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Freshwater fishes often exhibit high genetic population structure due to the prevalence of

dispersal barriers (e.g., waterfalls) whereas population structure in diadromous fishes

tends to be weaker and driven by natal homing behaviour and/or isolation by distance. The

Australian smelt (Retropinninae: Retropinna semoni) is a facultatively diadromous fish with

a broad distribution spanning inland and coastal drainages of south-eastern Australia.

Previous studies have demonstrated variability in population genetic structure and

movement behaviour (potamodromy, facultative diadromy, estuarine residence) across

the southern part of its geographic range. Some of this variability may be explained by the

existence of multiple cryptic species. Here, we examined genetic structure of populations

at the northern extent of the species9 distribution, using ten microsatellite loci and

sequences of the mitochondrial cyt b gene. We tested the hypothesis that connectivity

among rivers should be low due to a lack of dispersal via the marine environment, but high

within rivers due to potamodromous behaviour. We investigated populations

corresponding with two putative cryptic species, the South East Queensland (SEQ), and

Central East Queensland (CEQ) lineages. In agreement with our hypothesis, highly

significant overall FST values suggested that both groups exhibit very low dispersal among

rivers (SEQ FST = 0.13; CEQ FST = 0.30). The two putative cryptic species, formed

monophyletic clades in the mtDNA gene tree and among river phylogeographic structure

was also evident within clades. Microsatellite data indicated that connectivity among sites

within rivers was also limited, suggesting potamodromous behaviour does not homogenise

populations at the within-river scale. Overall, northern groups in the smelt cryptic species

exhibit higher among-river population structure and smaller geographic ranges than

southern groups. These properties make northern Australian smelt populations potentially

susceptible to future conservation threats, and we define eight genetically distinct

management units to guide future conservation management.
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21

22 ABSTRACT

23 Freshwater fishes often exhibit high genetic population structure due to the prevalence of 

24 dispersal barriers (e.g., waterfalls) whereas population structure in diadromous fishes tends to be 

25 weaker and driven by natal homing behaviour and/or isolation by distance. The Australian smelt 

26 (Retropinninae: Retropinna semoni) is a facultatively diadromous fish with a broad distribution 

27 spanning inland and coastal drainages of south-eastern Australia. Previous studies have 

28 demonstrated variability in population genetic structure and movement behaviour 

29 (potamodromy, facultative diadromy, estuarine residence) across the southern part of its 

30 geographic range. Some of this variability may be explained by the existence of multiple cryptic 

31 species. Here, we examined genetic structure of populations at the northern extent of the species9 

32 distribution, using ten microsatellite loci and sequences of the mitochondrial cyt b gene. We 

33 tested the hypothesis that connectivity among rivers should be low due to a lack of dispersal via 

34 the marine environment, but high within rivers due to potamodromous behaviour. We 

35 investigated populations corresponding with two putative cryptic species, the South East 

36 Queensland (SEQ), and Central East Queensland (CEQ) lineages. In agreement with our 

37 hypothesis, highly significant overall FST values suggested that both groups exhibit very low 

38 dispersal among rivers (SEQ FST = 0.13; CEQ FST = 0.30). The two putative cryptic species, 

39 formed monophyletic clades in the mtDNA gene tree and among river phylogeographic structure 

40 was also evident within clades. Microsatellite data indicated that connectivity among sites within 

41 rivers was also limited, suggesting potamodromous behaviour does not homogenise populations 

42 at the within-river scale. Overall, northern groups in the smelt cryptic species exhibit higher 

43 among-river population structure and smaller geographic ranges than southern groups. These 

44 properties make northern Australian smelt populations potentially susceptible to future 

45 conservation threats, and we define eight genetically distinct management units to guide future 

46 conservation management.

47

48 Keywords Dispersal, Population structure, Facultative diadromy, Isolation by distance, Cryptic 

49 species
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56 INTRODUCTION

57 Dispersal refers to the exchange of individuals and genes across the geographical range of a 

58 species (Wade & McCauley, 1988). Dispersal allows organisms to escape unsuitable 

59 environments, avoid competition and maximise fitness in response to changes in the distributions 

60 of temporally and spatially patches resources (Haugen et al., 2006). Maintenance of dispersal 

61 pathways is important from a conservation perspective, particularly for species whose natural 

62 habitat is fragmented by anthropogenic disturbances. It is often the only mechanism by which 

63 organisms can move between populations and thus maintain genetically diverse meta-

64 populations (Clobert et. al., 2012). Dispersal between populations may also reduce local 

65 extinction rates through a <rescue effect= (Brown & Kodric-Brown, 1977) by reproduction in the 

66 populations into which they disperse, and by increasing genetic diversity. Dispersal also plays a 

67 major role in the genetic structuring of natural populations (Slatkin 1987; Waters, Dijkstra & 

68 Wallis, 2000; Wong, Keogh & McGlashan, 2004). Highly mobile, free swimming species are 

69 likely to exhibit minimal phylogeographic structuring across a broad range, especially where 

70 there are no physical barriers (Chapco, Kelln & McFayden, 1992; Wong, Keogh & McGlashan, 

71 2004). In contrast, stronger genetic subdivision among populations is predicted for species with 

72 limited dispersal abilities.

73 Genetic structure in aquatic fauna is strongly influenced by the characteristics of the ambient 

74 environment. Freshwater species typically exhibit higher levels of genetic differentiation than 

75 those living in estuarine or marine habitats (Ward, Woodwark & Skibinski, 1994; Sharma & 

76 Hughes, 2009). Movement by obligate freshwater organisms is limited to the water column and 

77 the freshwater environment, preventing inter-catchment dispersal via the sea (Burridge et al., 

78 2008; Hughes, Schmidt & Finn, 2009; Bernays et al., 2015). Within freshwater habitats, a range 

79 of other factors also restrict dispersal, including natural topographic barriers, such waterfalls and 

80 rapids, and artificial dams and weirs (Alp et al., 2012). As a consequence of the physical 
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81 limitations to dispersal in freshwater environments, genetic structure of aquatic organisms is 

82 often highly genetically differentiated both among and within catchments (McGlashan & 

83 Hughes, 2000; Hughes, 2007; Sharma & Hughes, 2009).

84

85 Population fragmentation and subsequent genetic differentiation among populations have 

86 resulted in a high incidence of cryptic speciation in freshwater habitats (Adams et al., 2013). 

