Epistasis analysis reveals associations between gene variants
and bipolar disorder

In complex phenotypes (e.g., psychiatric diseases) single locus tests, commonly performed
with Genome-Wide Association Studies, have proven to be limited in discovering strong
gene associations. A growing body of evidence suggests that epistatic non-linear effects
may be responsible for complex phenotypes arising from the interaction of different
biological factors. A major issue in epistasis analysis is the computational burden due to
the huge number of statistical tests to be performed when considering all the potential
genotype combinations. In this work, we developed a computational efficient pipeline to
investigate the presence of epistasis at a genome-wide scale in bipolar disorder, which is a
typical example of complex phenotype with a relevant but unexplained genetic
background. By running our pipeline we were able to identify 13 epistasis interactions
between variants located in genes potentially involved in biological processes associated

with the analyzed phenotype.

Peer] Preprints | https://doi.org/10.7287/peerj.preprints.3242v1 | CC BY 4.0 Open Access | rec: 11 Sep 2017, publ: 11 Sep 2017




Epistasis analysis reveals association between gene variants and
bipolar disorder

Carlo Maj", Elena Milanesi', Massimo Gennarelli', Luciano Milanesi?, Ivan Merelli?

! Genetics Unit, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy.
2 Istituto di Tecnologie Biomediche, Consiglio Nazionale delle Ricerche, Segrate, Italy.

*cmaj@fatebenefratelli.eu

Introduction

Single locus tests, commonly performed with Genome-Wide Association Studies, have proven to
be limited in discovering strong gene associations for complex phenotypes (e.g., psychiatric
diseases) [1]. With this approach significant associations can be hardly found and usually the
identified associations are not replicated in different cohorts. This could be due to the fact that
genetic architecture of complex diseases involves different genes. As a matter of fact, the role of
genetic factors in complex phenotype differs from the traditional Mendelian phenotype in which a
single variant presents a high penetrance rate (i.e., a given variant causes the phenotype).

To outpace this problem, the study of how genetic variants interact to define a specific
phenotype, called epistasis, is gaining progressive interest. In biological terms we refer to epistasis
when the effect of a gene depends also on another gene. In fact, a big number of variants can play
minor additive roles generating a shared polygenic effect [2], while epistatic nonlinear interactions
may be responsible for specific biological phenotypes [3].

In statistical terms, we refer to epistasis when the effect of a combined set of variants differs from
the linear combination of the marginal effect [4]. The computation of the epistasis of two (or more)
loci is, therefore, an indication that the phenotype is affected by the genotype combination rather
the single variants, suggesting an underlying potential biological association [5].

A major issue in epistasis analysis is the computational burden due to the huge number of
statistical tests to be performed when considering all the potential genotype combinations [6]. For
this reason, the majority of the studies evaluating epistatic effects have been done considering
specific target genes, while only a few studies performed a genome-wide analysis.

In this work, we developed a computational efficient pipeline to investigate the presence of
epistasis at a genome-wide scale in bipolar disorder which is a typical example of complex
phenotype with a relevant, but unexplained genetic background. In fact, despite it is well
established that bipolar disorder is characterized by a pivotal genetic component, only few variants
have been found to be associated with this disease [7]. Polygenic cumulative effects and epistasis
can overcome the limit of the traditional single locus association by investigating the role of
multifactorial and combined effects of different genetic variants.

Methods

Our epistasis analysis has been performed considering Whole Exome data from dbGaP study
(phs000021.v2.p1) between 1166 bipolar disorder patients and 6181 controls. The Psychiatric
Genomic Consortium (PGC) study found only few significant peaks overcoming genome-wide
significance, although a huge number of nominally associated variants have been identified [8].

In order to biologically interpret the results, we selected for the epistasis evaluation only the
variants nominally associated. Noteworthy, most of the data from PGC derives from GWAS data
which include a large number of intergenic/intronic variants that are not present in the exome
dataset, which is instead limited to exons and flanking regions. Linkage Disequilibrium (LD) filtering
have been performed to filter variants in linkage, which are inherited together. Therefore, in
statistical terms, they carry the same information and can be filtered out using a single variant as a
proxy for the other variants in linkage. To perform LD pruning we considered a threshold of 2 in the
Variance Inflator Factor (VIF) using a window size of 50 SNPs. After LD and PGC nominal
association filtering, we analyzed the epistasis between 1628 variants spread among the whole
genome.

In this work, we implemented a pipeline for the epistasis analysis that relies on PLINK 1.9 [9] to
model and test SNP interactions, since its regression-based approach though not the most
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accurate allows to perform a comprehensive exploration of the input space at least for binary
interactions.

In particular, we first screened the interactions using the FastEpistasis module, which uses an
efficient parallel algorithm to test pair-wise interactions. When using a single core computer, this
screening approach is 15 times faster than PLINK [10]. Moreover, it is implemented using a multi-
thread approach in order to exploit all the CPU-cores of a server, and it can be further distributed
among different servers. FastEpistasis performs an imprecise, but fast scan for epistasis based on
inspection of 3x3 joint genotype count tables. The idea is to convert the three genotype categories
into two allele categories by considering allele products:

YY Yy yy
XX a b ¢ Y y
Xx d e f —=> X 4a+2b+2d+e d4c+2b+2f+e
xx g h i X 4g+2h+2d+e 4i+2h+2f+e

and to compute the odd ratios between loci X and Y.
The test for epistasis is based on the Z-score between the odd ratio of cases and controls:

_ log (ORcases) — log (ORcontrols)
~ sqrt(SE(ORcases) + SE(ORcontrols))

which follows a standard normal distribution.

