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Advances in genomic sequencing technologies resulted in massive microbial diversity data
(16S ribosomal gene sequences, rDNA) being generated in every possible environment.
However, the majority of microorganisms have never been cultured, and therefore, nor
cataloged. This poses a problem for molecular microbial ecologists because a large portion
of the marker sequences can not be taxonomically resolved past the phylum taxon level.
This tells very little about who or what these microorganisms are doing in relation to their
environment. Our study describes an approach to assist in drawing ecological information
from a sample when the taxon resolution is poor. We generated 16S rDNA libraries from a
hypersaline marine sediment (coastal Sabkha) and saline mangrove soil in Abu Dhabi and
then compared the compositional features to a database of 20,470 publicly available
microbial community profiles (comprising the entire Earth Microbiome Project, EMP) that
were annotated with terms from the Environmental Ontology (EnvO). An accurate
taxonomic classification was not possible for 80% of the Sabkha operational taxonomic
units (OTUs) beyond phylum level with widely used taxonomy classification tools, but
habitat profiling performed on the community revealed strong links to bacterial
assemblages of soil and marine origins. To capture the notion of generalist vs. specialist
formally, we developed an algorithm to derive empirical probability distributions of OTUs
over ecosystems from observed occurrences in the sample database, which then give rise
to OTU-specific ecosystem entropies. We observed very low average ecosystem entropy of
the Sabkha in contrast to other environmental samples. Based on this concept, the Sabkha
community, while of midrange alpha diversity, presented largely specialist characteristics,
with most OTUs identified to be unique to the Sabkha habitat. This finding is further
corroborated by the observation that the Sabkha sample is unique with respect to the
EMP-derived dataset (which contains 74 hypersaline and thousands of marine samples), as
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a comprehensive UniFrac similarity search did not yield any significant matches. Finally,
we show that the ecosystem entropy formalism, which intrinsically accounts for the ability
of OTUs to cross ecosystem borders according to a context database, is a novel,
informative tool to describe and identify extreme environments in addition to conventional
ecological diversity measures.
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ABSTRACT15

Advances in genomic sequencing technologies resulted in massive microbial diversity data (16S ribosomal
gene sequences, rDNA) being generated for samples from wide-ranging environments. However, the
majority of microorganisms have never been cultured, and therefore, are not re�ected in current public
databases. This poses a problem for molecular microbial ecologists because a large portion of the marker
sequences can not be taxonomically resolved past the phylum taxon level. This tells very little about
who or what these microorganisms are doing in relation to their environment. Our study describes an
approach to assist in drawing ecological information from a sample even when the taxon resolution is poor.
We generated 16S rDNA libraries from a hypersaline marine sediment (coastal sabkha) and a moderately
hypersaline mangrove soil in Abu Dhabi. Intuitively, our novel algorithm identi�es for each OTU in a given
community, where else it occurs (i.e., in which other ecosystems). This is facilitated by a comprehensive
relational database of 20,470 publicly available microbial community pro�les (comprising the entire Earth
Microbiome Project, EMP) with Environmental Ontology (EnvO) annotations. Analysis performed on the
sabkha community revealed strong links to bacterial assemblages of soil and marine origins. Formally, the
developed algorithm derives empirical probability distributions of OTUs over ecosystems from observed
occurrences in the sample database, which then give rise to OTU-speci�c ecosystem entropies. The
results are visualized in a feature rich graph. We observed very low ecosystem entropies of the sabkha
constituents in contrast to other (hyper-)saline samples, indicating specialist characteristics and/or genetic
isolation. This �nding is further corroborated by the observation that the sabkha sample is unique with
respect to the EMP-derived dataset, as a comprehensive UniFrac similarity search did not yield any
signi�cant matches. Finally, we show that the ecosystem entropy formalism, which intrinsically accounts
for the ability of OTUs to cross ecosystem borders according to a context database, is a novel, informative
tool to describe extreme environments complementary to conventional ecological diversity measures.
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INTRODUCTION38

Over the recent years, the generation of large marker gene datasets has become more common in39

environmental research, owing to the plummeting cost of next-generation sequencing (NGS) and the40

emergence of more robust bioinformatics tools (Kim et al. (2013)). Joint efforts such as the Tara Ocean41

Expedition, Ocean Sampling Day, Malaspina Expedition, Earth Microbiome Project, and the Human42

Microbiome Project (Karsenti et al. (2011); Kopf et al. (2015); Duarte (2015); Gilbert et al. (2014);43

Turnbaugh et al. (2007); Yutin et al. (2007)) underline the growing recognition of metagenomic and44
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marker gene datasets as a key approach in representing and cataloguing whole or near-whole microbial45

communities within major environmental domains. The marker gene set approach has so far proven46

invaluable in studying environments or systems of interest through a more realistic representation of47

intrinsic community composition and dynamics than was possible with classic culture-based investigations48

alone Su et al. (2012). Community pro�le reporting is now considered an important aspect of habitat49

characterization, especially when it comes to understanding shifts in environments or systems of interest50

across time and space, as seen from the growing body of marker gene datasets collected at general51

sequence databases (Genomes OnLine Database (GOLD), GenBank Reddy et al. (2015); Benson et al.52