87 Cryptic species are defined as morphologically indistinguishable species that are genetically 

88 distinct (Knowlton, 1993; Bickford et al., 2007; Thomas et al., 2014). Australia is considered as 

89 one of the top 17 megadiverse countries in the world (Williams et al., 2001) reflecting the 

90 species richness and levels of endemism exhibited for many organismal groups (Chapman, 2009; 

91 Hammer et al., 2014). However, Australia9s freshwater fish fauna has long been described as 

92 depauperate compared to that found in other regions of similar size and climatic range (Allen, 

93 1989; Lundberg et al., 2000; Allen, Midgley & Allen, 2003; Adams et al., 2013; Hammer et al., 

94 2014). For instance, 209 freshwater-dependent fish species in Australia were recorded in the 

95 most recent field guides (Allen, Midgley & Allen, 2003). In contrast, 713 species were found in 

96 continental temperate USA (i.e. excluding Alaska and Hawaii; Page & Burr, 1991; Adams et al., 

97 2013). Most researchers have suggested that these differences are the result of the effect of 

98 relative differences in aridity, rainfall reliability, topographic diversity, habitat availability and 

99 degree of isolation (Merrick & Schmida, 1984; Williams & Allen, 1987; Allen, Midgley & 

100 Allen, 2003; Adams et al., 2013). However, Lundberg et al. (2000) proposed a very different 

101 explanation for Australia9s low number of species and suggests that it reflects the degree of 

102 detailed taxonomic effort devoted to this neglected group. Recent assessments, (Hammer, Adams 

103 & Hughes 2013; Hammer et al., 2014) have suggested that there may be twice as many fish 

104 species in Australia than previously described.

105

106 The Australian smelt (Retropinninae: Retropinna) is an abundant fish species distributed 

107 throughout the rivers of south-eastern Australia (McDowall, 1996). They reach a maximum 

108 length of about 100 mm total length (TL), although adults are usually 50-60 mm TL (Pusey, 

109 Kennard & Arthington, 2004). Australian smelts are currently recognised as two formally 

110 described species R. semoni Weber, and R. tasmanica McCulloch, but recent genetic analyses 

111 have identified a complex of five or more cryptic species across their geographic range based on 

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.3284v1 | CC BY 4.0 Open Access | rec: 26 Sep 2017, publ: 26 Sep 2017



112 allozymes, microsatellites and mitochondrial DNA data (Hammer et al., 2007; Hughes et al., 

113 2014; Schmidt, Islam & Hughes, 2016). Otolith chemistry studies in the southern part of their 

114 distribution have shown that Australian smelt exhibit a range of life history patterns, including 

115 freshwater residency, facultative diadromy and estuarine residency (Crook, Macdonald & 

116 Raadik, 2008; Hughes et al., 2014). In inland regions of Australia, large numbers of Australian 

117 smelt have been observed moving upstream through fishways (e.g., Baumgartner & Harris, 

118 2007) and the species is widely described as potamodromous (i.e., migration within freshwater) 

119 (e.g., Rolls, 2011). Nonetheless, Woods et al. (2010) found strong genetic structure among inland 

120 populations of Australian smelt and suggested low levels of dispersal in at least some 

121 populations.

122 In most studies to date, diadromous behaviour has been shown to facilitate genetic connectivity 

123 among river catchments and typically results in <isolation3by-distance= (IBD) patterns of 

124 population genetic structure (Keenan, 1994; Jerry & Baverstock, 1998). In Australian smelt, 

125 however, there is strong genetic differentiation among catchments across the southern part of the 

126 range - even among populations containing diadromous individuals suggesting high retention of 

127 fish within estuaries and a lack of marine dispersal (Hughes et al., 2014). The aim of the current 

128 study was to examine patterns of genetic connectivity of populations in the north of the 

129 geographic range of Australian smelt, which have not previously been characterised. In light of 

130 this, sequence data from mtDNA cytochrome b combined with genotypic data from 10 

131 microsatellite loci were used to test the hypotheses that, i) northern R. semoni would display high 

132 population structure among rivers similar to southern populations; and ii) that genetic structure 

133 within rivers would be low due to potamodromous migration.

134

135 MATERIALS AND METHODS

136 Sampling strategy

137 A total of 391 individual samples were collected from 15 locations in south-east Queensland, 

138 Australia (Fig. 1; Table 1). Samples were collected using a hand - held seine net from an 

139 upstream and a downstream site from each river except the Noosa River (downstream only). 

140 Where possible, we aimed to collect at least 30 individuals per site. Fin clips or entire individuals 

141 were placed in 95% ethanol in the field and stored prior to preparation for analysis.

