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 16 

DNA metabarcoding provides species composition data for entire communities, yet information on intraspecific 17 

diversity is usually lost during data analysis. The capacity to infer intraspecific genetic diversity within whole 18 

communities would, however, represent a leap forward for ecological monitoring and conservation. We developed an 19 

amplicon-based sequence denoising approach that allows the identification of haplotypes from metabarcoding data 20 

sets and demonstrate its power with two freshwater macroinvertebrate data sets.  21 

 High-throughput analysis of DNA barcodes retrieved from environmental samples, i.e. DNA metabarcoding, 22 

allows for rapid and standardized assessment of community composition without the need for morphotaxonomy 1,2. This 23 

new surge of data now enables biodiversity surveys at speeds and scales that were previously inconceivable in ecological 24 

and evolutionary studies.. While the approach has major strengths and is generally regarded as a game changer for 25 

ecological research 1, it still has limitations such as the fact that sequence variation is typically clustered into operational 26 

taxonomic units (OTUs, Fig. S1) thereby ignoring any intraspecific variation 2. However, clustering is a crucial step to 27 

reduce the influence of PCR and sequencing errors that can otherwise generate false sequence variation 3. This inability to 28 

detect intraspecific variation hampers e.g. our ability to detect environmental impacts at population level, long before 29 
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complete species or OTUs are lost 3. Unfortunately, methods to extract haplotype information from metabarcoding data sets 30 

are generally not available. Some methods based on denoising algorithms capable of distinguishing between true haplotypes 31 

and sequencing noise were recently developed (e.g. 4-8) and tested for microbial samples (e.g. 4,5,9). Initial studies of species 32 

from individual samples 10, mock bulk 11 or environmental samples 12 did not use DNA metabarcoding for haplotype 33 

inference using real-world metazoan bulk samples at ecosystem level. For this study we used metabarcoding data collected 34 

as part of a  governmental biomonitoring program for freshwater macroinvertebrates 13  and single species mock samples 35 

with known haplotypes 14  to explore and validate denoising strategies for metazoan bulk samples. 36 

 Our approach starts with denoising of quality filtered reads with unoise3 7 followed by an additional threshold 37 

based filtering step which includes OTU clustering of denoised reads 15 and the removal of low abundant OTUs / haplotypes 38 

(See figure 1B). We validated this approach by using a single species mock community of known haplotype composition 11, 39 

in which we found 943 unexpected haplotypes (above 0.003% abundance) (Figure 1A). Filtering the raw sequence data with 40 

different quality thresholds (max ee 16) reduced the number of unexpected haplotypes by only up to 10.22% (Fig S2). This 41 

consistency between the two independent sequencing replicates indicates that a major fraction of the detected haplotypes 42 

represent real biological signal (e.g. somatic mutations, numts or heteroplasmy 10,17), which is difficult to differentiate from 43 

PCR and sequencing errors. Even after using different alpha values for the unoise3 algorithm some unexpected sequence 44 

variants remained (Fig S3). An error filtering of max ee = 0.5 in combination with an alpha of 5 was chosen for subsequent 45 

analysis (Figure 1C), as it offers the best tradeoff between expected and unexpected haplotypes (9 of 15 expected, 6 46 

unexpected with low abundance), while retaining 67.08% (SD = 17.69%) of the original sequence data after quality filtering 47 

and before denoising. 48 

 For the denoising of our environmental biomonitoring samples, additional and more conservative filtering steps 49 

were introduced to ensure only true sequence variants are included in the analysis (discarding low abundant OTUs and 50 

haplotypes below 0.1% and 0.01%, as well as haplotypes below 5% abundance within each OTU of the respective sample, 51 

Figure 1C green line). Denoising of metabarcoding data from 18 macroinvertebrate samples of the Finnish routine stream 52 

monitoring, recovered 177 - 200 OTUs containing 534 - 646 haplotypes for the different primer pairs (Table S1). Figure 2 53 

depicts some examples of haplotype diversity and geographic distribution revealed from our haplotyping approach. For 54 

Taeniopteryx nebulosa (Plecoptera) and Hydropsyche pellucidula (Trichoptera) we were able to find distinct latitudinal 55 

variation in haplotype composition (Figure 2A, B), while Oulimnius tuberculatus (Coleoptera) shows low genetic variation 56 

for all primer combinations (Figure 2C, Fig S3C). Asellus aquaticus (Isopoda) on the other hand shows very high genetic 57 

diversity for endemic haplotypes (Figure 2D). Some of these results are consistent with previous studies, e.g. earlier work 58 

reported high genetic diversity for A. aquaticus 18. Oher published work, e.g. on H. pellucidula 19 and O. tuberculatus 20 is 59 
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too limited in sampling size and region for proper comparison and discussion of the reasons for dispersal and potential 60 

leading edge colonization after the last glacial maximum.  61 

Extracted haplotype patterns between replicates were highly reproducible (R2 = 0.751, SD = 0.242), while at the same time 62 

recovering more sequence variants with longer amplicons (Figure S4). Taxon occurrence matched morphology based 63 

identifications 13 in most cases (only four false positive detections, Figure 2). The few inconsistencies between replicates in 64 

haplotypes and taxa occurrence are mostly affecting low abundance reads, likely as a result of stochastic effects and the 65 

percentage thresholds at which haplotypes and OTUs are discarded 21. While the sequence alignments of all four primer sets 66 

shared most of the variable positions (Figure S4), additional effects of primer bias 11, tag switching 22,23, PCR and 67 

sequencing errors 24,25 can’t be fully excluded. Additionally, many prospective true haplotypes might have been discarded 68 

by strict threshold based filtering, possibly underestimating the true diversity by missing rare sequence variants. 69 

