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Phyllosphere microbiota play a crucial role in plant-environment interactions and are

influenced by biotic and abiotic factors. However, there is little research on how pathogen

s affect the microbial community. In this study, we collected 16 pumpkin (Cucurbita

moschata) leaf samples showing symptoms of powdery mildew disease with different

disease severity levels ranging from L1 (least severe) to L4 (most severe). We examined

the fungal community structure and diversity by Illumina MiSeq sequencing of the internal

transcribed spacer (ITS) region of ribosomal RNA genes. The fungal communities were

dominated by members of the Basidiomycota and Ascomycota. The dominant genus was

Podosphaera on the diseased leaves, which was the key pathogen responsible for the

pumpkin powdery mildew. Ascomycota and Podosphaera  increased in abundance as

disease severity increased from L1 to L4, and were significantly more abundant than other

microorganisms at disease severity L4 (P<0.05). The richness and diversity of the fungal

community increased from L1 to L2, and then declined from L2 to L4, likely due to the

biotic pressure at disease severity L4. Maintaining species richness in the phyllosphere will

be an important part of managing disease control in this agroecological system and an

essential step toward predictable biocontrol of powdery mildew in pumpkin.
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29 ABSTRACT

30 Phyllosphere microbiota play a crucial role in plant-environment interactions and are influenced 

31 by biotic and abiotic factors. However, there is little research on how pathogens affect the 

32 microbial community. In this study, we collected 16 pumpkin (Cucurbita moschata) leaf samples 

33 showing symptoms of powdery mildew disease with different disease severity levels ranging 

34 from L1 (least severe) to L4 (most severe). We examined the fungal community structure and 

35 diversity by                          

36 Illumina MiSeq sequencing of the internal transcribed spacer (ITS) region of ribosomal RNA 

37 genes. The fungal communities were dominated by members of the Basidiomycota and 

38 Ascomycota. The dominant genus was Podosphaera on the diseased leaves, which was the key 

39 pathogen responsible for the pumpkin powdery mildew. Ascomycota and Podosphaera increased 

40 in abundance as disease severity increased from L1 to L4, and were significantly more abundant 

41 than other microorganisms at disease severity L4 (P<0.05). The richness and diversity of the 

42 fungal community increased from L1 to L2, and then declined from L2 to L4, likely due to the 

43 biotic pressure at disease severity L4. Maintaining species richness in the phyllosphere will be an 

44 important part of managing disease control in this agroecological system and an essential step 

45 toward predictable biocontrol of powdery mildew in pumpkin. 

46 Keywords phyllosphere microbiota, powdery mildew, fungal community, community diversity, 

47 disease severity, Illumina MiSeq

48

49

50 INTRODUCTION
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51 Powdery mildew is a common fungal disease of cucurbits and the major cause of losses in 

52 cucurbit production worldwide. Golovinomyces cichoracearum (syn. Erysiphe cichoracearum) 

53 and Podosphaera xanthii (syn. Sphaerotheca fuliginea) are main two organisms caused powdery 

54 mildew (Lebeda et al., 2010). Impacts of powdery mildew on crop production include reduced 

55 photosynthesis, impaired growth, premature senescence, and yield loss. The powdery mildew 

56 pathogen lives with the obligate biotrophic lifestyle. Powdery mildew symptoms first appear as 

57 pale, chlorotic spots on leaves that soon turn powdery-white in appearance (fungal spores) and 

58 starts on the crown and lower leaves, mainly on the under-leaf shaded surface. Young plants may 

59 turn yellow, stunted, and may die and then severely infected leaves become brown, brittle and 

60 die, resulting in foliage loss (Lebeda et al., 2010). 

61 The phyllosphere or leaf surface is an important microbial habitat for members of the major 

62 bacterial and fungal groups, and Archaea (Lindow & Leveau, 2002; Lindow and Brandl, 2003). 

63 These microorganisms play a crucial role in helping their host against pathogens (Lacava et al., 

64 2006; Mejía et al., 2008; Rajendran et al., 2008). In past years, most of the researchers focused 

65 on screening plant growth-promoting microorganisms from plants which can help us manage 

66 diseases (Compant et al., 2005; Everett et al., 2005; Hirano & Upper, 2000; Whipps et al., 

67 2008). However, not all the microbes in the natural environment are considered culturable. In the 

68 past few years, the development of next-generation rRNA sequencing techniques has enabled us 

69 to obtain in-depth descriptions of the composition of the microbial communities associated with 

70 leaves of Arabidopsis thaliana (Reisberg et al., 2013), potatoes (Becker et al., 2008), rice 

71 (Mwajita et al., 2012), spinach (Lopez et al., 2011; Lopez et al., 2013), grape (Leveau et al., 

72 2011), and various tree species including salt cedar (Redford et al., 2010; Finkel et al., 2011).

