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Species distribution models (SDMs) have become important and essential tools in

conservation and management. However, SDMs built with count data, commonly referred

to as species abundance models (SAMs), are still less used so far. SDMs are increasingly

used now in conservation decisions, whereas SAMs are still not widely employed. Species

occurrence and abundance do not frequently display similar patterns, often they are not

even well correlated. This leads to an insufficient or misleading conservation. How to

combine information from SDMs and SAMs all together for unified conservation remains a

challenge. In this study, we put forward for the first time a priority protection index (PI).

The PI combines the prediction results of occurrence and abundance models. We used the

best-available presence and count records for an endangered farmland species, Great

Bustard (Otis tarda dybowskii) in Bohai Bay, China, as a case study. We then applied the

advanced Random Forest algorithm (Salford Systems Ltd. implementation), a powerful

machine learning method, with eleven predictor variables to forecast the spatial

occurrence as well as the abundance distribution. The results show that the occurrence

model had a decent performance (ROC: 0.77) and the abundance model had a RMSE

26.54. It is of note that environmental variables influenced bustard occurrence and

abundance differently. We found that occurrence and abundance models display different

spatial distribution patterns. Still, combining occurrence and abundance indices to produce

a priority protection index (PI) used for conservation could guide the protection of the

areas with high occurrence and high abundance (e.g. in Strategic Conservation Planning).

Due to the widespread use of SDMs and the rel. easy subsequent employment of SAMs

these ûndings have a wide relevance and applicability, worldwide. We promote and

strongly encourage to further test, apply and update the priority protection index (PI)

elsewhere in order to explore the generality of these ûndings and methods readily

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.3240v1 | CC BY 4.0 Open Access | rec: 11 Sep 2017, publ: 11 Sep 2017



available now for researchers.

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.3240v1 | CC BY 4.0 Open Access | rec: 11 Sep 2017, publ: 11 Sep 2017



1 Towards combining occurrence and abundance distribution models 

2 of Great Bustard for conservation: A global research template from 

3 Bohai Bay?

4

5 Mi Chunrong1,2, Huettmann Falk3, Sun Rui2, Guo Yumin1,*

6 1College of Nature Conservation, Beijing Forestry University, P.O. Box 159, Beijing 100083, China;

7 2Key Laboratory of Water Cycle and Related Land Surface Processes, Institute of Geographic Sciences 

8 and Natural Resources Research, University of Chinese Academy of Sciences, Beijing 100101, China

9 3EWHALE Lab, Department of Biology and Wildlife, Institute of Arctic Biology, University of Alaska 

10 Fairbanks (UAF), 419 Irving I, P.O. Box 757000, AK 99775, USA

11

12

13 Corresponding author: Yumin Guo  guoyumin@bjfu.edu.cn

14 College of Nature Conservation, Beijing Forestry University, P.O. Box 159, Beijing 100083, China;

15

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.3240v1 | CC BY 4.0 Open Access | rec: 11 Sep 2017, publ: 11 Sep 2017

mailto:guoyumin@bjfu.edu.cn


16 ABSTRACT

17 Species distribution models (SDMs) have become important and essential tools in conservation 

18 and management. However, SDMs built with count data, commonly referred to as species 

19 abundance models (SAMs), are still less used so far. SDMs are increasingly used now in 

20 conservation decisions, whereas SAMs are still not widely employed. Species occurrence and 

21 abundance do not frequently display similar patterns, often they are not even well correlated. This 

22 leads to an insufficient or misleading conservation. How to combine information from SDMs and 

23 SAMs all together for unified conservation remains a challenge. In this study, we put forward for 

24 the first time a priority protection index (PI). The PI combines the prediction results of occurrence 

25 and abundance models. We used the best-available presence and count records for an endangered 

26 farmland species, Great Bustard (Otis tarda dybowskii) in Bohai Bay, China, as a case study. We 