(2013); Schloss and Handelsman (2004) ) and dedicated marker gene repositories (Ribosomal Database53

Project-RDP, SILVA and IMNGS, Cole et al. (2009b); Pruesse et al. (2007); Lagkouvardos et al. (2016)).54

This revolution in microbial ecology is only expected to forge ahead with continual improvement in55

the processing power (number of reads, depth) of sequencing technologies and computational analysis.56

With thousands of community pro�les contributed to public repositories through efforts targeting whole57

genomes or genetic markers such as the 16S rRNA gene, the current challenge hence is in distilling58

meaningful information from this deluge of metagenomic data (Wooley et al. (2010)) towards advancing59

fundamental understanding of microbial diversity, biogeography and evolution across the planet. To60

date, the general framework of marker gene analysis primarily utilizes existing sequence data from61

studied microbial taxa (identi�ed by bioinformatics tools as operational taxonomic units or ‘OTUs’) as a62

means of determining the phylogenetic diversity or function of studied communities. While the wealth63

of marker gene sequencing data provide a robust reference for community characterization under this64

general framework (with a signi�cant number of OTUs identi�able up to the genus level), our ability to65

derive further information on the microbial community members (e.g., ‘how unique or rare is a particular66

bacterium?’ and ‘what environmental niche does it occupy?’) remains limited. Existing work on the67

less common, low abundance OTUs (corresponding to the ’rare biosphere’) has so far shed some light68

on the previously overlooked populations that offer further insight on microbial communities (Huse69

et al. (2010)). Gleaning such insight would require integrating existing metadata accompanying each70

metagenomic submission (source biome, geographic location, pH, etc.) into the existing framework to71

support a more contextualized analysis of communities. This is especially relevant in light of previous72

�ndings of ecological importance, such as the correlation between habitat conditions and genome size73

(Dini-Andreote et al. (2012)), the latitudinal gradient in marine bacteria distribution (Fuhrman et al.74

(2008)), and the taxonomic and functional distinction of desert soil bacteria against other nondesert75

biomes (Fierer et al. (2012)).76

To address rarity and environmental niche occupation of microbial community members holistically,77

we considered an alternative strategy that taps into marker gene data and metadata to support the78

interpretation of global patterns in bacterial taxa distribution across different biomes. This can then be79

used to distinguish between different environmental samples based on their matching biome annotations.80

This approach seeks to address the aspect of biogeography in microbial ecology, which aims to reveal81

where organisms live, at what abundance, and why (Martiny et al. (2006)). Our interest is in achieving a82

higher-level analysis of microbial communities, moving beyond typical characterization (who is there?)83

towards understanding how a community’s ecology is related to the environmental distribution of its84

members. This study was designed to test the hypothesis that extreme environments select for unique85

microbes with a narrow range of environmental distribution (‘specialists’, here used in a more general86

sense wrt. observed ecosystem speci�city), whereas more moderate environments would host microbes87

with a wider distribution (‘generalists’). Previous work investigating co-occurence patterns in soil88

microbes and the mechanism of environmental �ltering across the terrestrial-freshwater gradient point to89

the potential of exploring associations between disparate communities (Barber·an et al. (2012); Monard90

et al. (2016)), which we aim to enable at a greater scale. IMNGS is comparable to our work in that91

it is also capable to extract distribution patterns of community members, but requires computationally92

expensive sequence similarity searches and is conducted only at an individual level, without visualization93

of the ecosystem distribution. Our investigation involves the characterization of a microbial community94

from a vegetation-free, hypersaline tidal salt �at (‘sabkha’), and a grey mangrove (Avicennia marina)95

forest bed, followed by a comparison of the 16S rRNA gene libraries of these two distinctly different96

environments in Abu Dhabi, United Arab Emirates (UAE) against global saline samples. While true97

specialization in terms of genomic content can not be gleaned from 16S rRNA alone, the large number of98

available 16S rRNA libraries carry valuable information about the whereabouts of OTUs, which can serve99
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as approximation for OTU specialization.100

MATERIALS AND METHODS101

Sequence data processing. We characterized the bacterial community of an intertidal sabkha site102

(N 24.146556; E 54.103194) that had previously been geochemically characterized by Bontognali et al.103

(2010). The site was uniformly covered with a halite layer, had no vegetation cover, and not �ooded at104

the time of sampling. The top 10 cm layer was systematically sampled from 15 points across a 135-m2
105

area, yielding a composite sample for DNA extraction, 16S Ribosomal DNA library preparation, and106

pair-end sequencing of 250 bases on the MiSEQ platform (Illumina; CA, USA) at the BioMicroCenter107

