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The growth function is the generating function for sizes of spheres around the identity in Cayley graphs

of groups. We present a novel method to calculate growth functions for automatic groups with normal

form recognizing automata that recognize a single normal form for each group element, and are at most

context free in complexity: context free grammars can be translated into algebraic systems of equations,

whose solutions represent generating functions of their corresponding non-terminal symbols.

This approach allows us to seamlessly introduce weightings on the growth function: assign different or

even distinct weights to each of the generators in an underlying presentation, such that this weighting is

reflected in the growth function. We recover known growth functions for small braid groups, and

calculate growth functions that weight each generator in an automatic presentation of the braid groups

according to their lengths in braid generators.
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Abstract

The growth function is the generating function for sizes of spheres around the identity in Cayley

graphs of groups. We present a novel method to calculate growth functions for automatic groups

with normal form recognizing automata that recognize a single normal form for each group el-

ement, and are at most context free in complexity: context free grammars can be translated

into algebraic systems of equations, whose solutions represent generating functions of their cor-

responding non-terminal symbols. This approach allows us to seamlessly introduce weightings

on the growth function: assign different or even distinct weights to each of the generators in an

underlying presentation, such that this weighting is reflected in the growth function. We recover

known growth functions for small braid groups, and calculate growth functions that weight each

generator in an automatic presentation of the braid groups according to their lengths in braid

generators.

Digital Object Identifier 10.4230/LIPIcs...

1 Introduction

Analytic combinatorics provides tools for enumerating structures as described by formal

grammars, producing generating functions. In this paper we will approach the enumeration

of minimal length words representing group elements in finitely presented automatic groups

using generating functions generated from the formal grammars associated to the group’s

automatic structure.

For a group with presentation G = 〈g|r〉, we define

Cayley graph the graph with group elements as vertices, and an edge from each vertex h

for each generator in g, to the vertex gh.

geodesic word shortest word in the generators and their inverses representing a group ele-

ment; corresponds to a shortest path in the Cayley graph.

radius r sphere around the identity the set of elements whose geodesic words have length

r. We denote this S(r).

growth function the generating function of the sequence S(r) for r non-negative integers.

First, in Section 2 we will introduce the route from a formal grammar to a generating

function, and in Section 3 we will demonstrate how these methods apply to automatic

group, by working with the explicit example of the braid group B3 on three strands.
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2 Counting with grammars

Chomsky and Schützenberger proved [2] that a contextfree language can studied using gen-

erating functions. Their article provides a construction for finding the generating function

related to a specific grammar.

Starting with a Backus-Naur form of the grammar, each rewriting rule can be translated into

an algebraic equation. Each terminal symbol is assigned some expression in the variables

of the resulting generating function, and each non-terminal symbol is assigned a generating

function of its own. The rewriting assignment is replaced by an equality, each concatenation

with a multiplication and each disjunction with an addition.

For a first and simple example, balanced two-symbol sequences have the grammar

S → ∅ | aSb

Translating this to an algebraic equation, we would get

S(x, y) = 1 + xyS(x, y)

by weighting each symbol a by x1 and each symbol b by y1. The resulting generating

function will count the number of strings by the number of a and b symbols in the result,

or by evaluating S(t, t) will count by length of the string.

This equation is solved straightforwardly to S(x, y) = 1/(1 − xy) =
∑

(xy)j , from which we

can immediately read that there is exactly one string for each combination of j each of as

and bs. From S(t, t) = 1/(1 − t2) =
∑

t2j follows that there is one unique string for each

even length, and no odd-length strings.

Chomsky and Schützenberger proved that as long as the grammar is at most context-free,

the corresponding generating function(s) will be rational functions.

For anything that can be described by a context-free grammar, this suggests a concrete

approach for enumeration:

1. Find a Backus-Naur form of a grammar describing your structures

2. Translate the grammar to a system of polynomial equations

3. Use a Gröbner basis with an elimination order to solve the system of equations

4. Isolating the Gröbner basis elements concentrated to the interesting non-terminal symbol

and the terminal variables, solve for a rational form of the generating function

3 Braids and Automatic Groups

Braid groups are usually introduced with a finite presentations in terms of elementary braids:

for k strands, the braid group Bk has generators σj for 1 ≤ j < k, where σj crosses strand

j over strand j + 1. We give an illustration for B4 in Figure 1. By inspecting the effects of

Reidemeister moves, and of manipulations of separated areas of the 3-sphere, we can derive

the finite presentation

Bk = 〈σ1, . . . , σk|σiσj = σjσi; σiσi+1σi = σi+σiσi+1〉
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Figure 1 Generators of the Braid group B4

=

=

Figure 2 Relations of the Braid group B4

where |i − j| > 1. Figure 2 shows these relations in B4, the smallest braid group where all

relations are applicable.