27 then applied the advanced Random Forest algorithm (Salford Systems Ltd. implementation), a 

28 powerful machine learning method, with eleven predictor variables to forecast the spatial 

29 occurrence as well as the abundance distribution. The results show that the occurrence model had 

30 a decent performance (ROC: 0.77) and the abundance model had a RMSE 26.54. It is of note that 

31 environmental variables influenced bustard occurrence and abundance differently. We found that 

32 occurrence and abundance models display different spatial distribution patterns. Still, combining 

33 occurrence and abundance indices to produce a priority protection index (PI) used for conservation 

34 could guide the protection of the areas with high occurrence and high abundance (e.g. in Strategic 

35 Conservation Planning). Due to the widespread use of SDMs and the rel. easy subsequent 
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36 employment of SAMs these ûndings have a wide relevance and applicability, worldwide. We 

37 promote and strongly encourage to further test, apply and update the priority protection index (PI) 

38 elsewhere in order to explore the generality of these ûndings and methods readily available now 

39 for researchers.

40

41 Keywords: conservation decision, occurrence model, abundance model, Great Bustard (Otis tarda 

42 dybowskii), machine learning method, Random Forest 
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44 INTRODUCTION

45 The knowledge of species occurrence and abundance distribution makes for a fundamental 

46 information for conservation biology (VanDerWal et al., 2009; Drew et al., 2011; Primack, 2012; 

47 Johnston et al., 2015). Understanding how environmental factors are related to species occurrence 

48 and abundance distribution explicit in time and space represent a priority in current biodiversity 

49 conservation (Drew et al., 2011; Martín et al., 2012).

50 Species distribution models (SDMs) are empirical ecological models that relate species 

51 observations to environmental predictors (Guisan & Zimmermann, 2000); usually that is done with 

52 machine learning algorithms (Drew et al., 2011, see Mi et al., 2017 for an application). They have 

53 become important and essential tools in ecology, biogeography, climate change research, 

54 conservation and management based on their spatial occurrence prediction (Peterson et al., 2002; 

55 Guisan & Thuiller 2005; Elith et al., 2006; Araújo & New 2007; Mi et al., 2016). SDMs built with 

56 count data are called species abundance models (SAMs) (Elith & Leathwick 2009; Barker et al., 

57 2014; see Yen et al 2004 for an application). SAMs are still less commonly used yet, despite their 

58 greater information for conservation and management. But increasing attention has been paid to 

59 these problems in recent years (e.g. Yen et al., 2004; Martín et al., 2012; Howard et al., 2015; 

60 Ashcroft et al., 2017; Fox et al., 2017).

61 In the past, spatial conservation decisions and plans are usually just based on SDMs (e.g. Suárez-

62 Seoane et al., 2008; Gray et al., 2009; Adams et al., 2016; Mi et al., 2016). However, despite 

63 statements by Newton (2008), many scholars found species occurrence and abundance distribution 
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64 not to display similar patterns (Yen et al., 2004; Karlson et al., 2011; Yin & He 2014; Johnston et 

65 al., 2015). Therefore, conservation decisions only based on SDMs predictions are insufficient and 

66 may even be misleading, so do SAMs. In the future, one time-critical challenge and associated 

67 progress will be centered how to combine the useful information that SDMs and SAMs each offer 

68 for conservation.

69 In this study we chose the endangered Great bustard (Otis tarda dybowskii) wintering in 

70 Cangzhou at the North China Plain near Bohai bay as a case study. This area is one of the most 

71 important wintering grounds for this species (about 300 individuals, c.13.6~20.0 % of China9s 

72 total wintering population (Goroshko 2010; Meng 2010). Using the Great Bustard as a case study 

73 would contribute to our conservation knowledge about habitat use of a threatened farmland species 

74 and for a better policy. By studying not only the spatial occurrence and the abundance patterns, 

75 but also combining these two model types together as a role model for predictive modeling and its 

76 inference would potentially have wider conservation implications. Our overall objective of this 

77 research was to (1) assess and develop models to predict accurately the patterns of bustard 

78 occurrence and abundance; (2) infer on environmental variables that influence occurrence and 

79 abundance of this species; (3) combine occurrence and abundance models as a new contribution 

80 to conservation decisions; and (4) investigate the overall relationship among predicted occurrence, 

81 predicted abundance and observed abundance. Well-tested and suited methods from this research 

82 could be useful for the conservation of Great Bustard, but also other rare species and biodiversity 

83 in general where SDMs and SAMs can be employed.