73 Historically, scholars have begun to study the rhizosphere as a microbial habitat as early as 

74 100 years ago (Hartmann et al., 2008) and the importance of microbial communities is well 

75 recognized in plant health and growth. Although the root3rhizosphere microbiome is now well 

76 known, the phyllosphere microbiome is only partly understood. However, the development of 
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77 new high-throughput sequencing technologies is now enabling researchers to focus on the 

78 phyllosphere microbiome. It can help us understand the complexity of phyllosphere microbial 

79 communities better and study interactions with their host plants and the environment deeply.

80 As a member of nature, plants are actually affected by various nature9s stress factors during 

81 their growth period (Zhang et al., 2014). The phyllosphere microorganisms are influenced by 

82 both biotic and abiotic factors, some of which are fairly stable and constant, such as habitat 

83 conditions (Yang et al., 2016; Fonsecagarcía et al., 2016), the host genotype (Sapkota et al., 

84 2015; Bodenhausen et al., 2014; Hunter et al., 2015), elevation gradient (Cordier et al., 2012; 

85 Zhang et al., 2015), and seasonal variation (Copeland et al., 2015; Jackson & Denney, 2011; 

86 Davey et al., 2012). Microbial interactions in the phyllosphere play an important role in the 

87 agroecosystem, it not only can affect the health and growth of plants in natural communities, but 

88 also the productivity of agricultural crops. There are not only a high proportion of plant-

89 beneficial microorganisms such as antagonists, diazotrophs, and plant growth promoting bacteria 

90 (PGPB) in plant-associated habitats, but also plant pathogens and potential human pathogens 

91 (Berg et al., 2005). Plants can also protect themselves against fungal infection by biological and 

92 non-biological inducers by natural means (Shi et al., 2007). However, less is known about the 

93 colonization and persistence of nonpathogenic microbes on this extensive habitat, as well as their 

94 interactions with pathogenic microorganisms, and impact of single strains on the microbial 

95 community. The rhizosphere community of specific biocontrol agents have shown minor and 

96 only transient effects according to the risk assessment and colonization studies (Scherwinski et 

97 al., 2007; Adesina et al., 2009; Chowdhury et al., 2013; Schmidt et al., 2012), while impacts of 

98 pathogens on the phyllosphere microbiome are largely underexplored. To the best of our 

99 knowledge, only one research investigated the relationship between the phyllosphere 

100 microbiome and pathogen using Illumina sequencing technology, and the results showed that 

101 microbes present on the plant surface play an important role in the resistance to Botrytis cinereal 

102 (Ritpitakphong et al., 2016).  
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103 So far, there have been no studies to analysis of plant microbe3pathogen interactions in the 

104 phyllosphere using Illumina MiSeq platform to sequence the internal transcribed spacer (ITS) 

105 regions of the rRNA of the fungal communities. In this study, we want to further explore the 

106 interaction between the pathogen and other microorganisms and to gain a better understanding of 

107 the theoretical basis for disease control in agroecological systems by evaluating whether the 

108 diversity and community structure of pumpkin (Cucurbita moschata Duchesne ex Poir.) 

109 phyllosphere microbiota is influenced by the abundance of the pumpkin powdery mildew 

110 pathogen Podosphaera. We analyzed the fungal communities of 16 pumpkin leaf samples 

111 showing symptoms of powdery mildew disease with different disease severity levels ranging 

112 from L1 (least severe) to L4 (most severe) by sequencing the ITS regions of fungal rRNA genes 

113 using Illumina MiSeq. The richness and diversity of the fungal community was compared, and 

114 statistical analysis based on OUTs or taxonomic classification was also performed. We hope 

115 these results could give new perspectives on the function of the leaf microbiome in the control of 

116 pumpkin powdery mildew.