142 Molecular methods
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143 Genomic DNA was extracted from fin tissue using the DNeasy Blood and Tissue kit (Qiagen) 

144 following the manufacturer9s directions. Microsatellite markers developed for R. semoni were 

145 amplified and genotyped using primers developed by Islam, Schmidt & Hughes (2017). Ten loci 

146 were screened across all individuals. The ten loci were BS18, BS3, BS4, BS5, BS20, BS21, 

147 BS22, BS24, BS8 and MS24. All subsequent microsatellite screening was carried out in 10 µl 

148 PCR reactions consisting of 0.5 µl of genomic DNA, 0.2 mM reverse primer, 0.05 mM tailed 

149 forward primer, 0.2 mM tailed fluorescent tag (either FAM, VIC, NED or PET, Applied 

150 Biosystems), 1× PCR buffer (Astral Scientific) and 0.02 units of taq polymerase (Astral 

151 Scientific). The following basic thermocycler settings for the polymerase chain reaction (PCR) 

152 were performed: initial denaturation at 940C for 4 min, followed by 35 cycles at 940C for 1 min, 

153 570C for 30 s, 720C for 1 min and a final extension at 720C for 7 min. Fluorescently labelled 

154 amplified PCR products were pooled and added to 10 µl of Hi-DiTMformamide with 0.1 µl of 

155 GeneScanTM 500 LIZ size standard. Fragment analysis was conducted on an ABI PRISM 3130 

156 Genetic Analyzer (Applied Biosystems) according to the manufacturer9s instructions. Data were 

157 scored using GENEMAPPER version 3.1 software (Applied Biosystems).

158 Two individuals from each of the 15 populations represented in the microsatellite study were 

159 randomly selected for mtDNA analysis. Samples from four additional sites not included in 

160 microsatellite analysis were also sequenced 3 two from Mary River (Booloumba Creek, MBC, 

161 26°41'02.5"S 152°37'10.6"E, n = 9; Yabba creek, MYC, 26°28'09.3"S 152°38'39.5"E, n = 8) and 

162 two from the Brisbane River (Bundamba creek, BDC, 27°36'03.9"S 152°48'04.2"E, n = 10; 

163 Banks creek, BSV, 27°26'36.9"S 152°40'13.2"E, n = 10) and sample collecting site were also 

164 shown in Fig. 1. In total 68 individuals from 19 sites were sequenced. A 666 bp fragment of the 

165 cytochrome b region of the mtDNA genome was selected for sequencing analysis. The primers 

166 HYPSLA and HYPSHD (Thacker et al., 2007) were used to amplify the region in 10 µL reaction 

167 mixtures. PCR conditions were 4 min at 95 0C, followed by 45 cycles of 30 s at 95 0C, 45 s at 53 

168
0C, 45 s at 72 0C and a final extension cycle of 7 min at 72 0C. MtDNA sequences were edited 

169 and aligned using Geneious version 9.1.5 (Kearse et al., 2012).

170

171 Data Analysis

172 Genetic diversity
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173 Microsatellite genotype frequencies were checked for the presence of null alleles, large allele 

174 dropout and stuttering artefacts using Micro-checker v2.2.3 (Van Oosterhout et al., 2004). Tests 

175 for linkage disequilibrium (LD) and departures of genotypic proportions expected under Hardy-

176 Weinberg Equilibrium (HWE) were calculated with exact tests for each population and over all 

177 loci using default settings in GENEPOP v4 (Rousset, 2008). Probability values were corrected 

178 using standard Bonferroni correction (Rice, 1989) whenever multiple testing was performed.

179 Genetic diversity averaged across ten loci within each of the fifteen population samples was 

180 calculated from observed and expected heterozygosity using ARLEQUIN v3.5.1.2 (Excoffier & 

181 Lischer, 2010). Measures of genetic diversity standardized for sample size including Allelic 

182 richness (AR) and private allelic richness (ARpriv) were estimated using HP-RARE 1.1 

183 (Kalinowski, 2005). Inbreeding index (FIS) was estimated in FSTAT 2.9.3 (Goudet, 2001).

184

185

186

187

188 Population genetic structure

189 Genetic structure among the 15 populations was quantified by estimating pairwise and global FST 

190 values in ARLEQUIN. These were tested for significant deviation from panmictic expectations 

191 by 10,000 permutations of individuals among populations. Population-specific FST values were 

192 calculated using GESTE v2.0 (Foll & Gaggiotti, 2006) to evaluate the contribution of individual 

193 population samples to overall FST.

194 ARLEQUIN v3.5.1.2 (Excoffier & Lischer, 2010) was used to evaluate the geographic 

195 structuring of genetic variation. FST was calculated for each locus separately and as a weighted 

196 average over the ten micosatellite loci. Statistical significance of FST was determined by 1000 

197 permutations of individuals among populations. Hierarchical structuring of variation was 

198 calculated using AMOVA in ARLEQUIN v3.5.1.2 (Excoffier & Lischer, 2010). Two 

199 hierarchical arrangements of the 15 populations were analysed where the highest level was either 

200 a) two groups, CEQ group (MRD, MRU, NSD, MLD, MLU) and SEQ group (BRD, BRU, LGD, 

201 LGU, CMD, CMU, NRD, NRU, CRD, CRU) or b) catchment division, site grouped into 8 rivers 

202 according to the connectivity of streams to the upper river reaches. These were: Mary (MRD, 

203 MRU), Noosa (NSD), Mooloolah (MLD, MLU), Brisbane (BRD, BRU), Logan (LGD, LGU), 
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204 Coomera (CMD, CMU), Nerang (NRD, NRU) and Currumbin (CMD, CMU). Three hierarchical 

205 levels of variation were analysed for each arrangement: among groups (FCT), among sites within 

206 groups (FSC) and within sites.

207 Bayesian clustering methods implemented in STRUCTURE v.2.3.1 (Pritchard, Stephens & 

208 Donnelly, 2000) were applied to estimate the number of genetically homogeneous clusters 

209 (Latch et al., 2006; Hasselman, Ricard & Bentzen, 2013). This programme builds genetic 

210 clusters by minimizing linkage disequilibrium and deviations from Hardy-Weinberg equilibrium 

211 expectations within clusters. All individuals were assigned to clusters without prior knowledge 

212 of their geographic origin using the admixture model with correlated allelic frequencies. Ten 

213 independent runs with the number of potential genetic clusters (K) from 1 to 15 were carried out 

214 to verify that the estimates of K were consistent across runs. The burn-in length was set at 

215 250,000 iterations followed by a run phase of one million iterations. The generated results were 

216 imported into the software STRUCTURE HARVESTER (Earl & vonHoldt, 2012) to calculate 

217 the ad hoc &K statistic (Evanno, Regnaut & Goudet, 2005). The K value, where &K had the 

218 highest value was identified as the most likely number of clusters.

