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1 Introduction. 
 

Through the initiative of US defense since 1974 [1], the Data Encryption 

Standard (DES), a cryptographic block ciphering module, was developed and released 

in 1977. Feistel and Coppersmith, who designed the earlier Lucifer block cipher [2], 

took a leading role in DES design [3] and a team of researchers at IBM participated in 

its development. In early seventies, Feistel first conceived the idea of a modern 

computer-based block cipher [4], [5] and developed Lucifer with many variants in 

terms of key-text pairs as (48-bit each), (64-bit and 32-bit) and (128-bit each) [6] the 

first one was used in electronic banking. Among all the variants, the 128-bit pair was 

considered best because of its large key size. During seventies and eighties, many 

elite researchers used to consider that DES is prone to brute-force attack [7], [8], [9] 

since it has only 56-bit key to encrypt 64-bit text. The DES was a permutation and 

substitution based bit-level encryption algorithm. All permutation and substitution 

tables used in DES were put in public domain along with the algorithm, but with no 

mention of their design methodology. This created a strong feeling among researchers 

[10], [11] that by suppressing the design rule the government desires to gain an edge 

in eavesdropping to private messages and the feeling became so pervasive that with 

time a consortium took shape to break DES. In 1990, Biham and Shamir [12] reported 
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breaking DES following a differential cryptanalysis and in 1993, Matsui [13] reported 

the same by linear cryptanalysis. In 1998, the Electronic Frontier Foundation, 

following a call from RSA Data Security [14], spent $2.5 million to build a dedicated 

Deep Crack” hardware based on VLSI technology and searched the DES encryption 
 

key within 56 hours [15]. Good reports on history of breaking DES appeared in [16], 
 

[17]. It is interesting to note that in 2006 an identical initiative based on FPGA 

technology achieved the same goal with much less cost [18]. 
 

The S-Boxes are the most important component in DES, since the 

substitution process exhibits non-linear features. This has led to a spur of research 

activities on S-Boxes, of 4-bit [19], [20], [21] of 8-bit [22] and of 32-bit [23] and also 

on many different DES-like ciphers [24], [25], [26]. It is interesting to note that after 

the breaking of DES by differential [13] and linear [14] cryptanalysis, Coppersmith in 

a paper [27] mentioned eight criteria that were considered while designing the DES S-

Boxes and highlighted the fact that these were reasonably resistant to differential 

cryptanalysis, but did not mention the design methodology of the S-Boxes. Schneier 

[28] extensively reviews coppersmith’s submission. 

 
 

2. Design Methodology Adopted for DES S-Boxes. 
 

A 4-bit S-box has 16 integer values between 0 and 15 randomly arranged in 

16 columns of one row and can be represented by four 1-bit Boolean functions each 

of 16 bits corresponding to 16 possibilities of 4 input bits. One thus requires 128 

Boolean functions to represent 32 S-Boxes. If the column element values become 

identical to each of its column index values, the S–Box becomes an identity S-Box. 

Traveres [21] first proposed defining S-Boxes using four Boolean functions. Using a 

route based on irreducible polynomials from among 4 such 4-bit polynomials, one can 

also form an S-Box. It seems, Coppersmith took the Boolean function route and 

formed 32 S-Boxes using 128 Boolean functions. In the present paper, we concentrate 

on the Boolean function approach and in the following Secs. 2.1 through 2.7, 

computational procedures regarding their formation, Strict Avalanche and Bit 

Independence Criteria are discussed following differential and linear cryptanalysis of 

S-Boxes. 
 

2.1. Algebraic Normal Form (ANF) of a Boolean Function (BF) 

 

A Boolean Function (BF) with 4-bit input providing 1-bit output is a 

mapping from (0,1)
4
 to (0, 1). Possible input combinations for 4 bits are 2

4
 = 16, and 

this gives 16 coefficients of ANF, bf(x) as, 
 

   bf (x) = ac + (a0x0 + a1x1 + a2 x2 + a3x3) + ( a4 x0 x1+ a5 x0 x2 

     + a6 x0 x3+ a7 x1 x2+ a8 x1 x3 + a9 x2 x3) + (a10 x0 x1 x2 + a11 x0  

   x1 x3 + a12 x0 x2 x3 + a13 x1 x2 x3) + a14 x0 x1 x2 x3.  
where, x represents 4-bit input {x3x2x1x0}, bf assumes 1-bit output and ‘+’ represents 