(MIT, Cambridge, MA), which produced 23,606 sequences. The mangrove forest bed sample was taken108

from N 24.450530; E 54.445002. Sample preparation and DNA sequencing was performed as above and109

yielded 46,875 amplicons. We perform 16S rRNA copy number correction as suggested by PICRUSt. We110

adhered to the 16S rRNA amplicon protocol recommended by the Earth Microbiome Project (Caporaso111

et al. (2012)), amplifying hypervariable region V4, using standard primers 515F - 806R. The 5’ end112

fragments were analyzed using Quantitative Insights Into Microbial Ecology (QIIME 1.9) (Caporaso113

et al. (2010)), and closed reference OTU calling was completed using GreenGenes (DeSantis et al.114

(2006)) with 97% reference OTU collection (May 2013). We determined taxonomic ranks for OTU115

representatives using the Ribosomal Database Project (RDP version 2.2) classi�er (Cole et al. (2009a)).116

Alpha diversity/phylogenetic distance (PD whole tree) with respect to the phylogeny that is provided by117

GreenGenes for its reference OTUs (clustered at 97% sequence identity) was calculated using the Qiime118

script alpha diversity.py. All samples were rare�ed to 18,000 sequences through 10-fold multiple119

rarefaction using QIIME’s multiple rarefactions.py -n 10 (see Figure S10 for rarefaction120

curves).121

Ecosystem distribution of OTUs For each OTU we identi�ed the environments in which it occurs. To122

this end, we built a database of 20,472 16S rRNA pro�les from 2,461 independent studies. The database123

contains a number of tables for sample information (meta data, sample size) as well as a table that relates124

sample event IDs to OTU IDs which has more than 13.5 million entries. We have indexed OTU IDs for125

fast retrieval of individual IDs. This table facilitates ef�cient OTU centric queries. The sources for the126

collection of pro�les are a previous collection published in Chaffron et al. (2010) (henceforth referred to127

as Chaffron dataset), Qiime-DB/Qiita (which comprises the Earth Microbiome Project, though only as128

marker gene pro�les, i.e. OTU abundances but no sequences) and the Sequence Read Archive (SRA). The129

details of the database content and construction are provided in Henschel et al. (2015). We would like to130

stress the suitability of this database to investigate saline/hypersaline samples such as marine sediments, as131

this context is represented by samples from various independent studies: 35 samples (containing at least 50132

sequences) from 11 independent studies have been identi�ed as hypersaline. Moreover, marine sediments133

feature prominently in our database. In total, the database contains 202 samples assigned to marine134

sediments from 12 independent studies. For details, please refer to Tables 1 and 2, respectively. The entire135

coverage of ecosystems is shown in Table For each pro�le, closed reference OTU calling was performed136

consistenly against the same reference as for the sabkha sample, GreenGenes 13.5 in consistency with the137

pre-picked marker gene pro�les we acquired from Qiime-DB. Moreover, for all samples, we identi�ed138

the ecosystem using the Environmental Ontology (EnvO) (Buttigieg et al. (2013, 2016)): EnvO (version139

20-04-2012, http://purl.bioontology.org/ontology/ENVO) annotation was performed140

semi-automatically for SRA data and Chaffron’s data set, whereas Qiime-DB provides EnvO annotations141

in mapping �les accompaniying the recorded studies, according to MIMARKS guidelines (Yilmaz et al.142

(2011)). For a more detailed description the reader is referred to Henschel et al. (2015), Section Methods,143

subsection �EnvO annotation and method validation�. Finally we de�ne high-level ecosystem by grouping144

subtrees of EnvO classes: Bio�lm, Plant, Soil, Animal/Human, Hypersaline, Geothermal, Freshwater,145

Marine and Anthropogenic. E.g. the ecosystem �Plant-related� is composed of EnvO-terms �plantation�,146

�plant-associated habitat�, and �plant food product� and their respective subsumed EnvO terms. As EnvO147

is a Directed Acyclic Graph with multiple inheritence and samples occasionally receive multiple EnvO148

annotations, it is possible that samples are assigned to several ecosystems simultaneously. We account for149

this by de�ning additional composite ecosystems such as Geothermal/Marine for marine hydrothermal150

vents. For each OTU we counted the occurrences in the above mentioned ecosystems (incl. composite151

ecosystems), yielding an occurrence vector of length 37. After normalization to a sum of one, the vector152
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can be interpreted as (empirical) probability distribution for an OTU over ecosystems. We visualized all153

probability distributions with a stacked bar diagram, where the width of a bar corresponds to relative OTU154

abundance. This way, the proportion of generalists and specialists contained in a sample are immediately155

recognizable. As OTU bars are ordered by phylogenetic lineage, conventional taxonomic distribution is156

shown along the x-axis in addition to ecosystem distributions.157

Study Title Isolation source Nr
QDB 1200 Phylogenetic stratigraphy in the Guerrero Negro hypersaline

microbial mat
microbial mat 18

QDB 1580 Saline environments that may harbor novel lignocellulolytic
activities tolerant of ionic liquids

hypersaline lake 8

CHA 0507 Community composition of a hypersaline endoevaporitic mi-
crobial mat

hypersaline endoevaporitic micro-
bial mat

1

CHA 0419 Characterization and spatial distribution of methanogens and
methanogenic biosignatures in hypersaline microbial mats of
Baja California

hypersaline microbial mat collected
from concentrating area 4 located in
Exportadora De Sal, S.A. (ESSA)

