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Introduction

Somatic human cells are diploids, that is, they contain 22 pairs of homologous chromosomes and a pair
of sex chromosomes, one copy inherited from each parent. In order to fully characterize the genome
of an individual, the reconstruction of the two distinct copies of each chromosome, called haplotypes, is
mandatory. The process of inferring a full haplotype of a cell is known as haplotyping, which consists
in assigning all heterozygous Single Nucleotide Polymorphisms (SNPs) to exactly one of the two chro-
mosomes. SNPs are one of the most studied genetic variations, since they play a fundamental role in
many medical applications, such as drug-design or disease susceptibility studies. Obviously, the com-
plete set of SNPs of an individual (i.e., his/her haplotype) is generally more informative than analyzing
single SNPs, especially in the study of complex disease susceptibility.

Nowadays, two classes of methods exist for haplotype phasing. The first class consist of statistical
methods that try to infer haplotypes from genotypes sampled in a population. These data, combined with
datasets describing the frequency by which SNPs are usually correlated in different populations, can be
used to reconstruct the haplotype of an individual. The second class of methods analyzes sequencing
read data, exploiting an idea similar to genome assembly. Their goal is to divide the entire set of reads
into k partitions, corresponding to the k different haplotypes. In the case of diploid organisms, there are
2n possible haplotypes for n heterozygous SNP positions.

The Minimum Error Correction (MEC) is one of the most used and promising approaches for hap-
lotype assembly. This problem consists in computing the two haplotypes that partition the sequencing
reads into two unambiguous sets with the least number of corrections to the SNP values [2]. Unfortu-
nately, MEC was proven to be an NP-hard problem [1]. A weighted variant of MEC, named wMEC, was
also proposed: in this version, the correction process takes into account the weight associated with each
SNP value of a read [3]. The weights represent the confidence for the presence of a sequencing error
and the read mapping to that particular genome position.

In this work, in order to tackle the computational complexity of the problem under examination, we
propose GenHap, a novel computational method for haplotype assembly based on Genetic Algorithms
(GAs). GenHap could efficiently solve large instances of the wMEC problem, yielding optimal solutions
by means of a global search process.
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Methods

In a diploid organism, a read (also called fragment) is a vector f ∈ {0, 1,−}n and a haplotype can be
denoted as a vector h ∈ {0, 1}n. The value − is used to indicate an uncovered element in a read, since
the length of SNP fragments might be smaller than n. Given a set of n different SNPs and m fragments,
we can define an m× n matrix M, named fragment matrix.

Two distinct fragments f and g are in conflict if there is a position j, with 1 ≤ j ≤ n, such that fj �= gj
and fj �= gj �= −, otherwise they are in agreement. M is conflict-free if there are two different haplotypes
h1 and h2 such that each row Mi (with i = 1, . . . ,m) is in agreement with either h1 or h2.

Finally, we can detect the case when two distinct fragments are in conflict by defining a distance
D(·, ·) that measures the number of different values between two fragments f = (Mi1, . . . ,Min) and
g = (Ml1, . . . ,Mln) of M (with i, l ∈ {1, . . . ,m}):

D(f ,g) =

n�

j=1

d(fj , gj), (1)

where d(fj , gj) is defined as:

d(x, y) =

�
1, if x �= y, x �= −, and y �= −,

0, otherwise.
(2)

If M is conflict-free and there are no errors in all reads, M can be divided into two disjoint partitions M1

and M2 containing the fragments that are conflict-free, thus allowing to infer the two haplotypes, the first
one from M1 and the second one from M2. Let h1 and h2 be two possible haplotypes, M1 and M2 the
partitions of M representing the classification of all SNP fragments. We can infer h1 and h2 from M1 and
M2, respectively, as follows:

hkj
=

�
1, if N1(Mk)

j ≥ N0(Mk)
j ,

0, otherwise,
(3)

where j = 1, . . . , n and k ∈ {1, 2}. N0(Mk)
j and N1(Mk)

j denote the number of 0s and 1s in the j-th
column, respectively. In such a way, N0(Mk) is the vector consisting of the number of 0s of each column
j using the reads of the partition Mk, while N1(Mk) is the vector consisting of the number of 1s of each
column j represented by the partition Mk. In order to solve the wMEC problem, N1(Mk) and N0(Mk)
measure the weight associated with each SNP in each read. The distance D(·, ·) given in Equation 1
can be used also to evaluate the distance between a fragment and a haplotype. We define the following
error function:

E(M1,M2,h1,h2) =

2�

k=1

�

f∈Mk

D(f ,hk). (4)

By minimizing this error function, we can obtain the best partitioning of M, inferring h1 and h2 with the
least number of errors. Equation 4 is used as fitness function in GenHap.

GAs are a population-based optimization strategy that mimics Darwinian processes [4, 5, 6]. In GAs,
a population P of randomly generated individuals undergoes a selection mechanism and is modified by
genetic operators. In the most common formulation, each individual of P encodes a possible solution
of the optimization problem as a fixed-length string of characters taken from a finite alphabet. Based
on a quality measure (i.e., the fitness value), inspired by Darwin’s “survival of the fittest” laws, each
individual is involved in a selection process. The individuals characterized by good fitness values have a
higher probability to be selected for the next generation; these individuals will generate possibly improved
offspring thanks to the application of the crossover and mutation operators.

