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Abstract: 15 

Background. DNA metabarcoding is used to generate species composition data for entire communities. However, 16 

sequencing errors in high throughput sequencing instruments are fairly common, usually requiring reads to be clustered into 17 

operational taxonomic units (OTU), losing information on intraspecific diversity in the process. While COI haplotype 18 

information is limited in resolution, it is nevertheless useful in a phylogeographic context, helping to formulate hypothesis 19 

on taxon dispersal. 20 

Methods. This study combines sequence denoising strategies, normally applied in microbial research, with additional 21 

abundance-based filtering to extract haplotypes from freshwater macroinvertebrate metabarcoding data sets. This novel 22 

approach was added to the R package "JAMP" and can be applied to Cytochrome c oxidase subunit I (COI) amplicon 23 

datasets. We tested our haplotyping method by sequencing i) a single-species mock community composed of 31 individuals 24 

with different haplotypes spanning three orders of magnitude in biomass and ii) 18 monitoring samples each amplified with 25 

four different primer sets and two PCR replicates.  26 

Results. We detected all 15 haplotypes of the single specimens in the mock community with relaxed filtering and denoising 27 

settings. However, up to 480 additional unexpected haplotypes remained in both replicates. Rigorous filtering removes most 28 

unexpected haplotypes, but also can discard expected haplotypes mainly from the small specimens. In the monitoring 29 

samples, the different primer sets detected 177 - 200 OTUs, each containing an average of 2.40 to 3.30 haplotypes per OTU. 30 
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Population structures were consistent between replicates, and similar between primer pairs, depending on the primer length. 31 

A closer look at abundant taxa in the data set revealed various population genetic patterns, e.g. Taeniopteryx nebulosa and 32 

Hydropsyche pellucidula with a difference in north-south haplotype distribution, while Oulimnius tuberculatus and Asellus 33 

aquaticus display no clear population pattern but differ in genetic diversity. 34 

Discussion. We developed a strategy to infer intraspecific genetic diversity from bulk invertebrate monitoring samples 35 

using metabarcoding data. It needs to be stressed that at this point metabarcoding-informed haplotyping is not capable of 36 

capture the full diversity present in such samples, due to variation in specimen size, primer bias and loss of sequence 37 

variants with low abundance. Nevertheless, for a high number of species intraspecific diversity was recovered, identifying 38 

potentially isolated populations and potential taxa for further more detailed phylogeographic investigation. While we are 39 

currently lacking large-scale metabarcoding data sets to fully take advantage of our new approach, metabarcoding-informed 40 

haplotyping holds great promise for biomonitoring efforts that not only seek information about biological diversity but also 41 

underlying genetic diversity.   42 

   43 

Keywords: metabarcoding, high-throughput sequencing, haplotyping, population genetics, ecosystem assessment, CO1, 44 

exact sequence variant (ESV) 45 

 46 

 47 

Introduction 48 

High-throughput analysis of DNA barcodes retrieved from environmental samples, i.e. DNA metabarcoding, allows for the 49 

rapid and standardized assessment of community composition without the need for morpho-taxonomy (Taberlet et al., 50 

2012a; Creer et al., 2016). This new surge of data enables biodiversity surveys at speeds and scales that were previously 51 

inconceivable in ecological and evolutionary studies. While the approach has major strengths and is generally regarded as a 52 

game changer for ecological research (Creer et al., 2016), it still has limitations such as the fact that sequences are typically 53 

clustered into operational taxonomic units (OTUs, Fig. S1) thereby ignoring any intraspecific sequence variation (Callahan, 54 