1

CHA 0742 Diversity and strati�cation of Archaea in a hypersaline micro-
bial mat

hypersaline microbial mat: Guerrero
Negro pond 4 near 5

1

CHA 0112 An Anaerobic Methane Oxidizing Community of ANME-1b
Archaea in Hypersaline Gulf of Mexico Sediments

Gulf of Mexico sediments 1

CHA 1017 Haloarchaea and halophilic bacteria in two hypersaline soils of
Jiangsu Province, China

saltern soil 1

CHA 2264 Unexpected diversity and complexity of the guerrero negro
hypersaline microbial mat

hypersaline microbial mat: Guerrero
Negro

1

CHA 1552 Miniprimer PCR, a new lens for viewing the microbial world hypersaline microbial mat 1
CHA 0551 Comparison of deep-sea microbial communities in the eastern

Mediterranean
sediment collected from a mound
near Urania brine lake, Eastern
Mediterranean, 3342m water depth:
isolated from sediment layer 10-20
cm

1

CHA 0759 Diversity of Bacillus-like organisms isolated from deep-sea
hypersaline anoxic sediments

Brine Lake Sediment 1

CHA 1788 Phylogenetic analysis of cultured bacteria in the deep see sedi-
ment of the east Paci�c

deep sea sediment 1

CHA 0563 Comparison of the extremophiles of deep-sea and Antarctic deep sea sediment 1
CHA 0086 Abundance and diversity of microbial life in ocean crust deep seawater from the East Paci�c

Rise
1

Table 1. Hypersaline and deep sea samples in Database EMP+. The collection of microbial samples
that Ecosystem distribution entropy (HEMP+) is based on contains 35 samples from 11 independent
studies. The last �ve samples are from independent deep sea studies. Study identi�ers with QDB are
taken from Qiime DB, those with CHA are from the Chaffron dataset.

The actual algorithm for ecosystem distribution is presented below: The algorithm was implemented158

in Python (using numerous modules such as matplotlib and numpy) in combination with SQL. The source159

code is available at https://doi.org/10.5281/zenodo.847719. The underlying database160

and its description including ecosystem assignment is available at http://dx.doi.org/10.1371/161

journal.pcbi.1004468.162

Quanti�ying ecosystem speci�city Based on probability distributions over ecosystems, we calculate
the Shannon entropy for each OTU:

HEMP+(OTU) =�Si2E pi log pi (1)

where E is the set of all 37 (pure and composite) ecosystems, pi denotes the probability of an OTU163

to belong to an ecosystem i and EMP+ refers to the underlying database (as it constitutes a superset of164

the Earth Microbiome Project (EMP), one of the largest environmental 16S rRNA sample collections).165

Through Equation 1 we strive to capture the notion of OTU specialization: a specialist occurring only in166

one environment receives a minimal entropy of 0, whereas a generalist equally present in all environments167

is characterized by a high entropy value. Note that this calculation is always dependent on the suitability168

and completeness of the underlying database, and should therefore be regarded as an approximation. We169

however argue, that our database is�albeit not complete but�suf�ciently comprehensive to produce170

valuable estimates. One desirable property of the Shannon entropy calculation is that specialists can171
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Study Title Isolation source Nr
QDB 1046 Gulf Oil Spill Sediment marine sediments from Gulf of Mex-

ico
104

QDB 1198 Polluted Polar Coastal Sediments marine sediment 57
QDB 1673 Mission Bay Sediment Viromes marine sediment from Mission Bay 26
SRA 0011 Rich microbial communities in and around underwater springs

in the Dead Sea
Dead Sea Springs Sediment (Ar-
chae)

5

QDB 1580 Saline environments that may harbor novel lignocellulolytic
activities tolerant of ionic liquids

sea grass sample 3

CHA 1112 Impact of oil and higher hydrocarbons on microbial diversity,
distribution and activity in Gulf of Mexico cold seep sediments

marine sediments 1

CHA 1340 Marine Derived Actinomycete Diversity marine sediment 1
CHA 1840 Phylogenetic diversity of bacteria in marine sediments from the

Arctic Ocean
marine sediments 1

CHA 1375 Microbial Communities Adherent to Sediment Particles in
Heavy Metal Contaminated North Sea Surface Sediments

marine sediments 1

CHA 0096 Actinomycete and Other Gram-Positive Bacterial Diversity Cul-
tured From Tropical Marine Sediments

marine sediment 1

CHA 2044 Seasonal variation of microbial diversity in the Yellow Sea
sediment

Yellow Sea sediment 1

CHA 1560 Molecular analysis of bacterial communities in Paci�c arctic
surface sediment

arctic surface sediment 1

Table 2. Marine sediment samples in Database. We consider OTU presence in 202 samples annotated
as marine sediment from 12 independent studies.