117 MATERIALS AND METHODS

118 Site and sampling

119 Leaf samples were randomly collected from pumpkin (C. moschata:nen zao 1) plants showing 

120 symptoms of powdery mildew disease. The samples were collected in June 2015 in the base of 

121 Vegetable Research Institute, Changsha, Hunan Province, China. The leaf samples were divided 

122 into four groups (L13L4) based on the proportion of lesion area; L1 (no lesions), 6%<L2<11%, 

123 11%fL3<20%, L4g40%, respectively. According to the incidence of powdery mildew of 

124 pumpkin (disease grade: 0-4) from 4 different areas, the same size of 10 pumpkin leaves were 

125 collected and mixed it into sterile bags, all the leaves are from different pumpkin plants at 

126 fruiting stage. Four biological replicates were performed in each treatment group. And each plot 

127 was sampled using five-point sampling within an area of 30 m2. Leaf samples were collected in 

128 separate bags at refrigerated temperature, and were transferred to the laboratory for processing. 
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129 To harvest microbes on the leaf surface, 10 g of leaf were submerged in 100 mL of PBS with 

130 0.01% Tween-80 in a 250 mL sterile conical flask. The flask was shaken at 250 rpm for 30 min 

131 at 28°C, and then subjected to ultrasound for 10 min. The microbes were then harvested using air 

132 pump filtration using a 0.22 ¿m filter; the microfiltration membrane was stored at 320°C. 

133 DNA extraction and purification

134 The MP FastDNA ®SPIN Kit for soil (MP Biochemicals, Solon, OH, USA) was used to extract 

135 DNA from the leaf surface samples according to the manufacturer9s protocol. DNA was 

136 extracted from the microbes harvested from the leaf surface. PCR amplicon libraries were 

137 prepared for each sample using the eukaryotic primers ITS5 (52-

138 GGAAGTAAAAGTCGTAACAAGG-32) and ITS2 (52-GCTGCGTTCTTCA

139 TCGATGC-32) with the forward primer modified to contain a unique 6 nt barcode at the 5´end. 

140 Fungal ITS1 regions were amplified in a total volume of 50 ¿L that contained 1 ¿L (5 ¿M) of 

141 each forward and reverse primer, 1.5 ¿L of dNTP mix (30 mM each), 0.5 ¿L of 5 U Taq DNA 

142 polymerase (TaKaRa), 5 mL of 10 × PCR buffer (with Mg2+) and 1 ¿L of DNA. Reaction 

143 conditions consisted of an initial denaturation step at 94°C for 1 min, followed by 35 cycles of 

144 denaturation at 94°C for 20 s, primer annealing at 57°C for 25 s, and extension at 68°C for 45 

145 sÿand then a final extension at 68°C for 10 min. PCR products with a bright band of between 

146 250 and 450 bp were collected by agarose gel electrophoresis and purified with an E.Z.N.A.® 

147 Gel Extraction Kit. The purified PCR amplicons were pooled in equimolar amounts using Qubit 

148 (CAÿUSA) and paired-end sequenced (2×250 bp) on an Illumina MiSeq platform by 

149 ANNOROAD Gene Technology Co., Ltd. (Beijing, China) according to standard protocols.

150 Processing of sequence data

151 After the MiSeq sequencing machine in fastq format, the raw sequence data reads were collected. 

152 Separate files were generated for the forward and reverse directions and the barcodes. Paired end 

153 reads were merged using the FLASH program (Mago et al., 2011). Sequences containing 

154 ambiguous 8N9 were removed. Chimera sequences were detected and removed using UCHIME 
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155 (Edgar et al., 2011). All sequences with 97% similarity were clustered using the USEARCH 

156 software to yield operational taxonomic units (OTUs). Low abundance OTUs (f2 counts) were 

157 eliminated from the OTU table. Representative sequences for each OTU were assigned to 

158 taxonomic groups using UNITE database (Abarenkov et al., 2010). In this study, all the 

159 sequences obtained were deposited in the SRA database short-read archive SRR5075731-

160 SRR5075746.

161 Statistical analysis

162 The Mothur software was used to calculate rarefaction and diversity indices of all the leaf 

163 samples based on resampling of OTUs generated by USEARCH (Schloss et al., 2009). 

164 Detrended correspondence analysis (DCA) and Venn diagram analysis were performed in 

165 subsequent analyses using vegan package in R package v3.1.0. To determine whether the 

166 microbial communities present in the phyllosphere of pumpkin leaves with different disease 

167 levels were significantly different, the three nonparametric tests (MRPP, Adonis and ANOSIM) 

168 were used (Anderson et al., 2001). The statistical significance of differences between groups 

169 (including the Shannon index, the inverse Simpson index and the relative abundance of the 

170 taxonomic subgroups) was assessed by performing a one-way ANOVA followed by Tukey9s 

171 multiple comparison post hoc test when comparing several groups. The data are presented as the 

172 mean ± SE. Besides, a P value of <0.05 was considered to be statistically significant. The 

173 software IBM SPSS for Windows, version 22.0 was used to perform statistical analyses.