McMurdie & Holmes, 2017). However, clustering is often used to reduce the influence of PCR and sequencing errors that 55 

can otherwise generate false OTUs (Edgar, 2013). The inability to detect sequence variation within OTUs hampers our 56 

ability to detect impacts at population level. Simultaneous assessment of inter- and intraspecific diversity, however, 57 

represents a leap forward in ecological research and management because haplotype data are direct proxies for spatio-58 

temporal dynamics of populations and both parameters can differ substantially (Taberlet et al., 2012b). In particular the 59 
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assessment of fragmentation (e.g. Weiss & Leese 2016) or changes in population size in response to environmental impacts 60 

are key areas of basic and applied ecological research (e.g. Sutherland et al. 2012). For management, this parameter is also 61 

important because genetic variation is typically lost long before species or OTUs disappear (Bálint et al., 2011). 62 

Unfortunately, methods to extract haplotype information from metabarcoding data sets are generally not widely available 63 

and thus most studies are based on single-specimen analyses. Some of those are based on denoising algorithms capable of 64 

distinguishing between true haplotypes and sequencing noise (e.g. (Tikhonov, Leach & Wingreen, 2015; Eren et al., 2015; 65 

Edgar, 2016; Callahan et al., 2016; Amir et al., 2017) and have been tested for microbial samples (e.g. (Eren et al., 2015; 66 

Callahan et al., 2016; Needham, Sachdeva & Fuhrman, 2017). Wares & Pappalardo (2016) suggested that haplotype 67 

information in metazoan datasets can be used to, for instance, improve taxa abundance estimates, which was successfully 68 

demonstrated with freshwater fish fecal samples (Corse et al., 2017). Recent studies were also able to infer haplotypes with 69 

metabarcoding for single specimens (Shokralla et al., 2014), arthropod bulk samples (Elbrecht & Leese, 2015; Pedro et al., 70 

2017) and environmental water samples (Sigsgaard et al., 2016), all highlighting the possibility to extract sequence variant 71 

information within OTUs when targeting metazoan taxa. 72 

We here further explore bioinformatics strategies in order to unlock the potential of metabarcoding based haplotyping of 73 

entire and complex metazoan communities. We combined stringent quality filtering of reads with the recently developed 74 

unoise3 denoising strategy (Edgar, 2016) and calibrated this approach using a previously characterized single-species mock 75 

sample composed of specimens with known haplotypes (Elbrecht & Leese, 2015; Vamos, Elbrecht & Leese, 2017). 76 

Subsequently, we collected multi-species metabarcoding data from 18 sample sites as part of a governmental freshwater 77 

macroinvertebrate biomonitoring program (Elbrecht et al., 2017). These were denoised with the developed strategy and we 78 

tested the potential to detect intraspecific variation over a broad geographic gradient across multiple taxa. 79 

 80 

Materials & Methods 81 

We tested our haplotyping strategy on two available DNA metabarcoding datasets, 1) a single-species mock sample 82 

containing 31 specimens with known haplotypes from an earlier population genetics project (Elbrecht et al., 2014; Vamos, 83 

Elbrecht & Leese, 2017) and 2) a multi-species macroinvertebrate community dataset from the Finnish governmental stream 84 

monitoring program (Elbrecht et al., 2017). Haplotypes were determined by bidirectional sanger sequencing for the single 85 

species mock samples (Elbrecht et al., 2014), while the multi-species sample was metabarcoded on Illumina systems using 86 

several primer sets (Elbrecht & Leese, 2015; 2017; Vamos, Elbrecht & Leese, 2017). Resulting OTU centroids were 87 

assembled into haplotypes as described in Elbrecht & Leese (2017). The samples were sequenced for a region nested within 88 
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the classical Folmer COI region (Folmer et al., 1994) with two replicates each. The single-species sample was sequenced 89 

using a short primer set amplifying 178 bp, while the multi-species monitoring samples were amplified using four different 90 

primer sets targeting a region of up to 421 bp (Elbrecht & Leese, 2017). Paired-end sequencing (250 bp) was performed on 91 

Illumina MiSeq and HiSeq systems with high sequencing depth (on average 1.53 million reads per sample, SD = 0.29). 92 