One proof that the word problem is solvable for braid groups was described in [3], demon-

strating that automatic groups solve the word problem, and that braid groups are (bi)automatic.

An automatic group, here, is a finitely presented group coupled with several automata: one

to detect whether a given string in the generators is the normal form of a group element,

and one to detect right products of a normal form by a generator.

Braid groups form an example of biautomatic groups: there are grammars both for rec-

ognizing right products and left products. The part that really interests us here, though,

is the normal form recognizer. With a grammar for normal forms, algebraic equations to

compute generating functions for group sizes can be computed. These generating functions

are also studied extensively for finitely presented groups: they are called growth series. For

braid groups, we even know grammars that pick out exactly one normal form for each group

element, such that this normal form is geodesic: has the shortest possible expression in some

specific set of generators.

Charney in [1] gives a grammar for the Braid group B3 with the following transition rules,
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with each state terminal.

B3 → e|s1v2|s2v3|s1s2v3|s2s1v2|s1s2s1v1|s1v5|s2v6|s1s2v6|s2s1v5|s1s2s1v4

v1 → s1s2s1v1

v2 → s1v2|s1s2v3|s2v6|s2s1v5|s1s2s1v1

v3 → s2v3|s2s1v2|s1v5|s1s2v6|s1s2s1v1

v4 → s1s2s1v4|s1s2v6|s2v6|s2s1v5|s1v5

v5 → s1v5|s1s2v6

v6 → s2v6|s2s1v5

The construction of this automaton generalizes to all braid groups, with exponential growth

in the number of rules in the grammar. This improves on previous constructions that needed

factorial growth in the number of rules.

From this grammar we can produce a system of algebraic equations that counts each gener-

ator in Charney’s presentation equally

B3 = (1 + t · v2 + t · v3 + t · v3 + t · v2 + t · v1 + t · v5 + t · v6 + t · v6 + t · v5 + t · v4)

v1 = (1 + t · v1)

v2 = (1 + t · v2 + t · v3 + t · v6 + t · v5 + t · v1)

v3 = (1 + t · v3 + t · v2 + t · v5 + t · v6 + t · v1)

v4 = (1 + t · v4 + t · v6 + t · v6 + t · v5 + t · v5)

v5 = (1 + t · v5 + t · v6)

v6 = (1 + t · v6 + t · v5)

Solving this system for B3(t) with term order to eliminate all the vs, using your favorite

computer algebra system recovers a Gröbner basis:

4B3(t)t3 − 8B3(t)t2 − 4t3 + 5B3(t)t − 8t2 − B3(t) + 5t + 1

− 2B3(t)t2 + 3B3(t)t + 2t2 − B3(t) + 5t + v6

− 2B3(t)t2 + 3B3(t)t + 2t2 − B3(t) + 5t + v5

− 20B3(t)t2 + 28B3(t)t + 20t2 − 9B3(t) + 52t + 2v4 + 7

20B3(t)t2 − 26B3(t)t − 20t2 + 5B3(t) − 54t + 6v3 − 11

20B3(t)t2 − 26B3(t)t − 20t2 + 5B3(t) − 54t + 6v2 − 11

4B3(t)t2 − 4B3(t)t − 4t2 + B3(t) − 12t + 6v1 − 7

The first of these terms completely avoids all the vs, and is the one generator of the elimi-

nation ideal. This produces a functional equation for B3(t):

4B3(t)t3 − 8B3(t)t2 − 4t3 + 5B3(t)t − 8t2 − B3(t) + 5t + 1 = 0

which we can rewrite to

B3(t)(4t3 − 8t2 + 5t − 1) = 4t3 + 8t2 − 5t − 1
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from which follows

B3(t) =
4t3 + 8t2 − 5t − 1

4t3 − 8t2 + 5t − 1
= 1 +

2t(8t − 5)

(t − 1)(2t − 1)2

1+10t+34t2+90t3+218t4+506t5+1146t6+2554t7+5626t8+12282t9+26618t10+57338t11+

122874t12+262138t13+557050t14+1179642t15+2490362t16+5242874t17+11010042t18+O(t19)

This recovers the growth function for B3 as computed by Charney [1].

