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Abstract: 14 

Background. DNA metabarcoding is used to generate species composition data for entire communities. However, 15 

sequencing errors in high throughput sequencing instruments are fairly common, usually requiring reads to be clustered into 16 

operational taxonomic units (OTU), loosing information on intraspecific diversity in the process. 17 

Methods. This study combines sequence denoising strategies, normally applied in microbial research, with additional 18 

abundance based filtering to extract haplotypes from freshwater macroinvertebrate metabarcoding data sets. This novel 19 

approach is implemented in the R package "JAMP" and can be applied to Cytochrome c oxidase subunit I (COI) amplicon 20 

datasets. We tested our haplotyping method by sequencing i) a single-species mock community composed of 31 individuals 21 

with different haplotypes spanning three orders of magnitude in biomass and ii) 18 monitoring samples each amplified with 22 

four different primer sets and two PCR replicates.  23 

Results. We detected all 15 haplotypes of the single specimens in the mock community with relaxed filtering and denoising 24 

settings.  However, up to 480 additional unexpected haplotypes remained in both replicates. Rigorous filtering removes 25 

most unexpected haplotypes, but also can discard expected haplotypes mainly from the small specimens. In the monitoring 26 

samples, the different primer sets detected 177 - 200 OTUs, each containing an average of 2.40 to 3.30 haplotypes per OTU. 27 

Population structures were consistent between replicates, and similar between primer pairs, depending on the primer length. 28 

A closer look at abundant taxa in the data set revealed various population genetic patterns, e.g. Taeniopteryx nebulosa and 29 
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Hydropsyche pellucidula with a difference in north-south haplotype distribution, while Oulimnius tuberculatus and Asellus 30 

aquaticus display no clear population pattern but differ in genetic diversity. 31 

Discussion. We developed a strategy to infer intraspecific genetic diversity from bulk invertebrate samples using 32 

metabarcoding data. It needs to be stressed that at this point metabarcoding-informed haplotyping is not capable to capture 33 

the full diversity present in bulk samples, due to variation in specimen size, primer bias and loss of sequence variants with 34 

low abundance. Nevertheless, for a high number of species intraspecific diversity is recovered, identifying potentially 35 

isolated populations and potential taxa for further more detailed phylogeographic investigation. While we are currently 36 

lacking large-scale metabarcoding data sets to fully take advantage our new approach, metabarcoding-informed haplotyping 37 

holds great promise for biomonitoring efforts that not only seek information about biological diversity but also underlying 38 

genetic diversity.   39 

   40 

Keywords: metabarcoding, high-throughput sequencing, haplotyping, population genetics, ecosystem assessment 41 

 42 

Introduction 43 

High-throughput analysis of DNA barcodes retrieved from environmental samples, i.e. DNA metabarcoding, allows for the 44 

rapid and standardized assessment of community composition without the need for morpho-taxonomy (Taberlet et al., 45 

2012a; Creer et al., 2016). This new surge of data enables biodiversity surveys at speeds and scales that were previously 46 

inconceivable in ecological and evolutionary studies. While the approach has major strengths and is generally regarded as a 47 

game changer for ecological research (Creer et al., 2016), it still has limitations such as the fact that sequences are typically 48 

clustered into operational taxonomic units (OTUs, Fig. S1) thereby ignoring any intraspecific variation (Callahan, 49 

McMurdie & Holmes, 2017). However, clustering is a crucial step to reduce the influence of PCR and sequencing errors 50 

that can otherwise generate false sequence variation (Edgar, 2013). This inability to detect intraspecific variation hampers 51 

our ability to detect impacts at the population level. Simultaneous assessment of inter- and intraspecific diversity, however, 52 

would be a milestone forward in ecological research and management because haplotype data are direct proxies to register 53 

spatio-temporal dynamics of populations and both parameters can differ substantially (Taberlet et al., 2012b). Especially 54 

assessing fragmentation (e.g. Weiss & Leese 2016) or changes in population size in response to environmental impacts are 55 

key area in basic and applied ecological research (e.g. Sutherland et al. 2012). Also for management this parameter is 56 

important because because genetic variation is typically lost long before complete species or OTUs (Bálint et al., 2011). 57 