219

220

221

222 Analysis of isolation by distance

223 A test for a positive association between genetic and geographic distances [Isolation by distance 

224 (IBD)] based on microsatellite DNA loci was carried out using a Mantel test (10000 

225 permutations) in Arlequin v3.5.2 (Excoffier & Lischer, 2010). Genetic distance was represented 

226 as FST.  Stream distances were calculated between river mouths and then sample sites using 

227 Google Earth.

228

229 Migration and gene flow

230 BAYESASS v1.3 was used to calculate contemporary migration rates over the past few 

231 generations where mji is the proportion of immigrants in a focal population i that arrive from a 

232 source population j (Wilson & Rannala, 2003). This Bayesian assignment method follows the 

233 rule that immigrants and their progeny represent temporary disequilibrium in their microsatellite 

234 genotypes relative to the focal population under the assumption that background migration is 
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235 comparatively low (FST > 0.05) and that loci are in linkage equilibrium (Faubet, Waples & 

236 Gaggiotti, 2007). Analyses were run for 3×107 iterations, sampling every 2000 iterations with 

237 discarded burn-in of 107. Delta values were adjusted to 0.12 to ensure that chain swapping 

238 occurred in about 50% of the total iterations as suggested by Wilson & Rannala (2003) and to 

239 estimate the accuracy of the results the analysis was repeated three times with different random 

240 number of seeds. We also used the Bayesian assignment procedure of Rannala & Mountain 

241 (1997), as implemented in GENECLASS 2 (Piry et al., 2004) to estimate whether our samples 

242 might contain individuals that were first generation (F0) immigrants from unsampled 

243 populations.  Here we used Paetkau et al. (2004) method to compute probabilities from 10,000 

244 simulated genotypes to identify F0 immigrants.

245

246 Analysis of mtDNA sequence data

247 A Neighbour - joining (NJ) tree analysis was performed using the HKY distance model in 

248 Geneious version 9.1.5 with 1000 bootstrap replicates. In addition to the 68 sequences generated 

249 from this study, two Genbank accessions were used, one representing R. tasmanica: JN232589; 

250 and one representing R. semoni: JN232588 (Burridge et al., 2012). The R. semoni sequence 

251 JN232588 lacks locality information but likely belongs to a southern lineage of R. semoni which 

252 are known to have a closer mtDNA relationship with R. tasmanica than to northern lineages 

253 (Hughes et al., 2015).

254

255

256 RESULTS

257 Genetic variability and levels of differentiation

258 After Bonferroni correction, 3 out of 15 populations exhibited deviations from HWE in only two 

259 or three loci. All loci were kept for further analyses since deviations were not consistent across 

260 populations. Instances of null alleles estimated using MICRO-CHECKER were rare and not 

261 consistently associated with specific loci or populations. We observed little evidence for 

262 genotypic linkage disequilibrium between any pair of loci. Among 645 pairwise comparisons, 15 

263 were significant at the P<0.05 level after Bonferroni correction. These significant cases were 

264 randomly distributed among populations and pairs of loci.

265
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266 Population genetic diversity indices are shown in Table 1. Microsatellite genetic diversity was 

267 high. Mean number of alleles per population ranged from 4.60 (MLD) to 14.70 (CMU). 

268 Heterozygosity averaged across loci ranged from 0.566(MLU) to 0.887 (CMD and CMU) and 

269 allelic richness averaged across loci ranged from 3.41 to 7.42 when sample sizes were 

270 standardized across populations at 6 individuals. Although private alleles were found in all sites, 

271 the MRU population had the highest private allelic richness. Most sites exhibited positive FIS 

272 values, indicating that most of the populations had slight heterozygote deficit.

273 Most of the pairwise FST values between the 15 populations were significant and ranged from -

274 0.018 to 0.404. The CEQ populations were more diverged from one another than the populations 

275 in the SEQ group. The lowest pairwise FST value (FST = -0.018; P < 0.05) was observed between 

276 populations NRD and NRU. The highest genetic divergence (FST = 0.404; P < 0.05) was 

277 observed between populations NSD and MLU. Out of 105 comparisons, only six comparisons 

278 were non-significant (P > 0.05) and each of these pairs was from within the same river 

279 (Mooloolah; Brisbane; Logan; Coomera; Nerang and Currumbin). Generally FST comparisons 

280 revealed much less divergence among populations within the same river than between 

281 populations from different rivers (Table 2).

282

283 The STRUCTURE analysis incorporating all individuals suggested that initially the most likely 

284 number of clusters was two, one containing all CEQ populations and the other containing all 

285 SEQ populations (Fig. 2A). The SEQ group was then further subdivided into two separate groups 

286 leaving the Brisbane river populations distinct from all others and remaining populations of SEQ 

287 group comprising four distinct clusters (Fig 2B and C). The CEQ group further subdivided into 

288 three distinct clusters (Fig. 2C). STRUCTURE analysis revealed that the highest likelihood at 

289 K= 8 clusters (Average log probability of data Ln[P(DK)] = -15246.1 ± 1.028753) indicating this 

290 as the best estimate of the true number of the genetic clusters. The height of &K was used as an 

291 indicator of the strength of the signal detected by STRUCTURE (Evanno, Regnaut & Goudet, 

292 2005). &K showed the highest peak at K = 8, suggesting eight genetically homogeneous clusters 

293 across the sampled populations and negligible immigrations among rivers (Fig. 2C).

