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Abstract 28 

 29 
Background. Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disease 30 
primarily affecting upper and lower motor neurons in the brain and spinal cord.  31 
The heterogeneity in the course of ALS clinical progression and ultimately survival, coupled 32 
with the rarity of this disease, make predicting disease outcome at the level of the individual 33 
patient very challenging. Besides, stratification of ALS patients has been known for years as a 34 
question of great importance to clinical practice, research and drug development.  35 
Methods. In this work, we present a Dynamic Bayesian Network (DBN) model of ALS 36 
progression to detect probabilistic relationships among variables included in the Pooled 37 
Resource Open-Access ALS Clinical Trials Database (PRO-ACT), which provides records of 38 
over 10,700 patients from different clinical trials, and with over 2,869,973 longitudinally 39 
collected data measurements.  40 
Results. Our model unravels new dependencies among clinical variables in relation to ALS 41 

progression, such as the influence of basophil count and creatine kinase on patients’ clinical 42 
status and the respiratory functional state, respectively. Furthermore, it provided an indication 43 
of ALS temporal evolution, in terms of the most probable disease trajectories across time at the 44 
level of both patient population and individual patient. 45 
Conclusions. The risk factors identified by out DBN model could allow patients' stratification 46 
based on velocity of disease progression and a sensitivity analysis on this latter in response to 47 
changes in input variables, i.e. variables measured at diagnosis. 48 

 49 
 50 

Introduction  51 
 52 
Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disease primarily 53 
affecting upper and lower motor neurons in the brain and spinal cord. The incidence of ALS in 54 

Europe and in the United States is approximately 3 and 2 cases per 100,000 people, 55 
respectively; the highest prevalence rate of the disease is registered among males and in people 56 
above the age of fifty. The region of onset is typically within the upper limb, lower limb or 57 
bulbar musculature. Commonly, the first symptoms are a gait disturbance (foot drop, difficulty 58 
walking and lifting arms due to weakness), dysarthria followed by dysphagia or impaired fine 59 
movements in the upper extremities [2]. Once the first symptoms develop, ALS leads to a 60 
relentlessly loss of vital functions, weakness and worsening paralysis of voluntary muscles and 61 
eventually death. Mean life expectancy is three to five years, with respiratory failure being the 62 
most common cause of death [3, 4]. The most widely used rating instrument for monitoring the 63 
progression of disability in ALS patients is the ALS Functional Rating Scale (ALSFRS) and its 64 
revised version ALSFRS-R, which is based on 12 items rated on a 0-4 point scale evaluating 65 
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bulbar functions, fine and gross motor skills and respiratory functions. However, the 66 

heterogeneity in the course of ALS clinical progression and ultimately survival, coupled with 67 
the rarity of this disease, make predicting disease outcome at the level of the individual patient 68 
very challenging. This presents substantial barriers to the planning and interpretation of clinical 69 
trials of new treatments, leading to large, expensive, and potentially unbalanced trials. In 70 
addition, patients might respond to ALS medications differently: certain ALS therapies tested 71 
in clinical trials unsuccessfully were suggested to have beneficial effects on specific 72 
subpopulations of patients [2, 5].  Therefore, stratification of ALS patients has been known for 73 
years as a question of great importance to clinical practice, research and drug development 74 
[6,7]. 75 
In this work, we present a Dynamic Bayesian Network (DBN) model of ALS progression to 76 
detect probabilistic relationships among variables included in the Pooled Resource Open-77 
Access ALS Clinical Trials Database (PRO-ACT), which provides records of over 10,700 78 
patients from different clinical trials, with over 2,869,973 longitudinally collected data 79 

measurements. A Bayesian Network [8, 9] is a mathematical model that represents the joint 80 
probability distribution of a set of random variables as a directed acyclic graph (DAG). A DBN 81 
extends a Bayesian Network to model dynamic processes, describing the dependencies among 82 
the variables along time [9].  83 
Our model unravels new dependencies among clinical variables in relation to ALS progression, 84 
such as the influence of basophil count or bicarbonate on movement, communication and 85 
respiratory functional state. Furthermore, it provided an indication of ALS prognosis, in terms 86 
of the most probable disease trajectories across time at the level of both patient population and 87 
individual patient.  88 
 89 