XOR operation. Here ac is a constant coefficient, a0, a1, a2 and a3 are four 1-bit linear 

coefficients, a4, a5, a6, a7, a8 and a9 are six 2-bit non-linear coefficients, a10, a11, a 12 

and a13 are 3-bit non-linear coefficients and a14 is a 4-bit non-linear coefficient. A 4-

bit truth table, providing one 16-bit output vector for four 16-bit input vectors, each 

one which is attached to x3, x2, x1 and x0, gives 1-bit binary value for each of the 16 
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coefficients which can be termed as the ANF representation of the BF. For a BF, ANF 

representation is an alternative to the truth table representation. Of the 65536 (= 2
16

) 

4-bit BFs, 32 (= 2
5
) are linear and the rest 65504 are non-linear. For linear BFs, the 

coefficients of product terms in ANF are zero. A balanced BF has equal number of 0s 

and 1s in its output, i. e. its hamming weight is 2
(4-1)

 = 2
3
 = 8. Hence out of the 65504 

(=2
16

 – 2
5
) non-linear BFs, 12870 (= 

16
C8) are balanced. The issue is to find out how 

many among 12870 are cryptographically relevant. However, in the present paper we 

are interested in the 128 BFs and in their ANFs used in the 32 DES S-Boxes. 

 

 

2.2. 4-BFs and 4-ANFs for a 4-bit S-Box: 128 BFs and 128 ANFs for 32 S-Boxes 

 
A 4-bit S-Box has 16 column elements in one row; the input of the 16 

column index values of a row are sequential 4-bit pattern varying from {0000} to 

{1111} and the output are non-sequential 4-bit integer values in text in hex-format 

between 0 and f. The 16 sequential column index values of 4-bit are stored in 

4bt16in[16][4]. The elemental values of 16 columns of all of the 32 S-Boxes are 

stored in hex-format in 32 rows in a text-file, the row text-data are read, transformed 

into integer ASCII data and stored in sb[32][16] – these are in turn transformed into 4 

bits and are stored in 4bt16out[32][16][4]. All the DES S-Boxes are shown in hex-

format in column 4 of Table 1 [32]. The 1
st
 bit of the 4 bits of each element of 16 

 
columns of an S-Box taking sequentially gives the 1

st
 BF (bf0); 2

nd
 bit, the 2

nd
 BF 

(bf1); 3
rd

 bit, the 3
rd

 BF (bf2) and 4
th

 bit, the 4
th

 BF (bf3). The bit data of all the 32 S-

Boxes stored in 4bt16out[32][16][4] are stored in 16bt4bf[32][4][16] following the 

formalism stated above and one thus gets 128 Boolean Functions. The sequential 

input bit data available in 4bt16in[16][4] are stored in 16bit4x[4][16] as four 16-bit x-

vectors. The 128 BFs are shown in column 7 in Table 1[32] in a group of 4 for each 

S-Box. Putting 16 bits of one Boolean function corresponding to its sequential 4-bit 

inputs, one obtains the ANF coefficients. The pseudo code for the same is as follows, 

for(s=0;s<32;s++) { 
 

for(j=0;j<4;j++) {  
for(i=0;i<16;i++){  
switch(i) {  
i=0 : a[i]= bf[s][j][i];  
i=1 : a[i]= a[0]^bf[s][j][i];  
i=2 : a[i]= a[0]^bf[s][j][i];  
i=3 : a[i]= a[0]^a[1]^a[2]^bf[s][j][i];  
i=4 : a[i]= a[0]^bf[s][j][i];  
i=5 : a[i]= a[0]^a[1]^a[4]^bf[s][j][i];  
i=6 : a[i]= a[0]^a[2]^a[4]^bf[s][j][i]; 

 
i=7 : a[i]= a[0]^a[1]^a[2]^a[3]^a[4]^a[5]^a[6] 

^bf[s][j][i]; 
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i=8 : a[i]= a[0]^bf[s][j][i];  
i=9 : a[i]= a[0]^a[1]^a[8]^bf[s][j][i];  
i=10: a[i] = a[0]^a[2]^a[8]^bf[s][j][i];  
i=11: a[i] = a[0]^a[1]^a[2]^a[8]^a[3]^a[9]^a[10]  