174 RESULTS

175 Composition and structure of the pumpkin phyllosphere fungi  

176 In total, 797,077 quality sequences were obtained for the four disease severity groups. The mean 

177 number of sequences per sample was 49,817, with a range of 39,028362,150 sequences per 

178 sample. In total, 399 operational taxonomic units (OTUs) were detected using the UPARSE-

179 OTU algorithm at the 97% identity cut-off. Rarefaction analysis and the Chao1 estimator 

180 indicated that the diversity in these leaf samples was within the same range (Fig. 1).
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181 The four-way Venn diagrams in Figure 2 show the distribution of the OTUs in the four 

182 disease severity groups. About 2.5% (10), 5.2% (21), 3.5% (14), and 1.2% (5) of all eukaryal 

183 OTUs were only found in disease severity group L1, L2, L3 or L4, respectively. And 38.8% 

184 (155) were present in the phyllosphere of all the groups. The OTU_2, OTU_3, OTU_5, and 

185 OTU_9 were identified as Fungi_sp|SH234328.06FU (https://blast.ncbi.nlm.nih.gov/Blast.cgi, it 

186 is matched the sequence NCBI accession 

187 KF800560.1, as a uncultured eukaryote clone CMH469 18S ribosomal RNA gene, partial 

188 sequence) at the species level, and accounted for 92.42%, 75.41%, 75.85%, and 14.76% of the 

189 sequence reads detected in leaves at disease severity levels L1, L2, L3 and L4, respectively. 

190 OTU_1 was identified as Podosphaera_fusca|SH194415.06FU, and accounted for 1.05%, 

191 1.11%, 10.64%, and 77.9% of the sequence reads detected in leaves at disease severity levels L1, 

192 L2, L3 and L4, respectively. 

193 Four fungal phyla, 15 classes and 36 orders were detected in the phyllosphere of the 

194 pumpkin samples (Table 1). The relative abundance of the main fungal phyllospheric 

195 populations at the taxonomic levels of Phyla and Class is shown in Fig. 3 (a and b, respectively). 

196 Overall, the most abundant identifiable phyla were Fungi_unidentified and Ascomycota. The 

197 abundance of Fungi_unidentified was decreased while Ascomycota was increased as increased 

198 disease severity with leaf. The heatmap of genus level indicated the dominant genus was 

199 Podosphaera ÿFig. 4ÿin the heavy symptoms of mildew infection (L3 and L4), which showed 

200 different levels of abundance among four disease severity groups. A lot of common OTUs were 

201 observed among these four different kinds of samples. 

202 The multiple-response permutation procedure (MRPP), Adonis and ANOSIM analyses of 

203 the microbial communities (Table 2) indicate that the structures of the microbial communities 

204 detected in the phyllosphere of leaves with different disease levels (L1, L2, L3 and L4) were 

205 significantly different (P < 0.05). The detrended correspondence analysis (DCA) plot in Fig. 5 

206 shows that the communities detected in leaves with different disease levels were clearly 
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207 separated.

208 Correlation between fungal communities and disease severity 

209 We compared the fungal alpha diversity of the pumpkin leaves using the Shannon and Inverse 

210 Simpson diversity indices and OTU numbers (richness). The Shannon index ranged from 0.90 ± 

211 0.09 to 1.87 ± 0.19, the Inverse Simpson index ranged from 1.61 ± 0.10 to 3.12 ± 0.53, and the 

212 richness ranged from 110.25 ± 6.85 to 217.00 ± 20.84 for the four disease severity groups. The 

213 results indicated that the fungal alpha diversity of the pumpkin leaves decreased significantly 

214 with increasing disease severity from L2 to L4 (Table 3). However, alpha diversity in L2 leaves 

215 was higher than in L1 leaves. 

216 The fungal communities were dominated by members of the Ascomycota and the most 

217 dominant genus was Podosphaera (Fig. 6). The abundance of Ascomycota and Podosphaera 

218 increased with increasing disease severity. When the disease severity was greatest (L4), there 

219 was less fungal diversity but a greater number of OTUs showed a high level of abundance. 