Materials & Methods  90 
 91 

We considered data of ALS patients assessed over subsequent screening visits, included in the 92 
PRO-ACT database (https://nctu.partners.org/ProACT/). A broad spectrum of information was 93 
available for each patient including demographics, , laboratory data (e.g.., blood count, 94 
electrolytes), vital signs (e.g., blood pressure, pulse), ALS history, concomitant medication use, 95 
outcome measures (e.g., slow and forced vital capacity, survival) and ALSFRS, for a total of 96 
186 variables. Time-dependent data collected over subsequent visits were defined as dynamic 97 
variables, while either time-independent covariates (e.g., race) or data collected at first visit 98 
only (e.g., age) were defined as static variables. Variables with missing values in more than 99 
50% of patients were filtered out; 48 variables (7 static, 41 dynamic) remained after this step. 100 
Dynamic variables were longitudinally collected during clinical visits, thus both their status at 101 
a specific visit (time t) and at the previous one (t-1) were reported for each patient, in order to 102 
account for the relationship among two consecutive time points.        103 
An additional variable (DELTA_step) was added to account for the time between two 104 

consecutive visits. Continuous variables were discretized either according to the 33rd and the 105 
66th percentile or based on clinical threshold as given in PRO-ACT website 106 
(https://nctu.partners.org/ProACT/). For example, pulse was discretized in 3 levels: lower than 107 
72, between 72 and 80, or higher than 80 beats per minute. The preprocessed dataset was then 108 
modelled as a DBN, a directed graph representing variables as nodes and conditional 109 
dependencies among them as directed edges.  In order to learn the variable dependencies, the 110 
DBN was inferred through a two-steps procedure: i) learning the structure (i.e. the parents-111 
children dependencies among nodes) and ii) learning the parameters (i.e. the probability that a 112 
variable assumes a specific value conditional to the value assumed by its parents) of the graph. 113 
Variables were grouped into six layers (Table 1) where variables in layer j could be dependent 114 
only on variables in layers i ≤ j. In particular, variables onset_site and onset_delta (layer 2) can 115 
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be affected by gender and age as known in the literature [4, 5, 6]; the variables at visit t are 116 

affected by the static variables in first two layers, by variables at visit (t-1) and by DELTA_step, 117 
i.e., the delay between visit (t-1) and visit t since this might vary for different patients. The 118 
variable status labels each patient either as dead during the PRO-ACT trials or still alive at the 119 
last visit; status can be affected by any other variable in the dataset.  120 
Structure learning was performed using the Hill-Climbing (HC) algorithm [10], a search-and-121 
score method that starts with the complete space of possible graph structures and repeats as 122 
long as the Bayesian-Dirichlet equivalent uniform scoring function is maximized. The set of 123 
parameters of the conditional probability distribution at each node were learnt using a 124 
Maximum a Posteriori estimation.  125 
 126 

Layer Variable Type 
1 Gender, Age at ALS onset, Race, Riluzole Static 
2 Onset site, Onset delta (start of the trial - onset) Static 
3 Variables at time t-1 Dynamic 
4 DELTA_step Dynamic 
5 Variables at time t Dynamic 
6 Status Static 

Table 1. Layering and type of variables in the DBN. 127 

The DBN was inferred on 8635 patients (the training set) and used to simulate the temporal 128 
evolution of 1289 patients (the validation set) by sampling, at each discrete time point, the state 129 
of a patient conditioned on his/her state in the previous time point in accordance to the 130 
conditional probability tables encoding variable dependencies. We started our simulation at 131 
time t = 0 (the first visit) and let the simulated patients evolve for 100 months with a time-step132
of 1 month. For each real patient, we generated 100 different temporal evolutions so to have a 133 

distribution of variable values in time, for a total of 1289100 simulated patients. In addition, 134 

to provide an estimation of a level of confidence on the edges between variables, 100 bootstrap 135 
samples of the original dataset were considered and the resulting DAGs were converted into 136 
the corresponding partially directed acyclic graph (PDAG) representing the corresponding I-137 
equivalent classes and aggregated in a Weighted Partially Directed Acyclic Graph (WPDAG). 138 
WPDAGs encode the confidence on the presence of each edge as the fraction of bootstrap 139 
samples with that edge.  140 
Data pre-processing and network learning were implemented in R, combining a set of in-house 141 
scripts with bnstruct [11], a recently developed R package providing structure and parameter 142 
learning of Bayesian networks even in presence of missing values, which is a common situation 143 
in clinical setting, and automating the possibility of using bootstrap to construct WPDAGs. 144 
 145 
Results 146 
 147 