^bf[s][j][i];  
i=12: a[i] = a[0]^a[4]^a[8]^bf[s][j][i];  
i=13: a[i] = a[0]^a[1]^a[4]^a[8]^a[5]^a[9]^a[12]  

^bf[s][j][i];  
i=14: a[i] = a[0]^a[2]^a[4]^a[8]^a[6]^a[12]^a[10]  

^bf[s][j][i]; 

 

i=15: a[i] = a[0]^a[1]^a[2]^a[8]^a[3]^a[9]^a[10] 

^a[4]^a[5]^a[6]^a[7]^ 

a[11]^a[12]^a[13] ^a[14]^bf[s][j][i];  
     }  
   }  
  }  

 } 
 

All 1-bit ANF coefficients are shown in column 9 of Table 1 [32]. The 16 ANF 

coefficients are shown in Table 1 as being split in five categories separated by 

hyphens, (1) 1
st
 bit: constant coefficient {ac} (2) next 4 bits: 1-bit four linear 

coefficients {a0, a1, a2 and a3} (3) next 6 bits: 2-bit six non-linear coefficients {a4, a5, 

a6, a7, a8 and a9} (4) next 4 bits: 3-bit four non-linear coefficients {a10, a11, a12 and a 

13} and (5) last 1 bit: 4-bit one non-linear coefficients {a14}. 

 
 

2.3. Strict Avalanche Criterion (SAC) of Boolean Function 
 

A 4-bit Boolean Function {bf} has four 16-bit input vectors{x3,x2,x1,x0}and 
 

one 16-bit output vector. It satisfies SAC, if the 50% of the 16-bit output vector 

changes if one of the four 16-bit input vectors is complemented. Here x0 corresponds 

to LSB of all the possible sixteen 4-bit element values in an S-Box. Webster and 

Travares [21] first introduced the idea of SAC, by stating that every output bit should 

change with a probability ½, in the event one input variable of a Boolean function is 

complemented. The probability of changing each output bit being ½ indicates extreme 

uncertainty in predicting a particular output bit to change. This is the theoretical 

essence of SAC. 

On inspecting the bit patterns of all the 16 bits of x3, x2, x1, x0, one notes that  
these are ‘00ff’, ‘0f0f’, ‘3333’ and ‘5555’ respectively in hex. The following 

algorithm in effect executes the SAC searching criterion of {bf} on complementing x3 

vectors, 
 

wt{(bf&00ff)^(bf>>8&00ff)}+ wt{(bf&ff00)^(bf>>8&ff00)} 

= N3= NL3 + NU3 . 
 

Similarly, for identical purpose, one has to right shift ‘bf’ by 4 for x2, for x1 by 2 and  
for x0 by 1 and execute the above algorithm as, 
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wt{(bf&0f0f)^(bf>>4&0f0f)}+wt{(bf&f0f0)^(bf>>4)&f0f0)} 

= N2 = NL2  +NU2 .  
wt{(bf&3333)^(bf>>2&3333)}+wt{(bf&cccc)^(bf>>2&cccc)} 

= N1 = NL1 +NU1 . 

wt{(bf&5555)^(bf>>1&5555)}+wt{(bf& aaaa)^(bf>>1&aaaa)} 

= N0 = N10 + NU0 . 
 

According to Traveres [19], [21], a {bf} satisfies SAC, if at least one of the four N-

values becomes 8 with equal lower-half and upper-half N-values. The results of SAC 

tests for all the 128 BFs are shown in column 13 of Table 1 [32]. 
 

Kim, Matsumoto and Imai [29] proposed a different algorithm and stressed 

that all the four N-values should satisfy the SAC criterion, for a {bf} to satisfy SAC. 

Both the algorithms give identical N-values. The algorithm of Kim, Matsumoto and 

Imai is elaborated in Sec. 2.7. 