The method of going through Gröbner basis computations, however, is more flexible than

Charney’s linear algebra approach. Since we can choose weights at will, we can – for instance

– compute the growth series of the automatic presentation, as weighted by the number of

elementary braid generators used for each word. Doing this still retains a strong focus on

the automatic presentation, and as we will see no longer calculates geodesic (ie shortest)

words for the presentation with elementary braid generators.

To achieve this, we weight each term when translating to a system of equations not by the

number of automatic generators involved, but by the number of elementary braid generators

in each term, producing the system of equations

B3 = (1 + t · v2 + t · v3 + t2 · v3 + t2 · v2 + t3 · v1 + t · v5 + t · v6 + t2 · v6 + t2 · v5 + t3 · v4)

v1 = (1 + t3 · v1)

v2 = (1 + t · v2 + t2 · v3 + t · v6 + t2 · v5 + t3 · v1)

v3 = (1 + t · v3 + t2 · v2 + t · v5 + t2 · v6 + t3 · v1)

v4 = (1 + t3 · v4 + t2 · v6 + t · v6 + t2 · v5 + t · v5)

v5 = (1 + t · v5 + t2 · v6)

v6 = (1 + t · v6 + t2 · v5)

Calculating, again, an eliminating Gröbner basis produces

B3(t)t5 + B3(t)t4 − t5 − 3B3(t)t3 − t4 − B3(t)t2 − t3 + 3B3(t)t − t2 − B3(t) + t + 1

− 4t4B3(t)
3 − 8B3(t)

3
t3 − 2B3(t)

2
t4 + 8B3(t)

3
t2 − 4B3(t)

2
t3 + 3B3(t)t4 + 12B3(t)

3
t+

20B3(t)
2
t2 + 6B3(t)t3 + 3t4 − 8B3(t)

3
+ 30B3(t)

2
t + 8B3(t)

2
v6 + 18B3(t)t2 + 6t3−

12B3(t)
2

+ 27B3(t)t + 12B3(t)v6 + 6t2 − 6B3(t) + 9t + 6v6

− 2B3(t)
2
t4 − 4B3(t)

2
t3 + 4B3(t)

2
t2 + B3(t)t3 + 2t4 + 6B3(t)

2
t + 8B3(t)t2 + 3t3−

4B3(t)
2

+ 10B3(t)t + 4B3(t)v6 + 4t2 + 2tv6 − 3B3(t) + 4t + 2v6 + 1

− 2B3(t)
2
t4 − 4B3(t)

2
t3 + 3B3(t)t4 + 4B3(t)

2
t2 + 5B3(t)t3 − t4 + 6B3(t)

2
t + 3B3(t)t2

− t3 − 4B3(t)
2

+ 6B3(t)t + 4B3(t)v6 − 3t2 + 2v6
2 − B3(t) − 2t + 2v6 − 3
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− B3(t)t4 − 2B3(t)t3 + t4 + 2B3(t)t2 + 2t3 + 3B3(t)t + 2t2 − 2B3(t) + 3t + v5 + v6

− 4B3(t)t4 − 7B3(t)t3 + 4t4 + 7B3(t)t2 + 7t3 + 9B3(t)t + 9t2 − 6B3(t) + 11t + 2v4 + 4

56B3(t)
5
t4 +88B3(t)

5
t3 +24B3(t)

4
t4 −80B3(t)

5
t2 +40B3(t)

4
t3 −40t4B3(t)

3 −88B3(t)
5
t−

248B3(t)
4
t2 − 60B3(t)

3
t3 + 47B3(t)

2
t4 + 8B3(t)

5 − 280B3(t)
4
t + 96B3(t)

4
v3−

256B3(t)
3
t2 + 109B3(t)

2
t3 + 14B3(t)t4 − 88B3(t)

4 − 296B3(t)
3
t + 144B3(t)

3
v3−

282B3(t)
2
t2 + 25B3(t)t3 − 101t4 − 148B3(t)

3 − 387B3(t)
2
t + 80B3(t)

2
v3 − 385B3(t)t2−

202t3+79B3(t)
2−570B3(t)t+12B3(t)v3−168B3(t)v6−205t2+181B3(t)−303t+6v3−196v6−6

−868B3(t)
4
t4−1364B3(t)

4
t3−694t4B3(t)