Figure 1A reports the distribution of the temporal evolution of variable Q10 (respiratory 148 
functional state) in the validation set and in the DBN prediction (from training set), showing a 149 
good correspondence (Mean Squared Error: 1.1e-01) between simulated and real distributions. 150 
Similar results were obtained for the other dynamic variables. As shown in figure 1B, our model 151 
can be used also to simulate, for a single patient, the time-dependent probability of a variable 152 
being in a certain state. Figure 1C shows the WPDAG learnt from 100 bootstrap samples of the 153 
original dataset; only edges with the maximum confidence, hence observed for all 100 DAGs, 154 
are represented. Notably, our model identified some expected dependencies between variables, 155 
such as the influence of gender and age on the onset site. Indeed, it is known that the spinal 156 
onset is more common in men than in women and that bulbar phenotype typically affects 157 
women older than 65 years [12]. In addition, some new dependencies among variables were 158 
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highlighted. For instance, our analysis revealed the dependency between patients’ clinical status 159 

(status encoded by ALSFRS Q1-Q10) and the basophil count, suggesting an ALS-induced 160 
inflammatory state [13]. A relationship between the level of creatine kinase - correlated to 161 
creatinine [14] - and both respiratory insufficiency and the difficulty in eating was also 162 
suggested by our results.  163 
 164 

 

  
 165 
Figure 1. A) Distribution of the temporal evolution of variable Q10 (respiratory functional 166 
state) in the validation set (blue line) and in the prediction (red line), based on probabilities 167 
modelled by DBN.  B) Stacked histogram of the probable Q10 values (color-coded) predicted 168 
along 100 months (x-axis) for a single patient. 100 different temporal evolutions were generated 169 
so to have a distribution of variable values in time. C) Subset of the WPDAG obtained on 100 170 
bootstrap samples. Only edges with the maximum confidence (present in all of 100 networks) 171 
are shown. Dynamic variables at time t (green nodes) depend on their state at time t-1 (edges 172 
not shown), and can depend on other dynamic variables both at time t and at time t-1 (blue 173 
nodes) as well as on static variables (orange nodes).   174 
Q1,…, Q10: ALSFRS scale items. 175 

A 

C B 
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onset_delta: Time between start of the trial and ALS onset (days<-771, -771<days<-443, days>-176 

443) 177 
onset_site: Site of disease onset (bulbar, limb) 178 
CK: Creatine Kinase (male: <38 u/L, 38-174 u/L, >174 u/L; female: < 96 u/L, 96-140 u/L, >140 179 
u/L) 180 
FVC: Forced Vital Capacity (<60%, 60-80%, >80%) 181 
DELTA_step: Time between two consecutive visits (days<28, 28<days<54, days>54) 182 
bp_diastolic: diastolic blood pressure (<78 mmHg, 78-85 mmHg, >85 mmHg) 183 
 184 

Conclusions 185 
 186 
ALS clinical heterogeneity and progression hinder the diagnosis, the prognosis and the 187 
treatment of the disease. Our study took advantage of a wide spectrum of clinical, longitudinal 188 
ALS patient information and built a Dynamic Bayesian Networks (DBN) unravelling the 189 

probabilistic dependencies among variables over time and allowing the prediction of ALS 190 
temporal evolution in time, starting from a single patient, screen visit data. Consequently, our 191 
approach could provide an indication of ALS prognosis: this would be the basis of a prevention 192 
strategy and a personalized therapy, because the treatment could be guided and re-targeted 193 
based on the most probable disease progression. In future study, we will use our model to 194 
identify risk factors that allow patients' stratification based on velocity of disease progression 195 
and on how sensitive this latter is to changes in input variables, i.e. variables measured at 196 
diagnosis. 197 
 198 

Funding 199 
 200 
This work was funded by the bilateral Italian-Israel project CompALS (Computational analysis 201 

of the clinical manifestations and predictive modelling of ALS), supported by the Italian 202 
Ministry of Foreign Affairs and International Cooperation and the Ministry of Science, 203 
Technology and Space of the State of Israel. 204 
 205 

References 206 
 207 

1. Chiò A, Logroscino G, Traynor BJ, Collins J, Simeone JC, Goldstein LA, White L A.  et al. 208 
2013. Global epidemiology of amyotrophic lateral sclerosis: a systematic review of the 209 
published literature. Neuroepidemiology, 41:118-130. 210 