For large datasets, it is reasonable to start with this command (using liberal p-value thresholds)
to identify candidate pairs for further investigation, and then follow up with a more rigorous and
computationally expensive analysis on those pairs as the one based on regression methods.

Indeed the second step of our pipeline is represented by the classic PLINK epistasis analysis,
performed using a linear/logistic regression (according to the phenotype) to fit the interaction
model:

Y =0+ ﬁlgxl + ﬁzgxz + ﬁ3gxlgxz

for each inspected variant pair (x4, X2), where gx«1 and g, are allele counts and the B3 is the
coefficient to test for significance. Since the test is based on the interaction coefficient B3 the
epistasis module measures how much the association between the two inspected variants and the
analyzed phenotype differs from a pure linear/logistic additive model. Considering that the number
of interactions analyzed in this step is a fraction of the original combinatory number of SNP pairs,
we were able to correct results for multiple testing by computing a g-value.

The last step of the pipeline was the PLINK twolocus function, which computes tables of joint
genotype counts and frequencies between the two specified variants. This analysis is computed for
interactions that pass the g-value filter in the second step, in order to highlight the distribution of
the SNPs in both cases and controls. Indeed, for case/control data, two similar sets of tables are
reported, which stratify the two-locus genotype counts and frequencies by cases and controls.

We performed our analysis using a twenty-core virtual server relying on the Intel Xeon Sandy
Bridge technology, harboring 64GB of memory. Using this server, the screening step of 946650
variants in 7347 samples took 5760 minutes. The exact computation of the epistasis effect
among couples of filtered polymorphisms took 363 minutes. The final step, involving the
computation of joint genotypes tables for 6.69 E6 pairwise interactions took 2387 minutes.

Results

Our epistasis analysis detected thirteen epistatic interactions within the analyzed variants (see
Table 1). Interestingly, none of them is genome-wide associated at single locus analysis, while only
one (i.e., rs1060570) is only nominally associated. In other words, such epistasis interactions
involve variants that would be filtered out by using standard single-locus GWAS association. Their
effects on the phenotype arise from a nonlinear combination of genotype distribution rather than
from an additive cumulative effect. Some of these associations concern genes which could be
biologically related to neuropsychiatric disorders. Of particular interest seems to be the GABRA4-
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AFG3L3 association, where the first gene codifies for a receptor involved in synaptic transmission
and AFG3L3 is an enzyme involved in axonal development. Another interesting interaction is
between TAOK2 and a microRNA (MIE499B) which is predicted to regulate its gene expression.
On the other hand, none of the 16 single locus genome-wide significant associations has been
found in any significant epistasis interaction, suggesting that their effect is exerted at an individual
level or it is purely addictive. Following the statistical evaluation of epistasis values, it is required to
interpret the potential biological meaning of the identified interactions. PLINK offers the twolocus
function which displays the distribution of the combined genotypes between case and controls.
By comparing the distributions, it is possible to assess which is the potential genotype combination
of risk/protection for the analyzed phenotype (see Figure 1).

Table 1: Identified significant epistatic interactions
Chr1 Snp1 Chr2 Snp2 Gene1 Gene2
14 rs1060570 19 rs2302224 DPF3 PTPRS
10 rs11191741 16 rs12443685 SH3PXD2A ABCC11
4 rsl16869654 20 rs2236523 SLIT2 ADRM1
7 rs1799370 10 rs10740579 TNS3 PCDH15
6 rs1892172 22 rs737945 RSPO3 ASCC2
12 rs2044846 19 rs254259 USP15 NDUFA3
4 rs2055943 18 rs11080572 GABRA4 AFG3L2
11 rs2509010 12 rs7961392 MMP27 RFX4
3 rs3736156 18 rs1788799 TKT NPC1
16 rs3814883 20 rs2425009 TAOK2 MIR499B
7 rs728275 9 rs7856971 OR6B1 ASTN2
3 rs9628 13 rs7335339 DCP1A ATP8A2
3 rs9822460 15 rs3803406 OR5K4 ALPK3
Epistasis between rs10740579 (A/G) and rs1799370 (A/G) genotypes
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Figure 1 Example of combined genotype distributions. rs10740579 (column) and rs1799370 (row) have similar frequencies between
cases and controls (0.31 vs 0.30 for the former, 0.42 vs 0.43 for the latter). However, specific genotype combinations, as the double
homozigous GG CC (circled) show different frequencies between cases (in red) and controls (in blue). Interestingly, both the involved
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genes (rs10740579 is within an intron of PCDH15 while rs1799370 is within an intron of TNS3) are implicated in the same biological
process (i.e., cell adhesion).

Conclusions

In this work, we presented a whole genome epistasis evaluation in bipolar disorder identifying a
number of potentially biologically relevant epistatic interactions. These data confirm the genetic
background complexity of this disorder where both polygenic additive effects and the establishment
of gene-gene non-linear interactions, play a synergic role. Please note that we filtered nominally
associated variants and we considered only pairwise combinations among SNPs. Therefore, part
of the missing hereditability could be due also by new emerging associations possibly involving
high order interactions.

This result suggests the importance of including also epistasis evaluation in standard genetic
association analysis. In fact, the combinatorial effect of genetic variations may explain potential
association which would be otherwise excluded from standard single-locus analysis. Indeed, it is
expected that for phenotype with a strong non-Mendelian genetic is the effect of multiple variants
to be somehow related to the phenotype (possibly also in interactions with the environment).
Epistasis analysis has the capability to identify specific associations at genetic level which can
allow researchers to better characterize the biological mechanisms underlying a given phenotype.
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