294

295 Strong population structure was supported by AMOVA with 20.50 % genetic variation exhibited 

296 by differences among populations (Table 3A). The AMOVA showed significant genetic 
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297 differentiation between the two groups (CEQ and SEQ) (FCT = 0.05), but also among populations 

298 within groups (FSC = 0.18) (Table 3B). There were similar pattern between the groups when they 

299 were analysed separately, with the FCT value (among rivers) higher than the FSC value (among 

300 sites within rivers) in both groups (Table. 3C i and ii). However, the overall FST values, and each 

301 of the other F statistics in the hierarchy were higher in the CEQ group than the SEQ group.

302

303 Isolation-by-distance

304 There was a significant correlation between genetic differentiation and stream distance among 

305 populations from the SEQ group (R2 = 0.3687, p = 0.001; BRD, BRU, LGD, LGU, CMD, CMU, 

306 NRD, NRU, CRD, and CRU) (Fig. 3A), but not for CEQ group (R2 = 0.0355, p = 0.302; MRD, 

307 NSD, MRU, MLD and MLU) (Fig. 3B).

308

309 Contemporary migration

310 Very little contemporary migration was observed among the coastal river populations. Only six 

311 sampled populations contained individuals that were identified as potential immigrants from the 

312 BAYESASS analysis. In all cases, the putative source population was the paired site within the 

313 same catchment. An average of 19.2 % of individuals at each of the six locations was estimated 

314 to be immigrants (range 10 3 33 %, Table 4). In five out of six cases, dispersal was from the 

315 upstream to the downstream site. Only individuals from Currumbin creek was estimated to have 

316 dispersed in an upstream direction. The highest level of migration was also found in this creek 

317 (23%). Only fifteen (< 4%) of 391 individuals across all sites were identified as F0 migrants 

318 using the <detection of first generation migrants= option in GENECLASS2 (Table 5).

319

320

321 MtDNA sequences analysis

322 The edited alignment for the cyt b gene was 575 bp and included 121 variable positions. All 

323 sequences are lodged under GenBank accession numbers XXXXXXX-XXXXXXX. The 

324 neighbour - joining tree revealed two strongly supported clades (bootstrap 89% SEQ; 96% CEQ; 

325 Fig. 4). Phylogeographic structure was also clearly evident within clades. All individuals from 

326 four sites in the Brisbane River formed a distinct clade, and all three rivers sampled for the CEQ 

327 lineage formed shallow clades (i.e. Mary, Noosa and Mooloolah rivers; Fig. 4). Genetic distance 

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.3284v1 | CC BY 4.0 Open Access | rec: 26 Sep 2017, publ: 26 Sep 2017



328 was high between northern smelt lineages and the southern smelt sequences used as an outgroup 

329 (uncorrected mean nucleotide distance 0.15 - 0.17). The mean nucleotide distance between two 

330 northern lineages SEQ and CEQ was 0.04 (SE = 0.007).

331

332 DISCUSSION

333 Population structure and dispersal

334 Based on previous studies of Australian smelt in south-eastern Australia using mtDNA and 

335 microsatellites (Woods et al., 2010; Hughes et al., 2014), we had hypothesized that R. semoni in 

336 the northern part of their distribution would exhibit limited genetic connectivity among river 

337 systems due to a lack of marine dispersal: either because they are non-diadromous or because 

338 they are diadromous, but are retained within their natal estuaries (see Hughes et al., 2014). Our 

339 findings of strong genetic differentiation among rivers support this hypothesis. In both of the 

340 regions (CEQ and SEQ) sampled, there were highly significant FST values, which indicated that 

341 populations were not panmictic within regions. Pairwise FST values between populations within 

342 regions also revealed significant genetic differentiation, suggesting restricted gene flow and 

343 limited dispersal among populations of R. semoni in both regions. Limited dispersal was 

344 supported by our first-generation migrant detection analysis in Geneclass2, which demonstrated 

345 that less than 4% of individuals in each population were immigrants.

346

347 The sample from Tinana Creek (MRD site), was differentiated from the rest of the populations in 

348 the CEQ group (Table 2). This might be the result of a barrier which separates Tinana Creek 

349 from the rest of the Mary river system despite their close proximity to one another (Hughes et al., 

350 2015). Tinana Creek runs into the Mary River not far from the mouth, with both drainages 

351 having tidal estuarine reaches in the lower sections. The differentiation of the Tinana Creek 

352 population from the main stem of the Mary River is also observed in a number of other 

353 freshwater species including Mary River Cod, Maccullochella Mariensis (Huey, Espinoza & 

354 Hughes, 2013), Mary River Turtle, Elusor macrurus (Schmidt et al., in press), freshwater 

355 crayfish Cherax disper (Bentley, Schmidt & Hughes, 2010) and Australian lung fish 

356 Neoceratodus fosteri (Hughes et al., 2015).

357
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358 In general, populations in the CEQ group were more highly structured than those in the SEQ 

359 group, but fishes in both groups exhibited restricted gene flow. These differences could have 

360 several explanations. First, obligate freshwater fish are expected to display greater levels of 

361 genetic differentiation and population subdivision than marine species due to the isolating nature 

362 of river systems and small effective population size (Ward, Woodwark & Skibinski, 1994; 

363 Gyllensten, 1985; McGlashan & Hughes, 2001). The degree of genetic differentiation among 

364 populations between drainages was consistent with these expectations, although effective 

365 population size is unlikely to be very low, given the high levels of diversity. Another plausible 

366 reason is that eustasy may affect the genetic structure of populations through the irregular joining 

367 and isolation of drainages along the coastal margin. Long term isolation of populations in 

368 separate drainages may lead to extensive genetic differentiation among drainages. Particularly 

369 the high genetic structuring might have resulted from limited spatial dispersal patterns of larvae. 