 To extract individual haplotypes from the metabarcoding datasets, we used strict quality filtering followed by denoising 93 

(unoise3 Edgar, 2016, with additional threshold-based filtering steps, see Fig. 1B). The full metabarcoding and haplotyping 94 

pipelines are available as part of the "Just Another Metabarcoding Pipeline" (JAMP) R package 95 

(https://github.com/VascoElbrecht/JAMP), which uses Usearch v10.0.240 (Edgar, 2013), Vsearch v2.4.3 (Rognes et al., 96 

2016) and  Cutadapt 1.9 (Martin, 2011) for most of the data processing. The advantage of the JAMP wrapper is its 97 

modularity and the automated generation of additional summary statistics and extended quality filtering options. All 98 

pipeline commands used are also available as supporting information (Fig. S2, Scripts S1, JAMP v0.28). In short, pre-99 

processing of reads involved sample demultiplexing, paired-end merging, primer trimming, generation of reverse 100 

complements where needed (to align all reads in the forward direction), maximum expected error (ee) filtering = 0.5 (Edgar 101 

& Flyvbjerg, 2015), only keeping reads of exact length targeted by the respective primer set, subsampling to 1 and 0.4 102 

million reads, respectively, to generate the same sequencing depth for the single species and monitoring samples. To further 103 

reduce the amount of sequences affected by sequencing errors we discarded sequences below 10 reads or 0.001% 104 

abundance in each sample and applied read denoising with unoise3 after pooling all samples as implemented in Usearch 105 

(Edgar, 2016) using only reads with >= 10 abundance in each sample after dereplication. Different expected error cutoffs 106 

and alpha values were tested, with ee = 0.5 and alpha = 5 being used for the final analysis of the 18 monitoring samples. 107 

With lower ee values, more low quality sequences were discarded (Edgar & Flyvbjerg, 2015). Similarly, lower alpha values 108 

led to more strict denoising with unoise3 (Edgar, 2016). 109 

For the single-species mock sample, the denoised and quality filtered reads (prior to denoising) were mapped against the 110 

expected 15 haplotype sequences using Vsearch (Rognes et al., 2016). The unoise3 implementation in the JAMP package 111 

adds additional threshold-based filtering after the denoising step, which we used for the Finnish multi-species monitoring 112 

samples in order to discard haplotypes with less than 0.01% abundance in at least one sample and OTUs with less than 0.1% 113 

abundance in at least one sample ("Denoise(... , minhaplosize = 0.01, OTUmin = 0.1)"). All read mapping steps of denoised 114 

data were done with Vsearch. Additionally, within each OTU and sample site, only haplotypes with at least 5% abundance 115 

per sample were considered for generating haplotype maps and networks, in order to exclude low abundance OTUs which 116 

can be difficult to separate from PCR artifacts and sequencing errors (withinOTU = 5). The Denoise function also includes 117 

presence based filtering for larger datasets, requiring a specific haplotype or OTU being present in a minimum number of 118 
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samples (minHaploPresence=1 or minOTUPresence=1). However, as we had only 18 sample sites available this filtering 119 

was not applied to the dataset.   120 

 121 

Results 122 

Our approach starts with denoising of quality filtered reads using unoise3 (Edgar, 2016) followed by an additional 123 

threshold-based filtering step which includes OTU clustering of denoised reads (Edgar, 2013) and the removal of low 124 

abundant OTUs / haplotypes (see Fig. 1B). We validated this approach by using a single species mock community of known 125 

haplotype composition (Elbrecht & Leese, 2015), in which we found 943 unexpected haplotypes above 0.003% abundance  126 

with no expected error filtering applied (Fig. 1A). Filtering the raw sequence data with different quality thresholds (max ee,  127 