still get recognized as such despite occasional contaminations and artifacts, if the OTU was sampled172

predominantly in one environment.173

We then calculated the unweighted (HEMP+
U ) and weighted average entropy (HEMP+

W ) for a sample S
(represented as a set of OTUs with their respective relative abundances) as follows:

HEMP+
U (S) = SOTU2S HEMP+(OTU)=jSj (2)

HEMP+
W (S) = SOTU2S rS(OTU)�HEMP+(OTU) (3)

where rS denotes the relative abundance of an OTU in sample S.174

Percentile calculation In order to put those calculations for a particular environment into perspective,175

we also report the percentile of HEMP+
W values. To this end, we calculated HEMP+

W for all environmental176

samples in our database, i.e., those not related to human/animal. The reported percentiles are then the177

percentages of samples that achieve a lower entropy than the sample at hand.178

RESULTS179

Microbial community characterization of a unique salt �at and a mangrove forest bed environment180

Illumina sequencing yielded 23,606 DNA sequences from the sabkha soil sample. A total of 702181

closed reference OTUs (with respect to GreenGenes 13.5, 97% sequence similarity) were identi�ed182

but approximately 80% of the community could not be identi�ed beyond phylum level using the RDP183

classi�er, con�dence threshold 90%, see Figure S 1a). 36.1% of sequences subjected to OTU calling184

did not match any reference OTU. Identi�ed sequences were found to be predominantly from phylum185

Proteobacteria (68.99%), followed by Acidobacteria (9.74%), Bacteroidetes (3.50%) and Actinobacteria186

(2.70%). The majority of Proteobacteria in the community were of class Gammaproteobacteria (36.05%),187

with up to 10.99% of these identi�ed to belong to genus Halomonas. Alphaproteobacteria represent the188

second largest group of Proteobacteria in the sabkha community (29.86%), and up to 9.08% of these were189

identi�ed to be of genus Rhodovibrio (Figure 1). The samples’ alpha diversity (Phylogenetic Distance) is190

47,916 (see Methods sections for details regarding the calculation).191

In contrast, the mangrove forest bed community comprised 2,597 OTUs, with approximately 80%192

of the OTUs not identi�ed beyond the family level Figure S 1b). From the original 46,875 sequences,193

25,812 (55%) could not be assigned to the GreenGenes reference OTUs. Identi�ed sequences from194

the mangrove forest bed community were predominantly from phylum Proteobacteria (44.5%), fol-195

lowed by Bacteroidetes (8.1%), Planctomycetes (6.8%), Actinobacteria (6.71%), Chloro�exi (6.29%),196
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Algorithm 1: Ecosystem distribution of OTUs
Input :pro�le 16S rRNA pro�le, list of tuples of OTU-ids and abundances
Output :Ecosystem distribution matrix, entropy incl. stacked barchart visualization of ecosystems

aligned with H(OTU) plot and taxonomic information

1 Sample preprocessing (QIIME);
2 Closed reference OTU picking (QIIME);
3 foreach OTU in pro�le do
4 # Query Database EMP+, in which other sample OTU occurs
5 otherSamples SELECT sample FROM otu sample table WHERE otuID=OTU
6 # Query Database EMP+, which ecosystems other samples are assigned to
7 e = [eSoil ;eMarine; : : : ;eHumanAssoc] SELECT ecosystem, COUNT (*) Frequency FROM

ecosystem table WHERE sampleID IN otherSamples GROUP BY ecosystem
8 eN =normalize (e)
9 ecoDistribution [OTU ] eN

10 end
11 Order OTUs taxonomically
12 foreach (OTU, abundance ) in pro�le do
13 Calculate and plot H(OTU)
14 Visualize ecoDistribution [OTU ] as stacked bar, with width proportional to

abundance, arranged according to phylogeny
15 end

Gemmatimonadetes (5.1%) and Acidobacteria (4.9%). Proteobacteria in the community were primarily197

Deltaproteobacteria (14.18%), followed by Gammaproteobacteria (11.76%) and Alphaproteobacteria198

(6.55%)(Figure 2). The alpha diversity (PD, with respect to the GreenGenes phylogeny, see Methods) is199

126,940.200

The sabkha community and the mangrove forest bed community each had a distinct environmental201

distribution pro�le based on the environmental metadata analysis performed on the 16S rDNA sequences202

against global libraries. The total range of observed ecosystem distribution entropy is 0-2.295 (for both203

HEMP+
U and HEMP+

W ). The environmental distribution pro�le for the sabkha soil community revealed204

the majority of OTUs to be exclusively associated with the hypersaline marine environment, while the205

remainder were linked to a combination of mainly soil or marine environments, along with anthropogenic206

soil, geothermal and animal/human host environments (Figure 1). The exclusive occurrence of the sabkha207

community members in studied hypersaline marine environments indicated their narrow distribution across208

global environments, as represented by their low weighted mean ecosystem entropy value HEMP+
W = 0:458.209