Unfortunately, methods to extract haplotype information from metabarcoding data sets are generally not widely available 58 
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and thus most studies are based on single-specimen analyses. Some of those are based on denoising algorithms capable of 59 

distinguishing between true haplotypes and sequencing noise (e.g. Tikhonov, Leach & Wingreen, 2015; Eren et al., 2015; 60 

Edgar, 2016; Callahan et al., 2016; Amir et al., 2017) and have been tested for microbial samples (e.g. Eren et al., 2015; 61 

Callahan et al., 2016; Needham, Sachdeva & Fuhrman, 2017). Wares & Pappalardo (2016) suggested that haplotype 62 

information in metazoan datasets can be used to, for instance, improve taxa abundance estimates, which was successfully 63 

demonstrated with bat diet samples (Corse et al., 2017). Recent studies were also able to infer haplotypes with 64 

metabarcoding for single specimens (Shokralla et al., 2014), arthropod bulk samples (Elbrecht & Leese, 2015; Pedro et al., 65 

2017) and environmental water samples (Sigsgaard et al., 2016), all highlighting the possibility to extract sequence variant 66 

information within OTUs when targeting metazoan taxa. 67 

We here further explore bioinformatics strategies in order to unlock the potential of metabarcoding based haplotyping of 68 

entire and complex metazoan communities. Therefore, we combined stringent quality filtering of reads with the recently 69 

developed unoise3 denoising strategy (Edgar, 2016) and calibrated this approach using a previously characterized single-70 

species mock sample composed of specimens with known haplotypes (Elbrecht & Leese, 2015; Vamos, Elbrecht & Leese, 71 

2017). Subsequently, we multi-species metabarcoding data collected from 18 sample sites as part of a governmental 72 

freshwater macroinvertebrates biomonitoring program (Elbrecht et al., 2017). These were denoised with the developed 73 

strategy and we tested the potential to detect intraspecific variation across the broad geographic gradient across multiple 74 

taxa. 75 

 76 

Materials & Methods 77 

We tested our haplotyping strategy on two available DNA metabarcoding datasets, 1) a single-species mock sample 78 

containing 31 specimens with known haplotypes (Vamos, Elbrecht & Leese, 2017) and 2) a multi-species macroinvertebrate 79 

community dataset from the Finnish governmental stream monitoring program (Elbrecht et al., 2017). The samples were 80 

sequenced for a region nested within the classical Folmer COI region (Folmer et al., 1994) with two replicates each. Hereby, 81 

the single-species sample (1) was sequenced using a short primer set amplifying 178 bp, while the multi-species monitoring 82 

samples were amplified using four different primer sets targeting a region of up to 421 bp (Elbrecht & Leese, 2017). Paired-83 

end sequencing (250 bp) was performed on Illumina MiSeq and HiSeq systems with high sequencing depth (on average 84 

1.53 million reads per sample, SD = 0.29). 85 

 To extract individual haplotypes from the metabarcoding datasets, we used strict quality filtering followed by denoising 86 

(unoise3 (Edgar, 2016), with additional threshold-based filtering steps (see Fig. 1B). The full metabarcoding and 87 
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haplotyping pipelines are available as R package (https://github.com/VascoElbrecht/JAMP), which requires Usearch 88 

v10.0.240 (Edgar, 2013). All used pipeline commands are also available as supporting information (Fig. S2, Scripts S1, 89 

JAMP v0.28). In short, pre-processing of reads involved sample demultiplexing, paired-end merging, primer trimming, 90 

generation of reverse complements where needed (to align all reads in the forward direction), max ee filtering = 0.5 (Edgar 91 

& Flyvbjerg, 2015), only keeping reads of exact length targeted by the respective primer set, subsampling to 1 and 0.4 92 

million reads, respectively, to generate the same sequencing depth for the single species and monitoring bulk samples. To 93 

further reduce the amount of sequences affected by sequencing errors we applied read denoising with unoise3 as 94 

implemented in Usearch (Edgar, 2016) to all samples of a dataset using only reads with >= 10 abundance in each sample 95 

after dereplication. Different expected error cutoffs and alpha values were tested, with ee = 0.5 and alpha = 5 being used for 96 

the final analysis of the 18 bulk samples. 97 

For the single-species mock sample, the denoised and quality filtered reads (prior to denoising) were mapped against the 98 

expected 15 haplotype sequences using Vsearch (v2.4.3) (Rognes et al., 2016). The unoise3 implementation into the JAMP 99 

package adds additional threshold-based filtering after the denoising step, which we used for the Finnish mulit-species 100 

monitoring samples in order to discard low abundant haplotypes and OTUs "Denoise(... , minhaplosize = 0.01, OTUmin = 101 