Edgar & Flyvbjerg, 2015) reduced the number of unexpected haplotypes by only up to 10.22% (Fig S3). The consistency 128 

between the two independent sequencing replicates indicates that a major fraction of the detected haplotypes represent in 129 

fact, real biological signal (e.g. somatic mutations, numts or heteroplasmy, (Bensasson et al., 2001; Shokralla et al., 2014), 130 

which is difficult to differentiate from PCR and sequencing errors. Even after using different alpha values for the unoise3 131 

algorithm some unexpected sequence variants remained (Fig S4). An error filtering of max ee = 0.5 in combination with an 132 

alpha of 5 was chosen for subsequent analysis (Fig. 1C), as it offers the best trade-off between expected and unexpected 133 

haplotypes (9 of 15 expected, 6 unexpected with low abundance), while retaining 67.08% (SD = 17.69%) of the original 134 

sequence data after quality filtering and before denoising. 135 

 For the denoising of our multi-species monitoring samples, additional and more conservative filtering steps were 136 

introduced to ensure only true sequence variants are included in the analysis (discarding low abundant OTUs and haplotypes 137 

below 0.1% and 0.01%, as well as haplotypes below 5% read abundance within each OTU of the respective sample, Fig. 1C 138 

green line). Denoising of metabarcoding data from 18 macroinvertebrate samples of the Finnish routine stream monitoring, 139 

recovered 177 - 200 OTUs containing 534 - 646 haplotypes (on average 2.40 - 3.30 haplotypes per OTU, SD = 2.13 - 3.26) 140 

for the different primer pairs (Table S1). Most OTUs were only present in a few sample locations, allowing for only limited 141 

population genetic analysis (Fig. S5, see also Fig. S7 in Elbrecht et al., 2017). Fig. 2 depicts some examples of haplotype 142 

diversity and geographic distribution for more common and widely distributed taxa in this study. For Taeniopteryx nebulosa 143 

(Plecoptera) and Hydropsyche pellucidula (Trichoptera) we found distinct patterns of latitudinal variation in haplotype 144 

composition (Fig. 2A, B), while Oulimnius tuberculatus (Coleoptera) showed low genetic variation across all primer 145 

combinations (Fig. 2C, Fig. S3C). Asellus aquaticus (Isopoda) on the other hand showed very high genetic diversity for 146 

endemic haplotypes (Fig. 2D).  147 
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Extracted haplotype patterns between replicates were highly reproducible (R2 = 0.751, SD = 0.242), while at the same time 148 

recovering more sequence variants with longer amplicons (Fig. S6). Taxon occurrence for the four taxa analyzed in detail 149 

matched morphology based identifications (Elbrecht et al., 2017) in most cases (only four false positive detections, Fig. 2). 150 

The few inconsistencies between replicates in haplotypes and taxa occurrence are mostly affecting low abundance reads. In 151 

the sequence alignments, all four primer sets shared most of the variable positions (Fig. S6). 152 

 153 

Discussion 154 

In this case study, we developed and demonstrated a bioinformatic strategy to process metabarcoding data first using a 155 

controlled single-species approach, in order to extract intraspecific genetic diversity information from complex multi-156 

species metazoan environmental samples. While our multi-species dataset was limited to only 18 sampling sites, and many 157 

taxa were not widely distributed (Elbrecht et al., 2017), we could still infer potential population genetic patterns for some of 158 

the abundant and more widespread taxa. Where available, observed population genetic patterns were also consistent with 159 

previous studies, e.g. earlier work reported high genetic diversity for A. aquaticus (Sworobowicz et al., 2015). Other 160 

published work, e.g. on H. pellucidula (Múrria et al., 2010) and O. tuberculatus (
iampor & Kodada, 2010) was too limited 161 

in sampling size and region for proper comparison.  162 

Deriving haplotypes from metabarcoding data does not require specialized field or laboratory protocols, as existing data is 163 

analyzed. And while our dataset is very limited with just 18 sample sites, there are efforts underway to implement DNA 164 

metabarcoding-based monitoring of stream water quality in Europe, potentially generating HTS data for thousands of 165 

sample sites every year (Leese et al., 2016). Such haplotype data, even though limited in resolution and based only on a 166 

single gene marker, could be used to formulate hypotheses about taxa dispersal at an unprecedented scale (Hughes, Schmidt 167 

