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Abstract. Searching for Monic Irreducible Polynomials (IPs) over extended Galois Field GF(p
q
) for large 

value of prime moduli p and extension to Galois Field q is a well needed solution in the field of Cryptography. In 

this paper a new algorithm to obtain Monic IPs over extended Galois Fields GF(p
q
) for large value of p and q has 

been introduced. The algorithm has been based on Multiplication algorithm over Galois Field GF(p
q
).Time 

complexity analysis of the said algorithm has also been executed that ensures the algorithm to be less time 

consuming. 

 

1. Introduction: The Basic Polynomials or BPs over Galois field GF(p
q
) have been polynomials with highest 

degree of terms d equal to Galois field Extensions q (d =q) and so it must have (q+1) terms . Elemental Polynomials 

or EPs have been polynomials with highest degree of terms d less than Galois field Extensions q (d <q) and so it 

must have less than (q+1) terms from 1 through q. BPs with leading co-efficient unity have been termed as Monic 

BPs. Monic BPs that do not have two Monic EPs rather than Constant Polynomials have been termed as Monic IPs. 

The EPs with degree d = 0 has been termed as Constant Polynomials (CPs)and they are p in numbers and not in 

consideration in this paper. Generator Polynomials or GPs have been polynomials with number of terms less than or 

equal to (q+1) and the code word or generated polynomials from BPs have been divisible by GPs but that are also 

not in consideration in this paper.  

There are many algorithms in past that were introduced to find Monic IPs over Galois Fields GF(p) and 

Extended Galois Fields GF(p
q
) for small values of Prime Modulii p as well as small values of extension q. The 

hands on computation to find Monic Irreducible Polynomials over Galois Field GF(p
q
) for p = 2, q = 2 through 11, p 

= 3, q = 2 through 7, p = 5, q = 2 through 5 and for p = 7, q = 2 through 4 has initiated by Church [1] in his 

contribution. The GF equivalents of each Monic Basic Polynomial (BP) for p = 2 through 7 had also been reported 

in his contribution [1]. In his contribution each two Monic Elemental Polynomials (Eps) have been multiplied to 

obtain the reducible Monic BPs. The search for Monic IPs ended up with cancellation of all reducible Monic BPs 

leaving behind the Irreducible Monic BPs. In Rabin’s Algorithm [2] all Monic BPs (F(x)) over Galois Field GF(p) 

of degree n has been tested for divisibility with (x
n
-x) and the gcd of (F(x), x

nki
-x) where the ki have been all prime 

divisors of n , to be unity. If any monic BP, F(x) satisfies both condition, the Monic BP is termed as IP. According 

to Zaman and Ghosh [3] if the residue of each polynomial division of each Monic BP with all EPs are unity or every 

EP has a multiplicative inverse over Galois Field under a Monic BP then the Monic BP is termed as a Monic IP. The 

algorithm is also implemented using Galois Field division and termed as composite algorithm [3]. 

A basic polynomial BP(x) over finite field or Galois Field GF(p
q
) has been expressed as, 

BP(x) = aq x
q
 + aq-1x

q-1
 + - - - + a1x + a0. 

B(x) has (q+1) terms, where aq is non-zero and has been termed as the leading coefficient [4]. A polynomial has 

been termed as Monic if aq is unity, else it is Non-Monic. The GF(p
q
) have (p

q
 – p) EPs or ep(x) in a range from p to 

(p
q
 -1) each of whose representation involves q terms with leading coefficient aq–1. The expression of ep(x) is written 

as, 

ep(x) = aq-1x
q-1

 + - - - + a1x + a0 , where a1 to aq-1 are not simultaneously zero. 

BP(x) with ep(x) as a factor except Constant Polynomials GF(p
q
), Have been  termed as Reducible Polynomials 

(RPs). BP(x) with factors itself and Constant Polynomials or no EPs as a factor has been termed as IPs or IP(x) [5] 

and is expressed as,   

IP(x) = aq x
q
 + aq-1x

q-1
 + - - - + a1x + a0 , where aq ≠ 0. 
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In Galois field GF(p
q
), the Decimal Equivalents (DEs) of BPs with extension q vary from p

q  
to (p

q+1 
- 1) 

while for EPs, DEs vary from p to (p
q
 – 1). Some of Monic BPs has been considered as IPs, since IPs have no Monic 

EPs as a factor except Constant Polynomials. 

