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Introduction 
MTopGo is a novel algorithm of module identification for PPI Network analysis [1], it is designed to 
consider two key aspects of these models, the topological properties of the network and the apriori 
knowledge about the proteins involved, represented by GO annotations. Understanding and 
accounting for the stability of the clusters with respect to the presence of noise and uncertainty in 
the data is an important factor when evaluating an algorithm specific for PPI Networks [2]. In fact, 
the input graphs are obtained from high-throughput methods (e.g. yeast-two-hybrid, etc.) which are 
generally noisy with high false positive and false negative rates [3]. Moreover, many clustering 
algorithms rely on a random component, thus stability of the results across different runs is 
considered to be an asset of the algorithm [4]. As MTopGO is a non-deterministic algorithm, two 
different stability analyses have been executed to evaluate its performance. Firstly, one to evaluate 
the stability of the result over many runs starting from a same input, to consider the range of variability 
introduced by the random components of the algorithm; secondly, one to evaluate the robustness of 
the output clusters when the input is affected by noise and uncertainty.  
Methods  
MTopGO output consists of a network partition and a set of GO terms associated to each cluster of 
the partition, describing their biological role. Two different global functions are used to evaluate the 
final result: modularity (Q) [5] and Quality GO (QGO). Q evaluates the global quality of the partition; 
it ranges from -1 to 1, assuming positive values if there are more links within clusters than expected 
at random, and negative otherwise. QGO evaluates the agreement between the set of clusters and 
the set of GO terms selected, ranging from 0 to 1.  
To evaluate the stability of the result over many runs starting from a same input, MTopGO has been 
executed 500 times on a PPI Network from human proteins [4]. While, to investigate the robustness 
of MTopGO on noisy PPI networks, the same network has been used to create eleven perturbed 
networks (keeping the same node set but changing the edges). In particular, combining three 
different percentages (0% - 5% - 10%) of random edge removal and addition, eight different networks 
have been obtained. Three additional networks have been obtained to explore more dramatic 
perturbations; two of them by removing and adding 50% of edges and the last one totally random 
(100% removal and 100% addition). Each network has been processed one hundred times.  
Results  
MTopGO stability results. In Figure 1 (left) the values of Q against QGO are shown for all 500 
clusterings; it can be observed that the QGO values are more stable than Q values. It is interesting 
to note that about 95% of the total results can be identified in two main zones of high density, Zone 
1 and Zone 2, suggesting that the Zone 1 correspond to a local Q maximum, while the Zone 2 
corresponds to higher Q maximum. As regards the remaining 5% of the results, a third zone (Zone 
3) of lower density can be observed, represented by points set along a diagonal line. Zone 3 
suggests a negative correlation between Q and QGO, confirmed by a Pearson Correlation value of 
-0.78. In Figure 1 (right) we explore the use of Consensus Clustering (CC) [6] to remove lower 
quality clusterings. CC allows to compute a new clustering by maximizing agreement over all the 
500 repeated clusterings. For each clustering, the Weighted Kappa (WK) measure [7] has been 
computed to measure the agreement with the CC found. The clusterings with bad WK value (less 
than a selected threshold 0.6) have been highlighted in Figure 3 (right) in red. It is interesting that 
the clusterings with low CC agreement are included in the lowest density area, Zone 3. As a result, 
the generation of CC can be used to filter out the less stable clusterings to ensure results that are 
closer to the more preferred Zone 1 and Zone 2. 
Perturbed network results. Figure 2 shows the boxplots for the Q distributions for each 
of the perturbed networks. It can be observed in the first eight networks the modularity is  
quite preserved. The Q distributions clearly show the MTopGO algorithm is more robust 
against the edge removal than the edge addition. In fact, a Q decreasing can be observed 
when the edge addiction percentage increases while the edge removal percentage is 
constant. While, the high similarity between the Q distributions for the two 50% edge- 
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addition and edge-removal networks, may be due to a high percentage of error introduced, 
causing a loss of the modular structure of the two networks. As expected, the random 
network shows the lower Q values as the modular structure is completely damaged. 
Interesting, Fortunato et al. studying the modularity limits find that both for a random and 
scale-free graph the expected maximum modularity increase when the graphs gets 
sparser, i.e. the edge number decrease [5]. As the PPI networks often shown scale-free 
properties, this could be the reason behind the fact that the networks 0A-5R and 0A-10R, 
those with higher number of removed edges, show the maximum values of modularity. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Conclusions  
In this study, we have explored the stability of the MTopGO algorithm for detecting modules in PPI 
networks. Results demonstrated that the QGO variation was small from different repeated runs of 
MTopGO, whilst the Q variation was relatively high (due to the variation in modularity). The use of 
Consensus Clustering helped to identify reasonably good module allocations as well as filter out 
bad. The network perturbation results showed that MTopGO was more stable in case of false 
negative edges than false positive edges (adding false edges was more damaging than removing 
existing links). 
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Figure 1 A: The graph shows the Q and QGO values for all the 500 clusterings. Three different zones of points can be individuated, 
underlined by red circles (Zone 1 and Zone 2) and the red line (Zone 3). B: The red points represent the clusterings with a WK value 
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Figure 2: The boxplot shows the Q distributions computed for the 100 run for each network. The labels in xaxis identify the 
perturbed networks, each label nAmR means the network has been obtained adding n% of edges and removing m% of edges. 
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