3
+1240B3(t)

4
t2−1126B3(t)

3
t3+2011B3(t)

2
t4+

1364B3(t)
4
t + 4304B3(t)

3
t2 + 3545B3(t)

2
t3 + 1376B3(t)t4 − 124B3(t)

4
+ 4846B3(t)

3
t−

1488B3(t)
3
v3 + 2620B3(t)

2
t2 + 2595B3(t)t3 − 1825t4 + 1318B3(t)

3
+ 2321B3(t)

2
t−

2784B3(t)
2
v3 − 3915B3(t)t2 − 3650t3 + 4935B3(t)

2 − 6772B3(t)t − 1216B3(t)v3−

2064B3(t)v6 − 3625t2 + 364tv3 + 4941B3(t) − 5475t − 50v3 − 3336v6 − 132

252B3(t)
4
t4 + 396B3(t)

4
t3 − 4t4B3(t)

3 − 360B3(t)
4
t2 + 4B3(t)

3
t3 − 1077B3(t)

2
t4−

396B3(t)
4
t − 956B3(t)

3
t2 − 2039B3(t)

2
t3 + 170B3(t)t4 + 36B3(t)

4 − 1084B3(t)
3
t+

432B3(t)
3
v3 + 1030B3(t)

2
t2 + 321B3(t)t3 + 659t4 − 412B3(t)

3
+ 1745B3(t)

2
t+

456B3(t)
2
v3 + 2939B3(t)t2 + 1318t3 − 2149B3(t)

2
+ 4426B3(t)t + 36B3(t)v3+

1656B3(t)v6 + 1299t2 − 1411B3(t) + 1977t + 91v2 − 53v3 + 1356v6 − 38

504B3(t)
4
t4 + 792B3(t)

4
t3 − 8t4B3(t)

3 − 720B3(t)
4
t2 + 8B3(t)

3
t3 − 2154B3(t)

2
t4−

792B3(t)
4
t − 1912B3(t)

3
t2 − 4078B3(t)

2
t3 + 158B3(t)t4 + 72B3(t)

4 − 2168B3(t)
3
t+

864B3(t)
3
v3 + 2060B3(t)

2
t2 + 369B3(t)t3 + 1500t4 − 824B3(t)

3
+ 3490B3(t)

2
t+

912B3(t)
2
v3 + 6151B3(t)t2 + 2909t3 − 4298B3(t)

2
+ 9125B3(t)t + 72B3(t)v3+

3312B3(t)v6 + 3053t2 − 2822B3(t) + 4409t + 182v1 − 288v3 + 2712v6 + 106

The first of these terms is the elimination order projection, producing the functional equa-

tion

B3(t)t5 + B3(t)t4 − t5 − 3B3(t)t3 − t4 − B3(t)t2 − t3 + 3B3(t)t − t2 − B3(t) + t + 1 = 0

Which we can solve for B3(t), producing

B3(t) =
t5 + t4 + t3 + t2 − t − 1

t5 + t4 − 3t3 − t2 + 3t − 1
= 1 + 4t + 10t2 + 22t3 + 44t4 + 84t5 + O(t6)
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Comparing this to a hand-enumeration of small braids produces 12 braids using two ele-

mentary generators, whereas this enumeration predicts 10. The reason for this discrepancy

is precisely the fact that geodesic here is measured in terms not of elementary generators

but in terms of automatic generators. Hence, while σ−1
1 σ2 and σ−1

2 σ1 are both length-2

words in the elementary generating set, they have minimal representatives in the automatic

presentation as

σ−1
1 σ2 = σ2σ1σ−1

2 σ−1
1 = σ−1

1 Dσ2 and σ−1
2 σ1 = σ1σ2σ−1

1 σ−1
2 = σ−1

2 Dσ1

where D = σ1σ2σ1σ−1
2 σ−1

1 σ−1
2 , and hence shows up as length 3 instead.

4 Conclusion

The methods from analytical combinatorics producing generating functions directly from

contextfree grammars are directly applicable to the problem of computing growth functions

for automatic groups. They can be weighted, which provides some insight into how the

automatic group geodesic words relate to their presentation in a different choice of generators

– however, for, for instance, braid groups, the automatic presentations tend to sort generators

moving the elementary generators to the front and their inverses to the end of a word, which

may not produce a geodesic in the simpler presentation.

It is unclear how to get closer to a growth function for the elementary presentation of a

braid group.
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