0.1)". Additionally, within each OTU and sample site, only haplotypes with at least 5% abundance per sample were 102 

considered for generating haplotype maps and networks, in order to exclude low abundance OTUs which can be difficult to 103 

separate from PCR artifacts and sequencing errors.  104 

 105 

Results 106 

Our approach starts with denoising of quality filtered reads using unoise3 (Edgar, 2016) followed by an additional 107 

threshold-based filtering step which includes OTU clustering of denoised reads (Edgar, 2013) and the removal of low 108 

abundant OTUs / haplotypes (see Fig. 1B). We validated this approach by using a single species mock community of known 109 

haplotype composition (Elbrecht & Leese, 2015), in which we found 943 unexpected haplotypes above 0.003% abundance  110 

with no expected error filtering applied (Fig. 1A). Filtering the raw sequence data with different quality thresholds (max ee,  111 

Edgar & Flyvbjerg, 2015) reduced the number of unexpected haplotypes by only up to 10.22% (Fig S3). The consistency 112 

between the two independent sequencing replicates indicates that a major fraction of the detected haplotypes represent in 113 

fact real biological signal (e.g. somatic mutations, numts or heteroplasmy, Bensasson et al., 2001; Shokralla et al., 2014), 114 

which is difficult to differentiate from PCR and sequencing errors. Even after using different alpha values for the unoise3 115 

algorithm some unexpected sequence variants remained (Fig S4). An error filtering of max ee = 0.5 in combination with an 116 
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alpha of 5 was chosen for subsequent analysis (Fig. 1C), as it offers the best trade-off between expected and unexpected 117 

haplotypes (9 of 15 expected, 6 unexpected with low abundance), while retaining 67.08% (SD = 17.69%) of the original 118 

sequence data after quality filtering and before denoising. 119 

 For the denoising of our multi-species environmental biomonitoring samples, additional and more conservative 120 

filtering steps were introduced to ensure only true sequence variants are included in the analysis (discarding low abundant 121 

OTUs and haplotypes below 0.1% and 0.01%, as well as haplotypes below 5% read abundance within each OTU of the 122 

respective sample, Fig. 1C green line). Denoising of metabarcoding data from 18 macroinvertebrate samples of the Finnish 123 

routine stream monitoring, recovered 177 - 200 OTUs containing 534 - 646 haplotypes (on average 2.40 - 3.30 haplotypes 124 

per OTU, SD = 2.13 - 3.26) for the different primer pairs (Table S1). Most OTUs were only present in a few sample 125 

locations, allowing for only limited population genetic analysis (Fig. S5, see also Fig. S7 in Elbrecht et al., 2017). Fig. 2 126 

depicts some examples of haplotype diversity and geographic distribution for more common and widely distributed taxa in 127 

this study. For Taeniopteryx nebulosa (Plecoptera) and Hydropsyche pellucidula (Trichoptera) we found distinct patterns of 128 

latitudinal variation in haplotype composition (Fig. 2A, B), while Oulimnius tuberculatus (Coleoptera) showed low genetic 129 

variation across all primer combinations (Fig. 2C, Fig. S3C). Asellus aquaticus (Isopoda) on the other hand showed very 130 

high genetic diversity for endemic haplotypes (Fig. 2D).  131 

Extracted haplotype patterns between replicates were highly reproducible (R2 = 0.751, SD = 0.242), while at the same time 132 

recovering more sequence variants with longer amplicons (Fig. S6). Taxon occurrence for the four taxa analysed in detail 133 

matched morphology based identifications (Elbrecht et al., 2017) in most cases (only four false positive detections, Fig. 2). 134 

The few inconsistencies between replicates in haplotypes and taxa occurrence are mostly affecting low abundance reads. In 135 

the sequence alignments, all four primer sets shared most of the variable positions (Fig. S6). 136 