370 In addition to genetic drift in pools, genetic differentiation may arise as a result of local 

371 extinction/recolonization dynamics because some pools dry out completely during dry seasons 

372 and their colonization by a limited number of individuals can result in genetic differentiation due 

373 to founder effect (Vrijenhoek, 1979; Vrijenhoek & Lerman, 1982; Barr et al., 2008; Tatarenkov, 

374 Healey & Avise, 2010).

375

376 An alternative model for stream dwelling species is isolation by distance (IBD). In this model, 

377 equilibrium between genetic drift and gene flow may be reached in species where the life time 

378 dispersal distance is less than the range.  Here, a relationship between stream distance and 

379 genetic differentiation should be evident (Wright, 1943). In this study, a strong IBD relationship 

380 was identified among the SEQ populations, but not among CEQ populations. This suggests that 

381 for SEQ populations, dispersal, when it occurs, is more likely between nearby catchments. 

382 Similar IBD relationships have been reported for other coastline restricted species (Keenan, 

383 1994; Jerry & Baverstock, 1998; Shaddick et al., 2011; Schmidt et al., 2014). Lack of IBD for 

384 the CEQ group may be attributed to insufficient number of population samples available for 

385 comparison and/or the greater degree of population isolation within this group relative to the 

386 SEQ group, consistent with the overall higher FST estimates among CEQ populations. Hughes et 

387 al. (2014) observed similarly contrasting patterns of population genetic structure between cryptic 

388 species groups of southern Australian smelt. In that study, two informal species groups (MTV 

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.3284v1 | CC BY 4.0 Open Access | rec: 26 Sep 2017, publ: 26 Sep 2017



389 and SEC) with adjacent distributions along the western and eastern coast of southern Victoria 

390 had microsatellite-based FST values of 0.19 and 0.07 respectively (Hughes et al. 2014). Using 

391 otolith microchemistry, Hughes et al. (2014) also showed that the more structured western group 

392 (MTV) had a greater proportion of nondiadromous populations relative to the weaker structured 

393 eastern group (SEC). The similar pattern of contrasting structure observed here between northern 

394 groups in the Australian smelt complex (SEQ, CEQ), is probably not due to differences in 

395 diadromous behaviour because preliminary evidence from otolith chemistry suggests all of these 

396 populations are nondiadromous (R. Islam unpublished data). Higher structuring of the CEQ 

397 group could possibly be due to genetic drift if these populations have been established for a 

398 longer period of time at the northern-most limit of Australian smelt distribution relative to the 

399 SEQ populations.

400

401 The complementary pattern of divergence in both microsatellite and mtDNA data between the 

402 SEQ and CEQ groups agrees with a putative species-level boundary identified by Hammer et al. 

403 (2007) within the taxon currently referred to as R. semoni. Mean cyt b divergence of 4% between 

404 SEQ and CEQ samples is close to the 3.6% divergence observed for the full mitochondrial 

405 molecule reported by Schmidt et al. (2016), and within the range of lineage divergence reported 

406 for R. semoni in southern Queensland (Page & Hughes, 2014). The level of cyt b divergence 

407 between the SEQ and CEQ groups relative to lineages of R. semoni from the south of this9 

408 species range is very large (15-17%) and adds to previous studies that have highlighted the likely 

409 existence of a cryptic species complex within the taxon currently referred to as R. semoni 

410 (Hammer et al.  2007; Hughes et al. 2014).

411

412 Contemporary migration

413 The Bayesian assignment analysis detected contemporary movement of individuals only between 

414 proximate sites within rivers (Table 4). Contemporary dispersal was not observed between rivers. 

415 Although, most of the sites that we sampled were within 10-60 km of another sampled site, there 

416 was no contemporary dispersal among the majority of those rivers in either group. In addition, 

417 this species appears to occur in pools, many of which are isolated from other pools by long 

418 stretches of unfavourable habitat. Our data therefore suggest that if local extinctions occur in one 

419 or more of these pools within a reach of the river, then recolonization from elsewhere is unlikely 
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420 to occur rapidly. However, the evidence of some localised movement within rivers among local 

421 populations suggesting potamodromous migration within rivers. This type of migration of 

422 Australian smelt was also reported in previous studies where large number of Australian smelt 

423 was found to exhibit potamodromous migrations through fishways in perennial lowland rivers 

424 (Mallen-Cooper et al., 1995). This contrast with the findings of the southern smelt migration 

425 behaviour where contemporary movement among populations is restricted at least to some extent 

426 within the catchment (Woods et al., 2010) although this southern smelt exhibited facultative 

427 diadromous migration (Hughes et al., 2014).

428

429 CONCLUSION

430 Little conservation attention has been given to the Australian smelt since it has long been 

431 considered a common species distributed widely across south-eastern Australia. The findings of 

432 the present study and other recent research (Hammer et al., 2007; Crook, Macdonald & Raadik, 

433 2008; Hughes et al., 2014) suggest that Australian smelts are a genetically complex and 

434 ecologically diverse taxonomic group. Therefore, proper conservation and management will 

435 require appropriate taxonomic treatment to align species names with the clear genetic divisions 

436 now recognised across the range of Australian smelt.

437

438 In the present study, two major genetic lineages were recognized that are geographically 

439 concordant with distinct allozyme groups reported by Hammer et al. (2007) and these lineages 

440 can be categorised as Evolutionary Significant Units (ESU) (Moritz, 1994; Bernatchez, 1995; 

441 Crandall et al., 2000; Sasaki et al., 2016). The broad genetic divergence implies that these 

442 lineages have evolved independently from each other for some time. For long term management 

443 the delimitation of ESUs is imperative where conservation strategy should be specified 

444 accurately (Moritz 1994; Sasaki et al., 2016). However, in the present study translocation of 

445 individuals between lineages is not recommended for short 3term management as it may 

446 preclude any local adaptation due to mixing of distinct lineages (Tallmon, Luikart & Waples, 

447 2004; Hughes et al., 2015).