& FINN, 2009), which would be highly beneficial for the renaturation and management of aquatic ecosystems. 168 

While the detection of haplotypes from bulk samples was demonstrated in this and other studies (Sigsgaard et al., 2016; 169 

Corse et al., 2017; Pedro et al., 2017), the limitations of metabarcoding-based haplotyping remain relatively unexplored. 170 

Metabarcoding data sets can be affected by primer bias (Elbrecht & Leese, 2015), tag switching (Esling, Lejzerowicz & 171 

Pawlowski, 2015; Schnell, Bohmann & Gilbert, 2015),  as well as PCR and sequencing errors (Nakamura et al., 2011; 172 

Tremblay et al., 2015).  Such issues can lead to artificial haplotypes, which are usually sufficiently different to distinguish 173 

them from actual haplotypes in the samples, especially if they are less abundant and thus likely influenced by stochastic 174 

effects (Leray & Knowlton, 2017). We applied very strict quality filtering in our pipeline, and cautiously discarded all 175 

haplotypes below 5% abundance within an OTU. This is necessary, as low abundant haplotypes can not be separated from 176 
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sequencing errors (Nakamura et al., 2011; Tremblay et al., 2015), somatic mutations (Shokralla et al., 2014) and other noise 177 

in the data, as we have shown for the single species mock samples. Strict filtering will remove rare and low abundant 178 

haplotypes, but it is necessary to reduce the amount of false positive artificial sequences that result from the currently rather 179 

high error rates of HTS instruments. Even with such strict filtering settings, we can not be fully confident that all false 180 

haplotypes were excluded e.g. as the result of undetected chimeric sequences (Edgar et al., 2011) or systematic sequencing 181 

errors (Nakamura et al., 2011; Schirmer et al., 2015; Schirmer, 2016) that likely persist across replicates. Approaches 182 

relying on the comparison of replicate samples could be an appropriate strategy in particular when working with unicellular 183 

organisms (Lange et al., 2015). However, for our metazoan communities many variants occur within both replicates (Fig. 1). 184 

Macroinvertebrate communities can vary considerably in biomass, which means rare and small specimens will be 185 

underrepresented when extracting DNA from bulk samples (Elbrecht, Peinert & Leese, 2017). Thus, taxa in the sample are 186 

sequenced at different sequencing depth, which likely has an influence on the amount of false haplotypes detected within 187 

each OTU. Additionally, differences in specimen biomass can skew the detection of haplotypes, as only those of large 188 

specimens will be retained in bioinformatics analysis (haplotypes of small specimens are likely below 5% abundance). Such 189 

uncertainties need to be considered when doing population genetic analysis, which is usually done at specimen level, with 190 

the exact number of specimens and haplotypes known for each sampling site. It has to be emphasized that at this point 191 

metabarcoding-based haplotyping only provides very limited information of genetic diversity and phylogeography of a 192 

given taxon. However, interesting patterns emerging from such studies can be subsequently explored by collecting taxa of 193 

interest and using standard population genetic markers with a higher resolution (e.g. microsatellites, ddRAD Peterson et al., 194 