A general scheme that represents an implementation for GAs can be summarized as follows:
1) a population of individuals representing solutions of a given problem is randomly generated;
2) the fitness function is evaluated for each individual;
3) the individuals are selected according to their fitness value;
4) crossover and mutation operators are applied to recombine and vary the selected individuals;
5) if a chosen termination criterion is not satisfied, go back to step 2; otherwise, the individual character-
ized by the best fitness value is returned.
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In the implementation of GenHap, we exploit a very simple and efficient structure for individuals, each
one representing a partition of M, encoded as a binary string. So doing, the length of each individual Cp,
p = 1, 2, . . . , |P |, of the population P is equal to m, and each of its elements is a binary value referring
to a read. In order to obtain the two partitions M1 and M2, the individual Cp is evaluated as follows: if
the i-th bit is equal to 0 then the read i belongs to M1, otherwise the read belongs to M2. Once the
two partitions are computed, GenHap infers the haplotypes h1 and h2 by applying Equation 3. Finally,
Equation 4 is used to calculate the number of errors made by exploiting the partition encoded by each
individual of P . In our approach, we used a population composed of 100 individuals.

Among the different selection mechanisms employed by GAs (e.g., roulette wheel, ranking, tourna-
ment), GenHap exploits the tournament selection to create an intermediate population P �, starting from
P . In each tournament, T individuals are randomly selected from P and the individual having the best fit-
ness value is added to P �. The size of the tournament T is related to the selection pressure. If T is large,
the individuals characterized by worse fitness values have a lower probability to be selected, therefore
decreasing the variability of P �; moreover, multiple copies of the same individual could be added to P �.
In our test we set T = �0.2 · |P |�.

Afterwards, the genetic operators (i.e., crossover and mutation) are applied to the individuals be-
longing to P � to obtain the offspring for the next generation. The crossover operator allows for the re-
combination of two parent individuals (e.g., C1 and C2), generating the offspring that possibly has better
characteristics with respect to the parents (in this work, crossover is applied with probability cr = 0.99).
In order to blend exactly half characters from C1 and half from C2, we use a single-point crossover re-
sulting in a mixing ratio fixed to 0.5. The crossover procedure consists in selecting a crossover point
cp ∈ {1, . . . ,m−1}, and exchanging 50% of the elements of C1 with C2, thus obtaining two new offspring.
Finally, to increase the variability of the individuals, one or more elements of a selected offspring can be
modified by applying the mutation operator (in this work, mutation is applied with probability mr = 0.01).
As a first mutation operator, we used a classic mutation in which a random number rnd is generated in
[0, 1) for each element e of the selected offspring, with e = 1, . . . ,m. If rnd is lower than mr, the element
e is mutated by flipping its value (i.e., from 0 to 1 or vice-versa). In addition to the prevoius mutation
operator, in GenHap we implemented a bit-flipping mutation in which a random number of elements of
the individuals are mutated according to mr. In particular, this mutation is applied if the fitness value of
the best individual does not improve for a given number of generations (5 in our implementation).

As the computational time required by GenHap increases with the number of reads and SNPs con-
sidered in the instance of the problem, to efficiently solve the wMEC problem we split the matrix M in
sub-matrices consisting of γ reads. The �m/γ� sub-matrices are then processed by means of a divide-
et-impera approach that exploits a Master-Slave parallel programming paradigm.

Results

As a preliminary investigation of the performance of GenHap, we considered a matrix M of synthetic data
consisting in 1088 reads and 549 SNPs. GenHap was then executed by varying the number of reads γ in-
serted in each sub-matrix and computing the minimum, maximum and mean errors (see Equation 4), as
well as the required running time. The value of γ was varied in the range [10, 90]. Each test was repeated
30 times to achieve a statistical relevance. As shown in Table 1, the best results in terms of mimimum,
mean and maximum number of errors are obtained with γ = 30, γ = 50 and γ = 80. As expected, the
running time increases linearly with respect to the number of reads γ in which the matrix M is partitioned.

Conclusions

The reconstruction of haplotypes represents a hot topic in Computational Biology and Bioinformatics. In
this paper we present GenHap, a novel computational method based on GAs to solve the haplotyping
problem. In order to evaluate the effectiveness of our approach, we run GenHap on a common bench-
mark data set, consisting of synthetic genomic data. Our preliminary experimental results show that
GenHap is able to achieve correct solutions in short running times. Moreover, this approach can be used
to compute haplotypes in organisms with different ploidity.

Although several approaches have been proposed in literature to solve the haplotyping problem [7,
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Table 1: Results achieved by GenHap on input matrix M with 1088 reads and 549 SNPs. Boldface values
denote the best results in terms of error measures and computational time.

γ Min error Max Error Mean Error Running Time [s]
10 1 124 29.7 1.362
20 1 124 33.8 1.601
30 1 1 1 1.813
40 1 124 17.4 2.211
50 1 1 1 2.534
60 1 137 10.07 2.736
70 1 137 5.53 3.158
80 1 1 1 3.419
90 1 491 17.33 3.887

8, 9], the evolutionary technique introduced in this work has the advantage that it could be formulated
and extended using a multi-objective fitness function. As a matter of fact, in addition to the number of
flips to obtain an optimal partition, other objectives could be introduced in the fitness function, such as
the methylation patterns of the different chromosomes or the gene proximity in maps achieved through
Chromosome Conformation Capture (3C) experiments [10]. The final goal of leveraging multi-objective
optimization (e.g., using NSGA-III [11]) is one of the reasons why we did not base GenHap on classic
single-objective optimization methods, such as Simulated Annealing.

As a future extension of this work, we plan to compare GenHap against other methods typically em-
ployed in this field, such as WhatsHap [7] and HapCol [9]. In particular, we will apply GenHap on real
data to the aim of thoroughly investigating its computational performance and effectiveness. For this
goal, we will test GenHap using the data provided by the 1000 Genomes Project [12].
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