 

In this algorithm EPs with degree d and q-d where d<q for d = 1,2,…,(q-1)/2 have been multiplied over 

Galois Field GF(p
q
) through Multiplication Algorithm to ensure the factorization or reducibility of the product 

Monic BPs. The Left alone BPs or that do not have any factor except CPs have been termed as Monic IPs.  

In this paper for clarity understanding, the proposed algorithm has been presented in Sec.2 for Galois Field 

GF(p
q
) and the algorithm has been described with the example of Galois Field GF(7

7
), where p=7 and q=7 in the 

same section . Sec. 3 demonstrates the obtained results to show that the proposed searching algorithm is actually 

able to search over any Galois field GF(p
q
) with any value of prime modulus and its extension, such as, p €{ 3, 5, 

7,....,101,..,p} and q € { 2, 3, 5, 7,…,101,….q}. In Sec.4 and 5, the conclusion references have been illustrated.  

 

2. Algorithm to find Monic of IPs over Galois Field GF(p
q
). 

 In this section the new algorithm to search for DEs of all Monic IPs over Galois Field GF(p
q
) has 

been described with example of GF(7
7
), where p=7 and q=7. The detailed structural description of the algorithm has 

given in sub sec.2.1. The detailed mathematical description of the algorithm has been described in sub sec.2.2. The 

Computational Algorithm is demonstrated in sec.2.3.The example of the said algorithm for Galois Field GF(7
7
), 

where p=7 and q=7 is given in sub sec 2.4. The Time complexity analysis has been described in sub sec.2.5.    

 

2.1. Structural Description of the Algorithm. 

  In this algorithm the decimal equivalents of each of two Monic EPs at a time with highest 

degree d and (q-d) where d € {0,..,(q-1)/2} , have been split into the p-nary coefficients of each term of those two 

Monic EPs. The coefficients of each term in each two Monic EPs are multiplied, added respectively with each other 

and modulated to obtain the p-nary coefficients of each term of the Monic BP.  The DE of the resultant Monic BP is 

termed as the DE of a reducible Monic BP. The DE of BPs belonging to the list of reducible polynomials are 

cancelled leaving behind the Monic IPs. For Galois Field GF(p
q
), where p is the prime modulus and q is the 

extension of the field, the algorithm is given as follows,  

 

Start. 

Step 1. Generate DEs of all Monic EPs Dec(ep(x)) over Galois Field GF(p
q
). 

Step 2. Split Dec(ep(x1)), Dec(ep(x2)) with highest degree d and (q-d) respectively where d € {0,..,(q-1)/2}, are 

split into p-nary coefficients or each term of those two each Monic EPs ep(x1) and ep(x2). 

Step 3. Multiply and add terms with degree d € {d,d-1,.., 0} and (q-d) € {q-d,q-d-1,.., 0} to obtain the decimal 

coefficients of each degree terms of the Monic BP, BP(x). 

Step 4. convert Decimal Coefficient of each term of Monic BP, BP(x) into p-nary coefficients. 

Step 5.  Obtain the DE of the Monic BP, BP(x) or Dec(BP(x)) as the DE of a Reducible Polynomial or RP. 

Step 6. The DEs of Monic BPs belonging to the list of Monic RPs are cancelled leaving behind the Monic IPs. 

Stop. 

 2.2 Mathematical Structure of the Algorithm. 

  

Here it has been intend to find the Monic IPs over Galois Field GF(p
q
), where p is the prime modulus and q 

is the extension of the prime modulus and p must be a prime integer. Since the indices of multiplicand and multiplier 

are added to obtain the product., the extension q can be demonstrated as a sum of two integers, d1 and d2, The degree 

of highest degree term present in EPs of GF(p
q
) is (q-1) to 1, since the polynomials with highest degree term 0, are 

CPs and they do not play any significant role here, so they are neglected.  Hence the two set of Monic EPs for which 

the multiplication is a Monic BP, have the degree of highest degree terms d1, d2 where, d1 € {1,2,3,..,((q-1)/2)}, and 

the corresponding values of d2 € {(q-1), (q-2), (q-3).,...,q-((q-1)/2)}. Number of coefficients in the Monic BPs, BP(x) 

= (q+1); they are defined as BP0, BP1, BP2, BP3, BP4, BP5, BP6, BP7,…….., BPq, where the value of suffix also indicates 

the degree of the term of the obtained Monic BP. For Monic polynomials BPq= 1.  