 

 

2.4. 2 NL BFs and (output) Bit Independence Criterion (BIC): BIC for a S-Box 

 

By (output) Bit Independence Criterion, it is to be ensured that the output bit 

i of one BF and output bit j of another BF act independent of each other, i.e. bit i and j 

are not co-related to each other [20]. If both the two BFs are linear, any two-output 

bits of the two linear BFs change with a correlation of ±1 indicating that xor of i and j 

should change with probability 1 or 0. i. e. either it remains same or flips. This 

indicates that the issue of nonlinearity of BF is closely related to BIC. One can look 

for the satisfaction of the BIC criterion between 2 NL BFs, if the SAC criterion is 

applied to the output BF = BF1 XOR BF2. The BIC criterion on BF1 and BF2 

together is said to be satisfied, if the SAC criterion presented in Sec. 2.3 above on one 

BF, is satisfied within a range of 40% to 60% of output bits of BF, instead of just 

50%. Algorithmically one can write the BIC criterion on BF as follows: 
 

wt {(bf&00ff)^(bf>>8&00ff)}+wt{(bf&ff00)^(bf>>8&ff00)} 

     = N3= NL3 + NU3 . 

wt {(bf&0f0f)^(bf>>4&0f0f)}+wt{(bf&f0f0)^(bf>>4)&f0f0)} 

           = N2 = NL2  +NU2 . 

wt {(bf&3333)^(bf>>2&3333)}+wt{(bf&cccc)^(bf>>2&cccc)} 

           =N1= NL1 +NU1 . 

wt {(bf&5555)^(bf>>1&5555)}+wt{(bf&aaaa)^(bf>>1&aaaa)} 

        = N0=N10  + NU0 . 
 

Here the BIC criterion on BF1 and BF2 is considered to be satisfied, if any one of the 

four N’s lies between 6 and 10. For an S-Box having 4 non-linear BFs, one has to 

look for satisfaction of BIC criterion for 6 set of 2 BFs. The BIC results of all the 32 

DES S-Boxes are shown in column 14 of Table 1 [32]. 

 

 

2.5. Differential Cryptanalysis (DC) of DES S-Boxes: 
 

The differential cryptanalysis (DC) of S-Box endeavors to record the number 

of various output difference patterns that arises due to the fixed input difference in a 

Differential Distribution Table (DDT). The DES team at IBM, even though they had 

the complete knowledge of DC [27] during seventies, had not reported the same in 
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time. Biham and Shamir [13] first reported DC in 1990 for DES-like S-Boxes. If 

many output difference patterns do not find place in the DDT for all possible input 

difference patterns and if such number of non-occurrences become greater that 50%, 

one can conclude that it is difficult to forecast the existence of those differences 

indicating the S-Box DC resistant.  
The 4-bit indices of an S-Box are sequentially put in X[16][4] entries and the 

corresponding data in the S-Box are put in Y[16][4] entries. One considers a fixed 

input difference Xdash[i][j] taken from one input vector of X[16][4] and calculates 

row index ‘a’ of the table[a][b]. It computes Xstar[16][4] from the XOR of 

Xdash[i][j] and X[16][4] and calculates the index ‘m’ corresponding to four bits of 

each Xstar[i][4], finds Ystar[m][4]=Y[m][4]. For each Ystar[m][4] it computes 

Ydash[i][j] from the XOR of Xdash[i][j] and X[16][4]. The column index ‘b’ of 

table[a][b] is computed for each of Ydash[i][j] and the table[a][b] is upgraded by 

unity meaning that Ydash[i][j] has occurred once and is noted in the matrix element 

(a,b) of the table[a][b]. The related program design can be written as, 
 

//Initialize the table[16][16] array  
for (a=0;a<16;a++) for (b=0; b<16;b++) table 

[a][b]=0; for (k=0; k<16;k++){  
for (j=0; j<4;j++) xdash[k][j]=x[k][j];  
for (j=0, l=0; j<4, l<4; j++, l++) 

t[l]=xdash[k][j]; a=b2d ( t);  
for (i=0; i<16; i++){ 

for(j=0;j<4;j++)xstar[i][j]=xdash[k][j]^x[i][j]; 
for(j=0,l=0;j<4,l<4;j++,l++)t[l]=xstar[k][j]; 
m=b2d(t); 
for(j=0;j<4;j++)ystar[m][j]=y[m][j];  
for(j=0;j<4;j++)ydash[i][j]=ystar[m][j]^y[i][j] 
for(j=0,l=0;j<4,l<0;j++,l++)t[l]=ydash[i][j]; 

b=b2d(t); 
table[a][b]++; 
} } 

 
2.6. Linear Cryptanalysis of DES S-Boxes: 

 

The basic idea of Linear Cryptanalysis of S-Box is to see if a linear 

relationship of its sixteen 4-bit inputs (Xi) exists with its sixteen 4-bit outputs (Yj). 