448

449 Alternatively, eight isolated management units (MUs) were detected in R. semoni from the 

450 microsatellite dataset (Fig. 2C) demonstrating little to no gene flow between them. These 
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451 management units align with individual coastal catchment, which suggests that other genetically 

452 distinct populations may exist in coastal rivers not sampled in this study.

453

454

455
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Table 1(on next page)

Summary of Sample information and genetic diversity indices for Australian smelt

Number of samples used for genetic analysis (N), mean number of alleles per population (N
A
),

observed heterozygosity (H
O
), expected heterozygosity (H

E
), allelic richness (A

R
), mean

inbreeding index (FIS)
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Group 

name

Sampling site Site 

code

Latitude (E) Longitude 

(S)

N NA HO HE AR PAR FIS Population 

specific FST

CEQ Tinana MRD 152°42'57.8" 25°36'04.3" 28 10.20 0.679 0.758 5.59 0.71 0.107 0.164

CEQ Mary_upper MRU 152°48'47.9" 26°38'55.5" 29 10.90 0.779 0.826 6.26 0.85 0.059 0.136

CEQ Noosa_lower NSD 152°52'21.4" 26°17'05.7" 30 6.10 0.576 0.617 3.99 0.76 0.067 0.340

CEQ Mooloolah_lower MLD 153° 0'44.64" 26°46'18.83" 16 4.60 0.670 0.604 3.41 0.18 -0.115 0.390

CEQ Mooloolah_upper MLU 152°55'13.1" 26°45'07.9" 32 6.40 0.609 0.566 3.85 0.23 -0.079 0.334

SEQ Brisbane_lower BRD 152°55'49.9" 27°30'16.05" 32 9.50 0.754 0.755 5.49 0.4 0.002 0.191

SEQ Brisbane_upper BRU 152°35'13.5" 27°58'43.9" 32 8.80 0.760 0.763 5.18 0.39 0.005 0.216

SEQ Logan/Albert_lower LGD 152°59'01.8" 28°10'15.6" 8 7.60 0.701 0.847 6.9 0.69 0.184 0.0846

SEQ Logan/Albert_upper LGU 152°56'23.6" 28°19'19.7" 24 11.40 0.828 0.845 6.58 0.57 0.021 0.107

SEQ Coomera_lower CMD 153° 11'20.9" 28°02'55.5" 24 13.90 0.839 0.887 7.42 0.53 0.054 0.0743

SEQ Coomera_ upper CMU 153° 09'13.4" 28°05'01.8" 32 14.70 0.848 0.887 7.4 0.58 0.045 0.0775

SEQ Nerang_lower NRD 153° 17'52.0" 28°01'33.7" 8 6.40 0.718 0.798 5.8 0.64 0.106 0.156

SEQ Nerang_upper NRU 153° 14'02.8" 28°07'29.2" 32 13.70 0.782 0.853 6.87 0.29 0.084 0.0879

SEQ Currumbin_lower CRD 153°25'24.8" 28°10'41.9" 32 11.20 0.771 0.803 5.99 0.33 0.041 0.130

SEQ Currumbin_upper CRU 153°23'11.9" 28°12'49.6" 32 10.90 0.769 0.785 6 0.34 0.021 0.135
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Table 2(on next page)

Pairwise FST values among all pairs of populations

Bold values were statistically significant after bonferroni correction
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 MRD MRU NSD MLD MLU BRD BRU LGD LGU CMD CMU NRD NRU CRD CRU

MRD 0.000

MRU 0.097 0.000

NSD 0.335 0.310 0.000

MLD 0.231 0.182 0.362 0.000

MLU 0.299 0.244 0.404 0.009 0.000

BRD 0.161 0.131 0.323 0.203 0.276 0.000

BRU 0.159 0.136 0.320 0.218 0.295 0.013 0.000

LGD 0.222 0.101 0.394 0.248 0.316 0.157 0.170 0.000

LGU 0.227 0.137 0.368 0.246 0.317 0.173 0.189 -0.006 0.000

CMD 0.194 0.151 0.319 0.186 0.259 0.130 0.146 0.126 0.161 0.000

CMU 0.184 0.141 0.293 0.165 0.236 0.124 0.139 0.126 0.164 0.010 0.000

NRD 0.242 0.125 0.393 0.244 0.316 0.187 0.191 0.073 0.082 0.152 0.141 0.000

NRU 0.211 0.110 0.329 0.203 0.261 0.176 0.183 0.053 0.074 0.146 0.137 -0.018 0.000

CRD 0.244 0.152 0.353 0.222 0.277 0.195 0.211 0.125 0.147 0.166 0.156 0.076 0.062 0.000

CRU 0.287 0.178 0.397 0.270 0.320 0.248 0.256 0.120 0.150 0.215 0.201 0.073 0.059 0.011 0.000
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Table 3(on next page)

AMOVA for hierarchical arrangements of the 15 sample sites

*** P < 0.001
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Observed partitionStructure tested

Variance % of variation

F- Statistics

A. All sites

Among populations 0.26509 Va 20.50

Within populations 1.02804 Vb 79.50 FST = 0.21***

B. Based on group (CEQ & SEQ)

Among group 0.07121 Va 5.36 FCT = 0.05***

Among sites within group 0.23035 Vb 17.32 FSC = 0.18***

Within sites 1.02804 Vc 77.32 FST = 0.23***

C. Based on river

i Among CEQ group

Among rivers 0.10506 Va 22.39 FCT = 0.22***

Among sites within rivers 0.03605 Vb 7.69 FSC = 0.10***

Within sites 0.32802 Vc 69.92 FST = 0.30***

ii Among SEQ group

Among rivers 0.27139 Va 12.49 FCT = 0.13***

Among sites within rivers 0.01106 Vb 0.51 FSC =0.006***

Within sites 1.89107 Vc 87.01 FST = 0.13***
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Table 4(on next page)

Contemporary gene flow identifying the immigrant

Diagonal values (in italics): proportion of non-migrant Australian smelt. The most relevant

migration rates are shown in bold.