Coefficients of each term in the 1
st
 Monic EP EP

0
, where, d1 € {1,2,…..,((q-1)/2)}; are defined as EP0

0
, 

EP1
0
,……., EP((q-1)/2-1)

0
. Coefficients of each term in the 2

nd
 Monic EP, EP

1
 where d2 € {(q-1), (q-2), (q-3).,...,q-((q-

1)/2-1)}; are defined as EP0
1
, EP1

1
, EP2

1
, EP3

1
, EP4

1
, … , EPq-((q-1)/2-1)

1
. The value in suffix also gives the degree of the 

term of the Monic EPs. Total number of blocks is the number of integers in d1 or d2, i.e. (q-1)/2 . 
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      Now, the Mathematical Structure of (q-1)/2
th

 block for the algorithm has been given as follows, 

(q-1)/2
th

 block: 

     BP0= (EP0
0
× EP0

1
) mod p. 

 BP1= (EP0
0
 × EP1

1
+ EP1

0
 × EP0

1
) mod p. 

 BP2= (EP0
0
 × EP2

1
+ EP1

0
 × EP1

1
+ EP2

0
 × EP0

1
) mod p. 

 BP3= (EP0
0
 × EP3

1
+ EP1

0
 × EP2

1
+ EP2

0
 × EP1

1
+ EP3

0
 × EP0

1
) mod p. 

 ………………………………………………………………… 

 ………………………………………………………………… 

 BPq-1= (EP0
0
 × EP(q-1)

1
+ EP1

0
 * EP(q-2)

1
+………….+ EP(q/2-1)

0
 * EP(q-1)-(q-1)/2

1
) mod p. 

 BPq= (EP(q-1)/2
0
 * EPq-(q-1)/2

1
) mod p. 

 

Now the given Monic BP has been illustrated in Eq.1. and its DE of Monic BP has been calculated as in eq.2, 

 

BP(x) = BPq x
q
+ BPq-1 x

q-1
+….+ BP5 x

5
+ BP4 x

4
+ BP3 x

3
+ BP2 x

2
+ BP1 x

1
+ BP0 x

0
………………………..(1) 

Decm_eqv(BP(x))= BPq×p
q
+ BPq-1×p

q-1
+….+ BP5×p

5
+BP4×p

4
+ BP3×p

3
+ BP×p

2
+ BP1×p

1
+ BP0×p

0
……(2) 

 

Similarly DEs of all resultant Monic BPs or RPs for all have been calculated. The Monic BPs belonging to 

the list of RPs are cancelled leaving behind the desirable IPs. 

 

2.3. Description of the Computational Algorithm. 
 

Here the Monic BPs over Galois Field GF(p
q
) has been presented as BP(x) and EPs over the same Galois 

field is presented as ep(x). For Galois Field GF(p
q
) the prime modulus  € p and the extension of the prime modulus € 

q. Highest degree term of the 1
st
 EP, ep(x1) is d1 € {1,2,3,…………,(q-1)/2} and second EP, ep(x2) is d2 € { (q-1), 

(q-2), (q-3),...,q-(q-1)/2}. Number of terms in 1
st
 EP € {N(d1)} and number of terms in 2

nd
 EP € {N(d2)}. 

Coefficients of each ep(x) are demonstrated as EPep_indx_i,  where 1≤ i ≤2. 

Here Number of terms in Monic BP € q+1. Coefficients of BP(x) = BPbp_indx, where 0≤ bp_indx ≤ q, The 

said Computational Algorithm is as follows, 

 

 

 Start 

Step 1.  For block  € {1, 2, 3,…..,N(d1) or N(d2)} do the following steps. // Calculating Number of blocks need to calculate all monic RPs 

Step 2. For ep_index_1 € {1, 2, 3,…, (q-1)/2} do the following steps. // Accessing each 1st Monic EPs 

Step 3. For ep_index_2 € {(q-1), (q-2),….., q-((q-1)/2)} do the following steps. // Accessing each 2nd  Monic EPs. 

Step 4. For bp_index  € {0, 1, 2,……,q} do the following steps. // Accessing each term of Monic BP. 

Step 5. For P1  € {2, 3,…,N(d1)} and P2 € {(q-1)+1,(q-2)+1,…,N(d2)} do the following steps.//Accessing Each term of Monic EPs 

Step 6.  BPbp_indx = (Σ(EPep_indx_1
p1

×EPep_indx_2
p2

)) mod p;//calculating each coefficient of Monic BPs. 

End For; // End of For loop P1 and P2 

End For; // End of For loop bp_index 

End For; // End of For loop ep_index_2 

End For; // End of For loop ep_index_1 

End For; // End of For loop block 

Stop. 