2. Hardiman O, Chalabi AA, Brayne C, Beghi E, van den Berg LH, Chiò A, Martin S, Logroscino 211 
G, Rooney J. 2017. The changing picture of amyotrophic lateral sclerosis: lessons from 212 
European registers. Journal of Neurolology, Neurosurgery & Psychiatry, pii: jnnp-2016-213 
314495.  214 

3. Rowland LP, Shneider NA. 2001. Amyotrophic lateral sclerosis. New England Journal of 215 
Medicine, 344(22): 1688-1700.ISO 690  216 

4. Chiò A, Logroscino G, Hardiman O, Swingler R, Mitchell D, Traynor BJ, and the EURALS. 217 
2009. Prognostic factors in ALS: a critical review.  Amyotrophic Lateral Sclerosis, 10:310-323. 218 

5. Gordon PH. 2013. Amyotrophic Lateral Sclerosis: An update for 2013 Clinical Features, 219 
Pathophysiology, Management and Therapeutic Trials. Aging and Disease, 4(5): 295–310. 220 
http://doi.org/10.14336/AD.2013.0400295.  221 

6. Beghi E, Chiò A, Couratier P, Esteban J, Hardiman O, Logroscino G, Millul A, Mitchell D, 222 
Preux PM, Pupillo E, Stevic Z, Swingler R, Traynor BJ, van den Berg LH, Veldink JH, 223 
Zoccolella S, and the EURALS. 2011. The epidemiology and treatment of ALS: focus on the 224 

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.3262v1 | CC BY 4.0 Open Access | rec: 18 Sep 2017, publ: 18 Sep 2017



heterogeneity of the disease and critical appraisal of therapeutic trials. Amyotrophic Lateral 225 

Sclerosis, 12(1): 1-10. 226 
7. Su XW, Broach JR, Connor JR, Gerhard GS, Simmons Z. 2014. Genetic heterogeneity of 227 

amyotrophic lateral sclerosis: implications for clinical practice and research. Muscle Nerve, 228 
49:786-803.  229 

8. Jensen FV. 1996. An introduction to Bayesian networks (Vol. 210). London: UCL Press. 230 
9. Koller D, Friedman N. 2009. Probabilistic Graphical Models: Principles and Techniques. 231 

Cambridge: MIT Press. 232 
10. Tsamardinos I, Brown LE, Aliferis CF. 2006. The max-min hill-climbing Bayesian network 233 

structure learning algorithm. Machine learning, 65(1), 31-78. 234 
11. Franzin A, Sambo F, Di Camillo B. 2016. bnstruct: an R package for Bayesian Network 235 

structure learning in the presence of missing data. Bioinformatics. 33.8: 1250-1252. 236 
12. Kiernan MC, Vucic S, Cheah BC, Turner MR, Eisen A, Hardiman O, Burrell JR Zoing MC. 237 

2011. Amyotrophic lateral sclerosis. The Lancet, 377(9769): 942-955. 238 

13. Chiò A, Calvo A, Bovio G, Canosa A, Bertuzzo D, Galmozzi F, Cammarosano S, Ilardi 239 
A, Manera U, Moglia C, Sideri R, Marinou K, Bottacchi E, Pisano F, Cantello R, Mazzini 240 
L, Mora G, Piemonte and Valle d’Aosta Register for Amyotrophic Lateral Sclerosis 241 
(PARALS). 2014. Amyotrophic lateral sclerosis outcome measures and the role of albumin and 242 
creatinine: a population-based study. JAMA Neurology, 71(9): 1134-42. 243 

14. Küffner R, Zach N, Norel R, Hawe J, Schoenfeld D, Wang L, Li G, Fang L, Mackey L, 244 
Hardiman O, Cudkowicz M, Sherman A, Ertaylan G, Grosse-Wentrup M, Hothorn T, van 245 
Ligtenberg J, Macke JH, Meyer T, Schölkopf B, Tran L, Vaughan R, Stolovitzky G, Leitner 246 
ML. 2015. Crowdsourced analysis of clinical trial data to predict amyotrophic lateral sclerosis 247 
progression. Nature biotechnology, 33(1), 51-57. 248 

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.3262v1 | CC BY 4.0 Open Access | rec: 18 Sep 2017, publ: 18 Sep 2017