2012). Our study demonstrates the feasibility and potential of metabarcoding data for the investigation of population genetic 195 

patterns of entire complex environmental communities. The shortcomings and the level of resolution of this novel approach 196 

need to be carefully tested (e.g. by constructing mock samples using synthesized DNA). Additionally, more bioinformatics 197 

approaches suited for the analysis of metazoan bulk samples need to be developed, especially with respect to variation in 198 

specimen biomass (Elbrecht, Peinert & Leese, 2017). Furthermore, most software currently used in this field was developed 199 

for microbial samples and should therefore be further tested and benchmarked for its feasibility in studies involving 200 

eukaryotes. Despite the clear limitations of this haplotyping approach, we are confident that it will be useful in future large-201 

scale studies of genetic diversity. While metabarcoding studies will remain affected by sequencing errors (potentially 202 

leading to false haplotypes), we expect that most of these issues can be mitigated by increasing the number of sampling sites 203 

to several hundred or even thousands. For large-scale efforts such as routine monitoring using metabarcoding (Baird & 204 

Hajibabaei, 2012; Gibson et al., 2015; Elbrecht et al., 2017), this might soon become a feasible option if not standard. 205 
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Additionally, references databases should be further completed and extended to cover a large geographic range in order to 206 

assign species names and ground truth the detected haplotypes (Carew et al., 2017; Curry et al., 2018). 207 

 208 

Conclusions 209 

Our study demonstrates that haplotypes can be extracted from complex metazoan metabarcoding datasets. This proof of 210 

concept work already shows emerging population genetic patterns for a few species, but more large-scale validation studies 211 

are needed to explore the limitations and the potential of metabarcoding-based haplotyping. While some shortcomings such 212 

as occasional false positive detections and loss of rare and small taxa are difficult to overcome per sample for such complex 213 

communities, these can be partly offset by studying comparative patterns of intraspecific variation across many taxa and 214 

sites. As metabarcoding becomes more accessible and larger DNA-based biodiversity assessment and monitoring initiatives 215 

emerge, sampling and extracting haplotypes from hundreds of sites might become a feasible path of future research. 216 

 217 

 218 

 219 

Data availability. Unprocessed raw sequence data are available from previous studies on the NCBI SRA archive. Single 220 

species mock sample: SRR5295658 and SRR5295659 (Vamos, Elbrecht & Leese, 2017), monitoring samples: SRR4112287 221 

(Elbrecht et al., 2017). The JAMP R package is available on GitHub (github.com/VascoElbrecht/JAMP) with the used R 222 

scripts (Script S1) and full haplotype tables (Table S1) available as supporting information. 223 

 224 

 225 

 226 

  227 
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Figures 228 

 229 

Figure 1: Overview of DNA metabarcoding data of a single-species mock sample containing specimens with 15 distinct 230 

haplotypes (black circles). Detected haplotypes (unexpected ones shown in grey and blue) plotted against specimen biomass 231 

for the processed data (A) and followed by read denoising using unoise3 (C). Denoising was applied to both replicates 232 

individually, with a circle if the read was detected in both samples (error bar = SD) and A or B if the read was found in only 233 

one replicate. For processing of large-scale samples (B, Fig. 2), all samples were pooled and jointly denoised, followed by 234 

OTU clustering and read mapping then followed by discarding of haplotypes below a 5% threshold within each sample. 235 

 236 

Figure 2: Haplotype maps and networks extracted from multi-species monitoring metabarcoding datasets amplified with the 237 

BF2+BR2 primer set for four abundant macroinvertebrate taxa (A = Taeniopteryx nebulosa, B = Hydropsyche pellucidula, 238 

C = Oulimnius tuberculatus, D = Asellus aquaticus). Numbers next to each sampling site indicate sample size of the 239 

respective taxa based on morphological identification in a sample (Elbrecht et al., 2017). Conflicts between DNA and 240 

morphology-based detections are highlighted in yellow. Haplotype frequency composition per site is indicated by pie charts. 241 

For A. aquaticus only the 10 most common haplotypes are visualised with different colours (remaining ones in white). Each 242 

crossline in a network represents one base pair difference between the respective haplotypes. Dashed lines around a circle 243 

indicate novel haplotypes that were not available in the BOLD reference database. An A or B next to a haplotype in the map 244 

or network indicates the presence of this haplotype in only in one replicate. 245 

246 
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