Matsui [14] first introduced the idea of Linear Cryptanalysis in 1994 by devising a 

mechanism to look for linear relationship between input and output of DES ciphers. 

Heys [31] in a tutorial considering the idea of linear cryptanalysis of Matsui, proposed 

a Linear Approximation Table (LAT) for linear cryptanalysis of a 4-bit S-Box. One 

should note that for a particular input, there are 16 entries in the LAT for all the 

output patterns and for a particular output, there are identical entries in the LAT for 
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all input patterns. The number of times (Cij) the linear relationship between a 

particular input and a particular output is satisfied is recorded [14] and the numbers 

(Nij) beyond 8 are appropriately entered in the LAT. An entry in the LAT becomes 

zero if Nij = 8, and for such entry the probability of a linear relationship between a 

particular input and output in the S-Box is ½. If the number of zeros in the LAT is 

more than 50%, one can conclude that for majority of cases no predictable linear 

relation between inputs and outputs exists and the S-Box is LC resistant. 
 

The algorithm to execute the linear cryptanalysis for 4-bit S-Boxes following 

Heys [31] considers 4–bit Boolean variables Ai and Bj whose i and j are the decimal 

indices varying from 0 to 15 and Ai and Bj are taking corresponding bit values from 

[0000] to [1111]. The algorithm to fill the (16 x 16) elements of the LAT is, 

 
for (i=0;i<16;i++) {  
A=0;  
for(k=0;k<16;k++) 

A=A+(Ai0.Xk0+Ai1.Xk1+Ai2.Xk2+Ai3.Xk3)%2;  
for (j=0;j<16;j++){  
B=0; 

for(k=0;k<16;k++)B= B+(Bj0.Yk0+Bj1.Yk1+Bj2.Yk2+Bj3.Yk3)%2; 

Sij  = (A+B)%2; 

if (Sij==0) Cij++; 

Nij  = Cij – 8;  
}  

} 

It may be noted that the first element in LAT is represented by N0,0 while the last, by 

N16,16. The linear Boolean functions are those, which contain no product terms of the 

input variables. 
 

 

2.7. Strict Avalanche Criterion of S-Boxes: 

 

One 4-bit S-Box is composed of four 16-bit Boolean Functions, bf0, bf1, bf2 

and bf3 and according to Kim, Matsumoto and Imai [29] an S-Box satisfies SAC 

criterion, provided all the Boolean functions individually satisfies the SAC criterion 

for the four input vectors. The Kim, Matsumoto and Imai proposed to flip one bit of a 

particular position of one input and to note the bf-value before the flip and after the 

flip and if they are different, the result of the flip on {bf} is noted as ‘1’. The same bit 

position is flipped for all 16 inputs and the results of the flip on ‘bf’ are noted. Out of 

the 16 operations of flipping the bit of a particular input position, if the results on ‘bf’ 

becomes ‘1’ for eight times and if such identical results are obtained for flipping bits 

in other positions of all inputs, the {bf} can be considered to satisfy SAC. Once 

similar cases happen for other bf’s, one can state that the S-Box satisfies SAC. 
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The algorithm of Kim, Matsumoto and Imai can be written is as, 
 

Di ,v=Fi(x)  Fi(x  ev) and Wt (Di ,v) = 2
k-1

  . i, v=0,1,…….,k-1 . 
 

