Diversity of fish sound types in the Pearl River Estuary, China

The Key Laboratory of Aquatic Biodiversity and Conservation of the Chinese Academy of Sciences, Institute of Hydrobiology of the Chinese Academy of Sciences, Wuhan, P. R. China
Division of Marine Science and Conservation, Nicholas School of the Environment, Duke University of Marine Laboratory, NC, Beaufort, USA
Pratt School of Engineering, Duke University, Durham, NC, United States
National Research Institute of Fisheries Science, Fisheries Research and Development Agency, Kanagawa, Japan
Transport Planning and Research Institute, Ministry of Transport, Beijing, P. R. China
Hongkong-Zhuhai-Macao Bridge Authority, Hongkong-Zhuhai-Macao Bridge Authority, Guangzhou, China
DOI
10.7287/peerj.preprints.3301v1
Subject Areas
Aquaculture, Fisheries and Fish Science, Conservation Biology, Marine Biology, Zoology
Keywords
Indo-Pacific humpback dolphins, Hierarchical cluster analysis, Pearl River Estuary, Fish sound, Passive acoustic monitoring, Pulse train
Copyright
© 2017 Wang et al.
Licence
This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, reproduction and adaptation in any medium and for any purpose provided that it is properly attributed. For attribution, the original author(s), title, publication source (PeerJ Preprints) and either DOI or URL of the article must be cited.
Cite this article
Wang Z, Nowacek D, Akamatsu T, Wang K, Liu J, Duan G, Cao H, Wang D. 2017. Diversity of fish sound types in the Pearl River Estuary, China. PeerJ Preprints 5:e3301v1

Abstract

Background. Repetitive species-specific sound enables the identification of the presence and behavior of soniferous species by acoustic means. Passive acoustic monitoring has been widely applied to monitor the spatial and temporal occurrence and behavior of calling species. Methods. Underwater biological sounds in the Pearl River Estuary, China, were collected using passive acoustic monitoring, with special attention paid to fish sounds. A total of 1408 suspected fish calls comprising 18,942 pulses were qualitatively analyzed using a customized acoustic analysis routine. Results. We identified a diversity of 66 types of fish sounds. In addition to single pulse, the sounds tended to have a pulse train structure. The pulses were characterized by an approximate 8 ms duration, with a peak frequency from 500 to 2600 Hz and a majority of the energy below 4000 Hz. The median inter-pulsepeak interval (IPPI) of most call types was 9 or 10 ms. Most call types with median IPPIs of 9 ms and 10 ms were observed at times that were exclusive from each other, suggesting that they might be produced by different species. According to the literature, the two section signal types of 1+1 and 1+N10 might belong to big-snout croaker (Johnius macrorhynus), and 1+N19 might be produced by Belanger's croaker (J. belangerii). Discussion. Categorization of the baseline ambient biological sound is an important first step in mapping the spatial and temporal patterns of soniferous fishes. The next step is the identification of the species producing each sound. The distribution pattern of soniferous fishes will be helpful for the protection and management of local fishery resources and in marine environmental impact assessment. Since the local vulnerable Indo-Pacific humpback dolphin (Sousa chinensis) mainly preys on soniferous fishes, the fine-scale distribution pattern of soniferous fishes can aid in the conservation of this species. Additionally, prey and predator relationships can be observed when a database of species-identified sounds is completed.

Author Comment

This is a submission to PeerJ for review.

Supplemental Information