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.3284v1 | CC BY 4.0 Open Access | rec: 26 Sep 2017, publ: 26 Sep 2017



1

 MRD MRU NSD MLD MLU BRD BRU LGD LGU CMD CMU NRD NRU CRD CRU

MRD
0.8890 0.0093 0.0079 0.0076 0.0077 0.0076 0.0080 0.0075 0.0085 0.0078 0.0077 0.0080 0.0078 0.0075 0.0081

MRU
0.0104 0.8873 0.0074 0.0075 0.0074 0.0076 0.0122 0.0075 0.0073 0.0076 0.0074 0.0081 0.0076 0.0073 0.0075

NSD
0.0073 0.0068 0.8969 0.0074 0.0074 0.0072 0.0073 0.0072 0.0072 0.0070 0.0079 0.0079 0.0074 0.0074 0.0079

MLD
0.0107 0.0109 0.0109 0.6778 0.1789 0.0108 0.0112 0.0112 0.0111 0.0113 0.0110 0.0109 0.0109 0.0114 0.0108

MLU
0.0071 0.0066 0.0070 0.0070 0.9005 0.0073 0.0073 0.0071 0.0073 0.0071 0.0079 0.0072 0.0068 0.0066 0.0069

BRD
0.0076 0.0120 0.0071 0.0079 0.0076 0.6801 0.2181 0.0076 0.0075 0.0077 0.0072 0.0072 0.0070 0.0077 0.0077

BRU
0.0067 0.0072 0.0068 0.0072 0.0068 0.0070 0.9021 0.0070 0.0071 0.0071 0.0073 0.0071 0.0069 0.0069 0.0069

LGD
0.0172 0.0147 0.0146 0.0149 0.0149 0.0160 0.0150 0.6815 0.1205 0.0158 0.0149 0.0148 0.0155 0.0152 0.0146

LGU
0.0086 0.0089 0.0082 0.0083 0.0085 0.0084 0.0086 0.0086 0.8803 0.0081 0.0082 0.0094 0.0083 0.0092 0.0084

CMD
0.0078 0.0082 0.0081 0.0084 0.0082 0.0083 0.0084 0.0078 0.0084 0.6750 0.2179 0.0087 0.0082 0.0082 0.0084

CMU
0.0071 0.0072 0.0072 0.0074 0.0071 0.0073 0.0067 0.0074 0.0071 0.0072 0.9000 0.0070 0.0069 0.0076 0.0068

NRD
0.0144 0.0139 0.0149 0.0144 0.0139 0.0149 0.0140 0.0141 0.0147 0.0141 0.0145 0.6813 0.1325 0.0145 0.0139

NRU
0.0069 0.0067 0.0071 0.0069 0.0074 0.0076 0.0070 0.0069 0.0075 0.0071 0.0078 0.0070 0.8986 0.0089 0.0068

CRD
0.0073 0.0066 0.0073 0.0075 0.0070 0.0072 0.0072 0.0074 0.0071 0.0077 0.0070 0.0076 0.0075 0.8981 0.0075

CRU
0.0071 0.0073 0.0070 0.0071 0.0072 0.0070 0.0073 0.0067 0.0075 0.0070 0.0073 0.0070 0.0068 0.2318 0.6759
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Table 5(on next page)

Results of the assessment for detecting first-generation migrant performed using

GENECLASS2 showing the number of individual migrants (P < 0.01) detected per

sampling location and results are based on the Lh/Lmax statistic
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    F0 Migrants FromSample

MRD MRU NSD MLD MLU BRD BRU LGD LGU CMD CMU NRD NRU CRD CRU

MRD 1 0 0 0 0 0 0 0 0 0 0 1 0 0

MRU 0 0 0 0 0 0 0 0 0 0 0 0 0 0

NSD 0 0 0 0 0 0 0 0 0 0 0 0 0 0

MLD 0 0 0 0 0 0 0 0 0 0 0 0 0 0

MLU 0 0 0 1 0 0 0 0 0 0 0 0 0 0

BRD 0 0 0 0 0 0 0 0 0 0 0 0 0 0

BRU 0 0 0 0 0 1 0 0 0 0 0 0 0 0

LGD 0 0 0 0 0 0 0 1 0 0 0 0 0 0

LGU 0 0 0 0 0 0 0 1 0 0 0 0 0 0

CMD 0 0 0 0 0 0 0 0 0 3 0 0 0 0

CMU 0 0 0 0 0 0 0 0 0 1 0 0 0 0

NRD 0 0 0 0 0 0 0 0 0 0 0 0 0 0

NRU 0 0 0 0 0 0 0 0 0 0 0 2 0 0

CRD 0 0 0 0 0 0 0 0 0 0 0 0 0 2

CRU 0 0 0 0 0 0 0 0 0 0 0 0 0 1

2
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Figure 1

Map of Queensland highlighting the fifteen sampling locations
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Figure 2

STRUCTURE analysis A) Bar plot of estimated membership of each individual in k = 2

clusters B) Bar plot of estimated membership of each individual in k = 3 clusters C) Bar

plot of estimated membership of each individual in k = 8 clusters
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Figure 3

A) Analysis of isolation by distance for SEQ populations B) Analysis of isolation by

distance for CEQ populations
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Figure 4

Neighbour-joining tree of the cyt b dataset for 68 Australian smelt samples from 19

sampling localities. Individual sample codes coloured according to river. Node values

are bootstrap support
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