220 DISSCUSION

221 A number of studies focused on the phyllosphere microorganisms in various plants while the 

222 fungal community composition and diversity of pumpkin leaves infected with powdery mildew 

223 has not been reported. In our study, amplicon pyrosequencing of the ITS region of rDNA were 

224 used to detect the dynamics of fungal communities response to pathogen of pumpkin powdery 

225 mildew. The dissimilarity among samples might be owing to the differences in the disease 

226 severity, which could select the related fungi colonize pumpkin leaf surface.

227 Microorganisms are the largest population on our planet and participate in the 

228 biogeochemical cycling of the Earth as an important component. Microorganisms could also play 

229 a crucial role in keeping leaves healthy (Baker et al., 2010) and in maintaining the balance of the 

230 ecosystem. A variety of beneficial microorganisms colonization on the plant leaves and help to 

231 afford plant nutrition and defense against pathogens. Although there are more studies on the 

232 plant rhizosphere, it has received considerably more attention in recent years, and interest in the 
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233 microbiology of leaf surfaces extends beyond pathogens now (Vorholt, 2012). Powdery mildew, 

234 as a common fungal disease, that affects a wide range of plants, including cucurbits, such as 

235 cucumbers, Luffa spp., melons and watermelons, leading to huge economic losses annually 

236 (Mcgrath and Shishkoff, 1999). Among the different species of fungi in the order Erysiphales 

237 caused powdery mildew, Podosphaera xanthii (a.k.a. Sphaerotheca fuliginea) being the most 

238 commonly reported cause (Mcgrath and Shishkoff, 1999). The development of high-throughout 

239 molecular techniques has helped to understand the microbial composition and structure in 

240 different environments easily and know how microbial diversity changes as the disease severity 

241 changes deeply.

242 Our study has provided new insights into the impact of the plant pathogen Podosphaera on 

243 the microorganisms inhabiting the pumpkin phyllosphere, a serious pathogen that also causes 

244 pumpkin powdery mildew. Previous studies have reported that there are usually more unique 

245 OTUs in the rhizosphere of healthy soil than in diseased soil (Rosenzweig et al., 2012). In the 

246 phyllosphere, there may be same phenomenon as the soil. In our study, the greatest number of 

247 unique OTUs was found at disease severity level L2. Fungi_sp|SH234328.06FU was negatively 

248 correlated with disease severity. There may be an antagonistic relationship between 

249 Fungi_sp|SH234328.06FU and Podosphaera_fusca|SH194415.06FU(Podosphaera_xanthii). We 

250 will investigate this relationship in the future study. The abundance of Ascomycota and 

251 Podosphaera was positively correlated with disease severity. As the pathogen of pumpkin 

252 powdery mildew, Podosphaera was the dominant genus in the in the heavy symptoms of mildew 

253 infection. DCA, MRPP and adonis revealed significant differences in the composition and 

254 structure of the fungal assemblages observed in the four disease severity groups (Fig.5, Table 

255 2), suggesting that the composition and structure of the fungal assemblages altered as the disease 

256 severity increased.

257 The leaf fungal alpha diversity decreased significantly with increasing disease severity from 

258 L2 to L4 (Table 3). This result agrees with findings reported by Manching et al. (Manching et al., 
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259 2014), who analyzed the relationship between southern leaf blight disease severity and maize 

260 leaf epiphytic bacterial species richness. And it found that lower species richness (alpha 

261 diversity) was correlated with an increase of southern leaf blight disease severity when disease 

262 pressure was higher (Manching et al., 2014). The decline in overall fungal diversity was 

263 enhanced after pathogen stimulation, it also agrees with the results reported by Erlacher et al. 

264 (Erlacher et al., 2014). Interestingly, leaf fungal alpha diversity increased with increasing 

265 disease severity from L1 to L2, which suggests that the pathogen may have caused an increase in 

266 the fungal community richness at first and then a decrease when disease pressure was higher. It 

267 is well known that powdery mildew fungi are obligate biotrophs and will therefore compete for 

268 host nutrient reserves and suppress host defense responses. The growth and reproduction of other 

269 fungus could be inhibited when disease pressure was higher in the phyllosphere. This study 

270 further increases our understanding of the effect of powdery mildew disease on the microbial 

271 communities that inhabit the phyllosphere of pumpkin leaves. In addition, this is merely 

272 speculative that maintaining a rich and stable fungal community in the phyllosphere may be an 

273 efficient method of managing disease control in agroecological system and an essential step 

274 toward predictable biocontrol of powdery mildew.