To put this value into perspective, the quantile value is 20.36% wrt. all ecosystems and 1.06% wrt. environ-210

mental, i.e., non-human/animal associated samples (also see Figure 3). The association with hypersaline211

marine environments was also not restricted to any taxonomic group, but was rather widespread among212

the community members. The majority of OTUs identi�ed in the community composition were found to213

have a limited distribution across the global libraries, as indicated by the small number of samples they214

were found in. It was also noted that OTUs occuring only samples tended to have ecosystem entropy215

values of zero or near zero in this environmental distribution pro�le. Potential misclassi�cations are216

further elaborated on in the Discussion section. A few exceptions were present in a relatively large number217

of samples ranging from 100 to 1000, with higher ecosystem entropy values ranging from 0.5 to 2.0. This218

may represent the minority group of generalists among the sabkha community members, indicated by219

their association with a more diverse range of environments compared to their specialist counterparts, and220

their presence in a larger number of global samples.221

Conversely, the environmental distribution pro�le for the mangrove forest bed community revealed222

the majority of OTUs to be associated with a variety of environments, the most prominent being marine,223

followed by soil and freshwater environments (Figure 2). A few OTUs appeared to be exclusively linked224

to either soil or hypersaline marine environments, but their abundance was negligible relative to the entire225

community. Overall, the mean weighted ecosystem entropy value for the mangrove forest bed community226

was 0.698 (quantile wrt. environmental), considerably higher than that of the sabkha soil community.227
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Figure 1. Ecosystem distribution pro�le for sabkha sample as produced by Algorithm 1. The
pro�le contains four parts: 1. a conventional bardiagram for displaying community composition,
including a legend with taxonomic categories. 2. Orthogonal to taxonomic categories, we show bar
diagrams of OTUs re�ecting their respective (empirical) probability distribution over ecosystems with
respect to our EMP-derived database. Note that a bar for each OTU is placed above the taxonomic
category it belongs to and moreover, the width of the bar corresponds to the relative abundance of the
OTU in the sample. Composite ecosystems (e.g. sabkha being Marine/Soil/Hypersaline) are shown with
consistent respective hatching patterns, see legend in Figure S8. 3. For each OTU, we calculate the
ecosystem entropy H as described in equation 1. The entropies are horizontally aligned with the
ecosystem distribution of 2. 4. Again, horizontally aligned with OTU speci�c information, the uppermost
section displays the total occurrences of OTUs in all samples of our database.

This most likely indicates a broader distribution of the mangrove soil community members across global228

environments, compared to sabkha soil bacteria known so far to occur only in hypersaline marine settings.229

7/15

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.3286v1 | CC BY 4.0 Open Access | rec: 26 Sep 2017, publ: 26 Sep 2017



Members of this community are also present in a greater number of global samples, averaging at 69.3230

samples/OTU.231
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Figure 2. Automatically generated ecosystem distribution pro�le for Mangrove sample. The
Mangrove sample contains OTUs predominantly found in marine environments with occasional soil and
hypersaline speci�c specialists. The habitat-based pro�le gives thus not only an impression of the
biogeography of its constituents, but also a sense of a more mixed background than the sabkha sample.

Comparison of ecosystem distribution entropy to other saline/hypersaline samples Environmen-232

tal distribution pro�les were also generated for a selection of studied communities originating from233

saline and hypersaline environments worldwide. These communities were selected for our analysis as234
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we were interested in observing the biogeographic and ecological specialization patterns across com-235

munities sampled from various salt-stressed environments. Our analytical approach produced distinct236

environmental distribution pro�les for these communities, with their respective environmental distribution237

patterns yielding the most visually striking indicator of their variability. For example, a sample collected238

from a hypersaline lake for a previous study (A23.number1.�lt.D1.660399, Qiita study ID 1580, see239

https://qiita.ucsd.edu/study/description/1580, login required) was found to harbor240

OTUs associated with freshwater environments, along with soil, hypersaline, and plant-associated envi-241

ronments to a lesser extent. In contrast, another sample from the same study (WPA.�lt.660391) presented242

a stronger association with marine environments, along with distinct links to animal/human-associated243

environments observed in the community’s most abundant OTU (Betaproteobacteria). Two samples from244

another study (P.Masambaba.SA.414862 and P.Masambaba.SB.414876, Qiita study ID 1039), collected245

from the same depth in Lagoa Vermelha, Brazil, presented environmental distribution pro�les that were246

largely similar in terms of community composition and their environmental distribution patterns (close247

links to mainly freshwater and soil environments). In Lagoa Vermelha and a number of other hypersaline248

sites, Gammaproteobacteria also appear to dominate, similar to the sabkha community pro�le we ob-249

tained. In terms of ecological specialization patterns, these samples cited from previous studies presented250

generalistic tendencies, indicated by their mean ecosystem entropy values (HEMP+
W ) ranging from 0.873251