 

 

2.4 Time Complexity of the New Algorithm.  

This Algorithm have a time complexity of O(n
5
). Means it is much faster as Rabin’s algorithm [7] for larger 

value of prime modulus and its modification [7]. Since the time complexity of the both Rabin’s algorithm and its 

modification depends upon the value of prime modulus so it becomes a slow algorithm for large value of the prime 

modulus. But the new algorithm is much effective and works better as the value of prime modulus and the extension 

of prime modulus grows larger since time complexity depends only on the value of the extension of the Galois field. 

So this algorithm is suitable to find monic Irreducible polynomials of higher value of prime modulus and the 

extension of prime modulus .Comparison of time complexity of the new algorithm with other Algorithms is given 

below, 
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Algorithms New Algorithm Rabin’s Algorithm Rabin’s Algorithm(mod) 

Time Complexity O(n
5
) O(n

4
(log P)

3
) 0(n

4
(log p)

2
 + n

3
(log P)

3
) 

  

 

2.5. Description of the Computational Algorithm for Galois Field GF(7
7
). 

 

Here the Basic polynomials over Galois Field over Galois Field GF(7
7
) is presented as BP(x) and 

Elemental polynomials over the same Galois field is presented as ep(x). For Galois Field GF(7
7
) the prime modulus  

= 7 and the extension of the prime modulus = 7. Highest degree term of the 1
st
 elemental polynomial ep(x1) are d1 € 

{1, 2, 3} and second elemental polynomial ep(x2) are d2 € {6, 5, 4}. Number of terms in 1
st
 elemental polynomial: 

N(d1) € {2,3,4} and number of terms in 2
nd

 elemental polynomial: N(d2) € {7,6,5} respectively. Coefficients of each 

ep(x) are demonstrated as EPep_indx_i,  where 1≤ i ≤2. 

Here Number of terms in Basic Polynomial = 8. Coefficients of BP(x) = BPbp_indx, where 1≤ bp_indx ≤8,  

The  said Computational Algorithm is as follows, 

 

 

Step 1.  for block  € {1,2,3} do the following steps. 

Step 2. for bp_index  € {1,2,3,…, 8} do the following steps. 

Step 3. for ep_index_1 € {1,2,3} do the following steps. 

Step 4. for ep_index_2 € {6,5,4} do the following steps. 
Step 5. for P1 € {2,3,4} and P2 € {7,6,5} do the following steps. 

Step 6.  BPbp_indx = (Σ(EPep_indx_1
p1

×EPep_indx_2
p2

)) mod p; 

 End For; // End of For loop P1 and P2 

 End For; // End of For loop bp_index 

 End For; // End of For loop ep_index_2 

 End For; // End of For loop ep_index_1 

 End For; // End of For loop block 

 

Step 7.  Stop. 

 

3.   Results. 

 The algebraic method or the above pseudo code has been tested on GF(3
3
),GF(7

3
),GF(11

3
), GF(101

3
), 

GF(3
5
), GF(7

5
), GF(3

7
), GF(7

7
),. Number of Monic IPs given by this algorithm are same as in hands on calculation 

by the theorem to count Monic IPs over Galois Field GF(p
q
) [1]. The list of Numbers of Monic IPs for a particular 

Galois Field is given below for all of the Eight Extended Galois Fields. The list of all Irreducible Monic BPs of 

Eight extended Galois fields are given as supplementary material.  

Ex.GF. GF(3
3
) GF(7

3
) GF(11

3
) GF(101

3
) 

Number of IPs. 8 112 440 343400 

Ex.GF. GF(3
5
) GF(7

5
) GF(3

7
) GF(7

7
) 

Number of IPs. 48 3360 312 117648 

 
 4. Conclusion. 

 To the best knowledge of the present authors, there is no mention of a paper in which the composite 

polynomial method is translated into an algorithm and turn into a computer program.  The new algorithm is a much 

simpler to find Monic IPs over Galois Field GF(p
q
). It is able to determine decimal equivalents of the Monic IPs 

over Galois Field with a large value of prime modulus, also with large extensions of the prime modulii. So this 

method can reduce the time complexity to find monic Irreducible Polynomials over Galois Field with large value of 

prime modulii and also with large extensions of the prime modulii. So this would help the crypto community to 

build S-Boxes or ciphers using irreducible polynomials over Galois Fields with a large value of prime modulii, also 

with the large extensions of the prime modulii. 
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