275 CONCLUSIONS

276 In our current study, we demonstrated that the plant pathogen Podosphaera_fusca can affect the 

277 phyllosphere fungal communities of pumpkin. The pathogen caused an increase in the fungal 

278 community richness at first and then a decrease when disease pressure was higher. The decline in 

279 overall fungal diversity was enhanced after pathogen stimulation. The abundance of an 

280 unidentified genus as Fungi_sp|SH234328.06FU was inversely proportional to pathogen 

281 community of Podosphaera. In addition, our results showed that maintaining a rich and stable 

282 fungal community in the phyllosphere may be an efficient method of managing disease control in 

283 agroecological system and an essential step toward predictable biocontrol of powdery mildew.
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464

465

466 Figure captions

467 Figure 1 Rarefaction curves for the operational taxonomic units (OTUs).

468 R01-R04: four replicate samples of the L1 level; R11-R14: four replicate samples of the L2 level; 

469 R21-R24: four replicate samples of the L3 level; R31-R34: four replicate samples of the L2 level.

470 Figure 2 Venn diagram showing unique and shared OTUs detected in the phyllosphere of 

471 the four disease severity groups (L1, L2, L3 and L4).

472 Figure 3 Relative abundance of fungal at the phylum and class level.

473 Figure 4 Heat map of the top 30 genera detected in all the samples.

474 R01-R04: four replicate samples of the L1 level; R11-R14: four replicate samples of the L2 level; 

475 R21-R24: four replicate samples of the L3 level; R31-R34: four replicate samples of the L2 level. 

476 Different colors represent different relative abundances, red represents the high relative 

477 abundance, and green represents the low relative abundance.

478 Figure 5 Detrended correspondence analysis (DCA). L1-L4 indicate the severity level of 

479 powdery mildew disease in each pumpkin leaf. N=4.

480 Figure 6 Relative abundance of Ascomycota and Podosphaera at different severity levels of 

481 powdery mildew disease (L13L4).
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Figure 1

Rarefaction curves for the operational taxonomic units (OTUs).
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Figure 2

Venn diagram showing unique and shared OTUs detected in the phyllosphere of the four

disease severity groups (L1, L2, L3 and L4).
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Figure 3

Relative abundance of fungal at the phylum and class level.
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Figure 4

Heat map of the top 30 genera detected in all the samples.
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Figure 5

Detrended correspondence analysis (DCA). L1-L4 indicate the severity level of powdery

mildew disease in each pumpkin leaf. N=4.
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Figure 6

Relative abundance of Ascomycota and Podosphaera at different severity levels of

powdery mildew disease (L13L4).
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Table 1(on next page)

Number of detected phylotypes classified at different taxonomic levels.
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1

Table 1 Number of detected phylotypes classified at different taxonomic levels.

Disease severity groups Phylum Class Order Family Genus

No. of detected phylotypes 4 15 36 70 101

L1 3 14 35 63 86

L2 3 15 35 66 92

L3 3 14 31 68 87

L4 4 13 30 53 67

2
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Table 2(on next page)

The dissimilarity of the fungal community composition in the phyllosphere of pumpkin.
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1

2 Table 2 The dissimilarity of the fungal community composition in the phyllosphere of pumpkin. 

MRPP Adonis AnosimDisease

severity levels P Delta P R2 P R

L13L2 0.03 0.145 0.031 0.392 0.026 0.3125

L13L3 0.037 0.113 0.032 0.539 0.034 0.7188

L13L4 0.029 0.089 0.026 0.98 0.028 1

L23L3 0.03 0.178 0.026 0.346 0.024 0.4271

L23L4 0.038 0.153 0.034 0.936 0.029 1

L33L4 0.034 0.121 0.035 0.953 0.034 1

3

4
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Table 3(on next page)

Diversity indices of the communities on leaf surface showed different disease severity.
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1

2 Table 3 Diversity indices of the communities on leaf surface showed different disease severity. 

Group Richness Shannon 

index

Inverse 

Simpson index

Ace Chao1

L1 182.25 ± 4.53 1.23 ± 0.03 2.03 ± 0.08 324.47±24.48 279.47±10.47

L2 217.00 ± 20.84 1.87 ± 0.19 3.12 ± 0.53 296.7±24.94 283.08±23.85

L3 192.75 ± 27.19 1.62 ± 0.16 2.64 ± 0.18 341.67±14.09 290.35±22.21

L4 110.25 ± 6.85 0.90 ± 0.09 1.61 ± 0.10 249.61±36.63 181.91±15.71
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