(quantile: 52.40%, P.Masambaba.SB.414876) to 1.583 (quantile: 84.30%, A23.number1.�lt.D1.660399),252

see Table 3 and Supplementary Figures S2-S7. The higher prevalence of Gammaproteobacteria in their253

hypersaline sites (Abu Dhabi sabkha, Lagoa Vermelha) compared to those of moderately-saline sites254

(mangrove forest bed) strongly hint at highly-adapted strategies for surviving salt-saturated pore waters255

and even entrapment in salt crystals (Ma et al. (2010)).256

The OTUs constituting these samples were also quite well-represented in public databases, with257

an average of 398.9 libraries presenting sequences matching these studied communities. On the other258

hand, microbial mat communities from Yellowstone National Park presented environmental distribution259

pro�les that contrasted remarkably against the other cited samples, in that these communities were almost260

exclusively associated with environmental bio�lms. Based on this observation and the signi�cant number261

of libraries presenting sequences matching these studied communities (680.7 samples/OTU on average),262

we can conclude that the Yellowstone mats hosted highly specialized bacteria with a severely limited263

range of habitats across the planet.264

Following our targeted approach of generating environmental distribution pro�les for our communities265

of interest, we proceeded to determine whether different habitats/environment types were characteristically266

generalistic or specialistic in terms of community composition. We calculated the ecosystem entropy267

values HW (see section Methods, Equation 3) for the 20,472 global libraries included in our database, and268

generated a histogram to represent their distribution across the studied environments, see Figure 3.269

Overall, there indeed appears to be correlation between a community’s ecosystem entropy value and its270

environment type. Communities with the lowest entropy values were almost exclusively associated with271

the animal/human host environment. Figure 3 shows the low ecosystem entropy (in terms of the introduced272

formalism) of the sabkha sample in comparison to other environmental samples. Animal/Human associated273

samples are generally low in HW (though with a very broad variance) and exclusively constitute the low274

entropy samples for HW < 0:4. On the other hand, the upper range of entropy values were represented275

predominantly by communities from plant-associated, soil, and anthropogenic environments. Finally,276

communities from marine and freshwater environments presented ecosystem entropy values that tended277

to be in the midrange, rather than in the lower or higher extremes.278

We �nally compared our local samples to the entire dataset using Visibiome (Azman et al. (2017)),279

a UniFrac based search engine for microbial communities. Remarkably, no matches for sabkha were280

found during an exhaustive search using the popular phylogeny-based distance measure, despite the281

database containing 35 samples from hypersaline environments, 36 of which have at least 50 OTUs (see282

Table 1). On the other hand, the mangrove soil sample matched against a number of samples from the283

Earth Microbiome Project, due to similar composition of Desulfobacteraceae, Syntrophobacteraceae,284

Piscirickettsiaceae and other families from the Proteobacteria phylum. In particular, the closest weighted285

UniFrac matches were observed for samples P.Dois.Rios.SB.414865 (Qiita 1039, UniFrac distance:286

0.244), SE.20101009.GY.FF003.BC.221 (Qiita 1197, UniFrac distance 0.275) and TtA.sed.D1.660402287

(Qiita 1580, UniFrac distance 0.283). These results are shown in Figure S11 and S12 and in a series of288

interactive visualizations (with zoom, pan and tooltip functionality) at https://visibiome.org/289
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Figure 3. Histogram of weighted average entropies for all samples in our EMP-derived dataset.
Remarkably the weighted average ecosystem entropy of the sabkha sample (HW (sabkha) as de�ned in
Equation 3) is very low, in particular wrt. marine or soil samples, owing to the high number of specialists
with low ecosystem entropy.

public/jobs/1950/ranking in respective tabs (SabkhaAD and User Soil.Day.0). The �gures also290

contain the contextualization of our samples against their closest matches using Hierarchical Clustering291

and Principal Coordinate Analysis (PCoA).292

CONCLUSIONS293

In this work we designed and show cased a new type of analysis that is directed at microbial ecologists294

who wish to characterize samples from harsh environments and want to understand the biogeography of295

the constituent extremophiles. Our method visualizes microbial communities in a compact �gure that296

captures not only the commonly provided taxonomic information, but adds an orthogonal dimension for297

ecosystem distribution. We demonstrate how to formally account for ecosystem speci�city of OTUs in298

a community. To this end, we have created an algorithm and a relational database that includes most299