Sokolov [30] applied the idea of Kim, Matsumoto and Imai [30] to synthesize one 4-

bit S-Box and one 8-bit S-Box, both satisfy SAC. The flipping of bits on particular 

positions are made by proposing 1-bit four ev vectors as, e0 {0001}, e1 {0010}, e2 

{0100} and e3 {1000}. The pseudo code of the algorithm can be written as,  
//for a particular S-Box one value of s is taken for 

which there are four bf  
for (i=0; i<16; i++) for (j=0; j<16; j++) D[i][j] = 0;  
for(f=0; f<4; f++) {  
for(v=0; v<4; v++) {  
switch (v) {  

         0:ev[3]=0; ev[2]=0; ev[1]=0; ev[0]=1; 
 

   1:ev[3]=0; ev[2]=0; ev[1]=1; ev[0]=0; 
 

   2:ev[3]=0; ev[2]=1; ev[1]=0; ev[0]=0; 
 

   3:ev[3]=1; ev[2]=0; ev[1]=0; ev[0]=0; 
 
     } 
 

for(x=0; x<16; x++) {            

for(j=0,l=0;j<4,l<4;j++,l++)  

t[l] = 16bt4x[s][i][j] ^ ev[j]    

m=b2d(t); 
 

r=16bt4bf[s][f][x] ^ 16bt4bf[s][f][m] if     

(r==1) D[f][v]++; 
 

} // end of for loop of x 

} // end of for loop of v 
 

} // end of for loop of f 
 

If all entries in (16 x 16) D- matrix is found to 8, the given S-Box is SAC satisfied 
and cryptographically strong. 

 

3. Result and Discussion. 
 

The computational results of 32 DES S-Boxes divided in 8 groups, each group 

having four, are presented in Table 1 [32] in four pages, with two groups in one page. 

It is noted that of all the required 128 BFs, 102 are non-repeating and 13 pairs are 

repeating ones and all 115 are balanced and non-linear. Among the repeating 13 pairs, 

10 have the non-linearity 4, while the rest 3 have 2. Of the 102 non-repeating BFs, 82 

have the non-linearity 4, while the rest 20, have 2. The 13 BF pairs with non-linearity 

2, of which 3 are repeating ones, do not satisfy SAC, as defined by Travares [21], 

while the 102 BFs with non-linearity 4, of which 10 are the repeating ones do satisfy 
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the SAC. The 4-bit ANF coefficient {a14}, of all the 115 BFs is absent and does not 

contribute to non-linearity.  
All the S-Boxes satisfy the BIC as defined by Travares [21] and also satisfy DC as 

defined by Biham and Shamir [13] and the result of DC lies between 162 and 174. All 

S-Boxes except the S-Box 12 do not satisfy LC as defined by Matsui [14] since all 

assume results less than 128, except the one assuming 131.  
Following Travares [21], a BF is considered to satisfy SAC if it becomes SAC 

proof with respect one of the four input vectors. If one considers the Travares's 

condition of BF-level SAC and imposes a condition that one of the four BFs of an S-

Box satisfies Travares's SAC, as the necessary condition for the S-Box to satisfy 

SAC, all the 32 DES S-Boxes are found to satisfy S-Box-level SAC. However, Kim, 

Matsumoto and Imai [29] considered a BF SAC-proof when the concerned BF 

satisfies SAC with respect to all the four input vectors. They also considered an S-

Box to satisfy SAC if all its four BFs independently satisfy their BF-level SAC.  
Following the SAC proposed by Kim, Matsumoto and Imai [29], Sokolov[30] 

demonstrated that a 4-bit S-Box and a 8-bit S-Box do satisfy the SAC. The proposed 

SAC test of all the DES S-Boxes has been undertaken and it is found that no S-Boxes 

satisfy the S-Box-Level SAC. The related results are shown in the column 17 of Table 

1 [32]. In fact, it is found that no BF of the 32 DES S-Boxes satisfy the BF-level SAC 

conditions proposed by Kim, Matsumoto and Imai. 
 

 

4. Concluding Remarks 

 
The DES S-Boxes are so designed that all of them become DC and BIC resistant. 

The present analysis indicates that the designers of DES S-Boxes had the complete 

knowledge of BFs and the S-Box-level BIC and DC, but not of the S-Box-level LC 

and SAC. It seems that out of the 12870 balanced and non-linear BFs, there should be 

sufficient BFs with non-linearity 4, such that no BFs with non-linearity 2 need not to 

be considered. Probably the compulsion to choose 26 BFs with non-linearity 2, was 

the need to make all the DES S-Boxes BIC and DC resistant. In order to resolve such 

a riddle, it is necessary to approach design of 4-bit S-Boxes in a comprehensive 

manner from the BF and ANF angles. 
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