 137 

Discussion 138 

In this case study, we developed and demonstrated a bioinformatic strategy to process metabarcoding data first using a 139 

controlled single-species approach, in order to extract intraspecific genetic diversity information from complex multi-140 

species metazoan environmental samples. While our multi-species dataset was limited to only 18 sampling sites, and many 141 

taxa were not widely distributed (Elbrecht et al., 2017), we could still infer potential population genetic patterns for some of 142 

the abundant and more widespread taxa. Where available, observed population genetic patterns were also consistent with 143 

previous studies, e.g. earlier work reported high genetic diversity for A. aquaticus (Sworobowicz et al., 2015). Other 144 
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published work, e.g. on H. pellucidula (Múrria et al., 2010) and O. tuberculatus (iampor & Kodada, 2010) was too limited 145 

in sampling size and region for proper comparison.  146 

Deriving haplotypes from metabarcoding data does not require specialized field or laboratory protocols, as existing data is 147 

analyzed. And while our dataset is very limited with just 18 sample sites, there are efforts underway to implement DNA 148 

metabarcoding based monitoring of stream water quality in Europe, potentially generating HTS data for thousands of 149 

sample sites every year (Leese et al., 2016, Leese et al. in press). Such haplotype data, even though limited in resolution and 150 

based only on a single gene marker, could be used to formulate hypotheses about taxa dispersal at an unprecedented scale 151 

(Hughes, Schmidt & FINN, 2009), which would be highly beneficial for the renaturation and management of aquatic 152 

ecosystems. 153 

While the detection of haplotypes from bulk samples was demonstrated in this and other studies (Sigsgaard et al., 2016; 154 

Corse et al., 2017; Pedro et al., 2017), the limitations of metabarcoding based haplotyping remain relatively unexplored. 155 

Metabarcoding data sets can be affected by primer bias (Elbrecht & Leese, 2015), tag switching (Esling, Lejzerowicz & 156 

Pawlowski, 2015; Schnell, Bohmann & Gilbert, 2015),  as well as PCR and sequencing errors (Nakamura et al., 2011; 157 

Tremblay et al., 2015).  Such issues can lead to artificial haplotypes, which are usually sufficiently different to distinguish 158 

them from actual haplotypes in the samples, especially if they are less abundant and thus likely influenced by stochastic 159 

effects (Leray & Knowlton, 2017). We applied very strict quality filtering in our pipeline, and cautiously discarded all 160 

haplotypes below 5% abundance within an OTU. This is necessary, as low abundant OTUs can not be separated from 161 

sequencing errors, somatic mutations (Shokralla et al., 2014) and other noise in the data, as we have shown for the single 162 

species mock samples. Strict filtering will remove rare and low abundant OTUs, but it is necessary to reduce the amount of 163 

false positive artificial OTUs that result from the currently rather high error rates of HTS instruments. Even with such strict 164 

filtering settings, we can not be fully confident that all false haplotypes were excluded e.g. as the result of undetected 165 

chimeric sequences (Edgar et al., 2011) or systematic sequencing errors (Nakamura et al., 2011; Schirmer et al., 2015; 166 

Schirmer, 2016) that likely persist across replicates. Approaches relying on the comparison of replicate samples could be an 167 

appropriate strategy in particular when working with unicellular organisms (Lange et al., 2015). However, as for our  168 

metazoan communities many variants occur across both repicates (Fig. 1). Macroinvertebrate communities can vary 169 

considerably in biomass, which means rare and small specimens will be underrepresented when extracting DNA from bulk 170 

samples (Elbrecht, Peinert & Leese, 2017). Thus, taxa in the sample are sequenced at different sequencing depth, which 171 

likely has an influence on the amount of false haplotypes detected within each OTU. Additionally, differences in specimen 172 

biomass can skew the detection of haplotypes, as only those of large specimens will be retained in bioinformatics analysis 173 

