 + Yooy = %(HOD +
[10)] + []00) — |11)]), so that:

[z ® NOT ()]l = 5110)[1) + [1)[0)|
lz @ NOT(2)],_y| = 5110)[0) = [1)[1)]

As the set 22 + 2 + 1 is a subset of itself, hence, |22 + 2 + 1| < |22 + 2 + 1. Tt
follows that the conditions [2? + 2+ 1| < 1 and |2+ 2+ 1| > 1 hold. Consequently,

55 (101) +[10)| +]100) — [11)]) < 1 and 575(][01) + [10)| + [|00) — [11)]) > 1.

Defining \%(HOD +10)|4]/00) —|11}]) as a sum of correlations S, we have S < 2
and S > 2 at once, which shows that the number 2 cannot be used as separability
criterion. As a result of this logical hole, the problem to determine whether a
given state is entangled or classically correlated is undecidable via CHSH inequality
[9, 10], i.e, 2 < [|00) + |01) + |10) — |11)| < 2, which can provoke interpretation
bias in Bell’s test experiments for quantum key distribution (QKD) cryptographic
protocols.
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