16S rRNA pro�les (composed of closed reference OTUs) from the Earth Microbiome Project. When300

taxonomic identi�cation is low, i.e. it is not known who the constituents of the community exactly are,301

it is helpful to know at least where they occur. The visualization of OTU ecosystem distribution allows302

the viewer to infer the general nature of a sample and what the environmental drivers for community303

composition are. The rationale behind the comparison of a hypersaline and a moderately hypersaline304

sample was to demonstrate the differences in constituent specialization. For example, the ecosystem305

distribution pro�le of the investigated sabkha pointed to highly exclusive environmental factors that would306

permit only very well adapted OTUs that rarely occur elsewhere, but not facilitate circulation of animal-307

and plant-associated bacteria beyond short lived source-sink dynamics. It must be stated that due to low308

occurrence of constituent OTUs in other global samples, genetic isolation in the sabkha is an alternative309

explanation for low entropy. In general, however, we maintain that observed ecosystem speci�city is a310

suitable indicator for habitat adaptation and specialization. In contrast, the mangrove soil, albeit more311

saline than normal seawater (45 ppt), is a more forgiving environment compared to the coastal sabkha and312

presents OTUs that can be found in a variety of different ecosystems, as witnessed by the majority of313
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OTUs exhibiting high entropy. This is most likely an indication of these OTUs’ specialistic tendencies,314

judging from their rare occurrence across the widely-sampled global libraries and limited range of host315

environments.316

We argue that ecosystem distribution of microbial community members are a reasonable proxy for317

dispersal and as such can support biogeographic studies. Likewise, we maintain that ecosystem speci�city318

of OTUs, which is a purely descriptive measure, facilitates the identi�cation of specialists.319

Applying the ecosystem distribution formalism to the entire dataset at hand helps to put the ecosystem320

entropy of our local samples into perspective. Moreover, general emerging trends can be gleaned from the321

ecosystem distribution histogram (HDB
W , Figure 3): ecosystems are remarkably continuous as opposed to322

random, discontinuous or more pronounced multimodal distributions.323

It is worth noting that alpha-diversity is not necessarily correlated with ecosystem distribution entropy324

for extreme environments: for the sabkha sample, we observe a community that is relatively complex325

given the harsh circumstances (OTUs from 29 different phyla and 67 different taxonomic classes were326

observed). However most OTUs seem to be adapted to a saline environment with rare occurences in other327

environments. Finally, we observe that the strong compositional differences in hypersaline microbial328

communities in our database as re�ected by high beta-diversity amongst hypersaline 16S rRNA pro�les329

indicate that many taxonomically different bacterial species evolved convergently in order to adapt to330

hypersaline environments.331

Limitations. Certain limitations persist, e.g., non standardized protocols for 16S rRNA ampli�cation.332

Closed reference OTU-calling facilitates the comparison of 16S rRNA pro�les with different amplicon333

regions, but often fails to recognize a part of the library, which then has to be discarded. Under certain334

circumstances, open-reference and denovo OTU calling methods could be applied but they are not suitable335

for the large scale database screen we presented here. In our case, we showed that the majority of336

sequences can be called against the reference, and that they carry a strong signal as to where they occur337

and how speci�c they are to ecosystems. Moreover, many acquired 16S rRNA pro�les were not stored as338

sequences but only their prepicked OTU pro�les.339

One possible source for misclassi�cation is a generalist that escapes observation (e.g. due to low340

abundance) in the samples of the underlying database. In this light it should be noted that at this stage,341

some habitats such as bio�lms, hypersaline environments and geothermal settings are represented by a342

much smaller number of samples compared to others which are more well-studied. Hence, the distribution343

of community entropy across these particular environment types remains unclear and may potentially be344

determined with greater certainty with improvements in sampling effort targeting these settings. One way345

of accounting for ecosystem sampling bias to normalize the probabilities pi accordingly. While entropy346

can be calculated on unnormalized probabilities, the �gures are impacted by sampling bias but consistently347

so, such that they still allow visual comparisons. Many sabkha OTUs, despite matching GreenGenes348

references, occur exclusively in this particular sample. As a result, their ecosystem entropy is 1 log1 = 0,349

identifying them as extremophiles, but an alternative explanation would be underrepresentation in our350

database (as a consequence of being underrepresented in the Earth Microbiome Project), which still351

re�ects their rare nature. We anticipate that the increasingly comprehensive volume of environmental352

available samples will mitigate this phenomenon in the future. In essence, for these cases the notion of353

extremophile should be relaxed to �extremophile and/or rare and/or genetically isolated�.354

Conversely, a specialist can be mistaken for a generalist due to contamination. Again, a growing data355

platform is expected to contain suf�cient samples to outnumber these artefacts: the application of the356

Ecosystem Entropy (Equation 1) to an OTU o with some spurious ecosystem information (i.e., a entropy357

distribution vector of near-zero probabilities and one near-one probability) still yields near-zero values for358

H(o) .359

Finally, other shortcomings such as EnvO misannotation of samples might impact the accuracy of360

entropy estimation negatively and efforts of improvement are underway (ten Hoopen et al. (2016)). While361

currently trading off ecosystem coverage and annotation quality in favor of the former, these efforts will362

be a suitable replacement for our dataset as soon as they reach the critical mass needed for the task at363

hand. Finally, we have previously shown that microbial communities cluster by ecosystem and that this364

way, misannotations can be removed (Henschel et al. (2015)).365
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