(haplotypes of small specimens are likely below 5% abundance). Such uncertainties need to be considered when doing 174 
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population genetic analysis, which is usually done at specimen level, with the exact number of specimens and haplotypes 175 

known for each sampling site. It has to be emphasized that at this point metabarcoding based haplotyping only provides 176 

very limited information of genetic diversity and phylogeography of a given taxon. However, interesting patterns emerging 177 

from such studies can be subsequently explored by collecting taxa of interest and using standard population genetic markers 178 

with a higher resolution (e.g. microsatellites, ddRAD (Peterson et al., 2012)). Our study demonstrates the feasibility and 179 

potential of metabarcoding data for the investigation of population genetic patterns of entire complex environmental 180 

communities. The shortcomings and the level of resolution of this novel approach need to be carefully tested. Additionally, 181 

more bioinformatics approaches suited for the analysis of metazoan bulk samples need to be developed, especially with 182 

respect to variation in specimen biomass (Elbrecht, Peinert & Leese, 2017). Furthermore, most software currently used in 183 

this field was developed for microbial samples and should therefore be further tested and benchmarked for its feasibility in 184 

studies involving eukaryotes. Despite the clear limitations of this haplotyping approach, we are confident that it will be 185 

useful in future large-scale studies of genetic diversity. While metabarcoding studies will remain affected by sequencing 186 

errors (potentially leading to false haplotypes), we expect that most of these issues can be mitigated by increasing the 187 

number of sampling sites to several hundred or even thousands. For large-scale efforts such as routine monitoring using 188 

metabarcoding (Baird & Hajibabaei, 2012; Gibson et al., 2015; Elbrecht et al., 2017), this might soon become a feasible 189 

option if not standard. 190 

 191 

Conclusions 192 

Our study demonstrates that haplotypes can be extracted from complex metazoan metabarcoding datasets. This proof of 193 

concept work already shows emerging population genetic patterns for a few species, but more large-scale validation studies 194 

are needed to explore the limitations and the potential of metabarcoding based haplotyping. While some shortcomings such 195 

as occasional false positive detections and loss of rare and small taxa are difficult to overcome per sample for such complex 196 

communities, these can be partly offset by studying comparative patterns of intraspecific variation across many taxa and 197 

sites. As metabarcoding becomes more accessible and larger DNA-based biodiversity assessment and monitoring initiatives 198 

emerge, sampling and extracting haplotypes from hundreds of sites might become a feasible path of future research. 199 

 200 

 201 

 202 

Data availability. Unprocessed raw sequence data are available from previous studies on the NCBI SRA archive. Single 203 
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species mock sample: SRR5295658 and SRR5295659 (Vamos, Elbrecht & Leese, 2017), monitoring samples: SRR4112287 204 

(Elbrecht et al., 2017). The JAMP R package is available on GitHub (github.com/VascoElbrecht/JAMP) with the used R 205 

scripts (Script S1) and full haplotype tables (Table S1) available as supporting information. 206 

 207 

 208 

 209 

  210 
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 211 

Figure 1: Overview of DNA metabarcoding data of a single-species mock sample containing specimens with 15 distinct 212 

haplotypes (black circles). Detected haplotypes (unexpected ones shown in grey and blue) plotted against specimen biomass 213 

for the processed data (A) and followed by read denoising using unoise3 (C). Denoising was applied to both replicates 214 

individually, with a circle if the read was detected in both samples (error bar = SD) and A or B if the read was found in only 215 

one replicate. For processing of large-scale samples (B, Fig. 2), all samples were pooled and jointly denoised, followed by 216 

OTU clustering and read mapping then followed by discarding of haplotypes below a 5% threshold within each sample. 217 
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 218 

Figure 2: Haplotype maps and networks extracted from multi-species community metabarcoding datasets amplified with 219 

the BF2+BR2 primer set for four abundant macroinvertebrate taxa (A = Taeniopteryx nebulosa, B = Hydropsyche 220 

pellucidula, C = Oulimnius tuberculatus, D = Asellus aquaticus). Numbers next to each sampling site indicate sample size 221 

of the respective taxa based on morphological identification in a sample (Elbrecht et al., 2017). Conflicts between DNA and 222 

morphology based-detections are highlighted in yellow. Haplotype frequency composition per site is indicated by pie charts. 223 

For A. aquaticus only the 10 most common haplotypes are visualised with different colours (remaining ones in white). Each 224 

crossline in a network represents one base pair difference between the respective haplotypes. Dashed lines around a circle 225 

indicate novel haplotypes that were not available in the BOLD reference database. An A or B next to a haplotype in the map 226 

or network indicates the presence of this haplotype in only in one replicate. 227 

228 
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