The extension of DNA metabarcoding through inclusion of intraspecific genetic variation of species communities, 70 

represents a paradigm shift in ecological and genetic research. We demonstrated that haplotypes can be successfully 71 

extracted from metazoan metabarcoding datasets and used for various purposes such as comparative landscape genetic or 72 

phylogeographic analysis. Even though DNA metabarcoding provides only single marker information and still shows the 73 

presence of some background noise, the approach holds enormous potential to generate hypotheses and explore patterns of 74 

environmental factors affecting genetic variation within species inhabiting an ecosystem. Interesting phylogeographic 75 

patterns could be explored by collecting taxa of interest and using population genetic markers with a higher resolution (e.g. 76 

microsatellites, ddRAD, 26). Thus, our new haplotyping strategy can have substantial impact on ecosystem assessment, 77 

conservation and management. If applied within the framework of concerted international sampling campaigns 27 such 78 

monitoring datasets could be utilized to estimate population connectivity, migration events and population growth or 79 

bottlenecks, which is key to successful management and restoration projects 28.  80 

 81 

Methods 82 

We tested our haplotyping strategy on two available DNA metabarcoding datasets, 1) a single species mock sample 83 

containing specimens with known haplotypes 14 and 2) a macroinvertebrate community dataset from the Finnish 84 

governmental stream monitoring program 13. The samples were sequenced for a region nested within the classical Folmer 85 

COI fragment and with two replicates each. Hereby, the mock sample (1) was sequenced using a short primer set amplifying 86 

178 bp, while the monitoring samples were amplified uising four different primer sets targeting a region of up to 421 bp 29. 87 

Paired-end sequencing (250 bp) was performed on Illumina MiSeq and HiSeq systems with high sequencing depth (on 88 

average 1.53 million reads per sample, SD = 0.29). 89 
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 To extract individual haplotypes from the metabarcoding datasets, strict quality filtering followed by denoising (unoise3) 90 

was used, with additional threshold-based filtering steps (see Figure 1B). The full metabarcoding and haplotyping pipelines 91 

are available as an R package (https://github.com/VascoElbrecht/JAMP), which heavily relies on Usearch v10.0.240 15. The 92 

used pipeline commands are also available as supporting information (Figure S5, Scripts S1, JAMP v0.28). In short, pre-93 

processing of reads involved sample demultiplexing, paired-end merging, primer trimming, generation of reverse 94 

complements where needed (to line all reads in the forward direction), max ee filtering (0.5 16), only keeping reads of exact 95 

length targeted by the respective primer set, subsampling to 1 and 0.4 million reads, respectively, to generate the same 96 

sequencing depth for the single species and monitoring samples. Read denoising was applied to all samples of a dataset 97 

using reads with >= 10 abundance in each dataset after dereplication. Different expected error cutoffs and alpha values were 98 

tested, with ee = 0.5 and alpha = 5 being used for the final analysis. For the single species mock sample, the denoised and 99 

quality filtered reads (prior to denoising) were then mapped against the expected 15 haplotype sequences using Vsearch 100 

(v2.4.3) 30. The unoise3 implementation into the JAMP package allows for more quality filer reads, which we used for the 101 

Finnish monitoring samples in order to discard low abundant haplotypes and OTUs "Denoise(... , minhaplosize = 0.01, 102 

OTUmin = 0.1)". Additionally, within each OTU and sample site, only haplotypes with at least 5% abundance per sample 103 

were considered for generating haplotype maps and networks.  104 

 105 

Data availability. Unprocessed raw sequence data are available from previous studies on the NCBI SRA archive (Singe 106 

species mock sample: SRR5295658 and SRR5295659 14, monitoring samples: SRR4112287 13). The JAMP R package is 107 

available on GitHub (github.com/VascoElbrecht/JAMP) with the used R scripts (Script S1) and full haplotype tables (Table 108 

S1) available as supporting information. 109 

 110 

 111 

 112 

 113 

114 
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 115 

Figure 1: Overview of DNA metabarcoding data of a single species mock sample containing specimens with 15 expected 116 

haplotypes (black circles). Detected haplotypes (unexpected ones shown in grey and blue) plotted against specimen biomass 117 

for the processed data (A) and followed by read denoising using unoise3 (C). Denoising was applied to both replicates 118 

individually, with a circle if the read was detected in both samples (error bar = SD) and A or B if the read was found in only 119 

one replicate. For processing of larger scale samples (B, Fig. 2), all samples were pooled and denoised together, followed by 120 

OTU clustering and read mapping then followed by discarding of haplotypes below a 5% threshold within each sample. 121 

122 

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.3269v1 | CC BY 4.0 Open Access | rec: 19 Sep 2017, publ: 19 Sep 2017



 

6 

 123 

Figure 2: Haplotype maps and networks extracted from whole-community metabarcoding data sets for four abundant 124 

macroinvertebrate taxa (A = Taeniopteryx nebulosa, B = Hydropsyche pellucidula, C = Oulimnius tuberculatus, D = Asellus 125 

aquaticus). Numbers indicate sample size of the respective taxa based on morphological identification in a sample 13. 126 

Conflicts between DNA and morphology based-detections are highlighted with a yellow background. Haplotype frequency 127 

composition per site is indicated with pie charts. For A. aquaticus only the 10 most common haplotypes are visualised with 128 

different colours (remaining ones in white). In the networks, each cross line represents one base pair difference between the 129 

respective haplotypes. An A or B next to a haplotype in the map or network indicates the presence of this haplotype in only 130 

in one replicate.131 
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