84
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85 MATERIALS AND METHODS

86 Study area

87 This study was conducted at the wintering grounds of endangered Great Bustards in Cangzhou, 

88 southeast of the Heibei Province in the wider Bohai Bay (Fig. 1). It is located at 38°122573 - 

89 38°362513 latitude and at 116°502483 - 117°242033 longitude in the warm temperate, semi-humid 

90 monsoon climate zone, which features the slightly marine climatic characteristic of the Bohai Sea 

91 region. The topographical and climate condition varies little in the study area. The total study area 

92 is 2,191.4 km2, consisting of farmland (1,675.1 km2; 76.4%), residential area (330.5 km2, 15.1%), 

93 open water (23.5 km2; 1.1%) and other unspecified land uses (e.g. home lots, sheds). 

94 Put Fig. 1 Here

95 Most of the farms in this region produce cereal, which is grown in a 2-year rotation system. In 

96 the first year, winter cereal is cultivated from early September to the end of April the following 

97 year. Then, corn is cultivated between the end of April to early September of the same year. The 

98 study area was chosen (Fig. 1) because of its large numbers (about 300 individuals, c.13.6 ~20 % 

99 of China9s total wintering population (Goroshko 2010; Meng 2010). This area is the world9s largest 

100 wintering ground of the endangered O. t. dybowskii. This area is representative of the typical 

101 farmland situation in the North China Plain. In addition, accurate Great Bustard census data, 

102 geographic information system (GIS) data coverages and satellite imagery were readily available. 
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103 Bird census data 

104 Spatial occurrence and abundance data for Great Bustards were used to develop models. A Great 

105 Bustard census was winter survey conducted during November 2013 to March 2014. In the study 

106 area, we travelled with a small four-wheel-drive tractor along fixed routes, using speeds of 10-30 

107 km/hour. Our team consisted of two experienced observers (one surveyor and one local resident) 

108 counting bustards and with a good knowledge of the area to be surveyed. When a flock was found, 

109 we drove slowly and stopped on the location at a 100 - 500 m distance from bustard flocks, 

110 recording its size, location, habitat type and basic behavior. This resulted in a good detection of 

111 birds and flocks in the study area because birds can be seen already from long distances (~3km) 

112 but also when flying away. The actual animal coordinates were obtained by Google Earth when 

113 combing it with our recorded location. Each census was done from dawn to dusk. During the study, 

114 we identified 94 bustard sites in the study area. To our knowledge, this census data were the best 

115 available ones in China for bustards.

116 GIS environmental layers 

117 Based on environmental conditions in our study area, we selected eleven habitat and landscape 

118 (environmental) variables to construct models predicting occurrence and abundance (Table 1). In 

119 order to obtain these variables, we acquired the basemap from Google Earth (using Daogle, an 

120 open source software made by a Chinese individual http://www.daogle.com/; as used and 

121 explained in Mi et al., 2014) and derived otherwise unavailable high resolution landscape 

122 inventory information about open water pools, rivers, residential areas, national roads, provincial 
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123 roads, expressway, farmland road, ditch and farmland areas from the base map. Next we 

124 constructed a distance layer for these variables (except for the farmland area) using the Euclidean 

125 Distance tool in ArcGIS 10.1 with a 30 m×30 m spacing. This high pixel resolution was chosen in 

126 order to be consistent with remote sensing variable resolution we used. 

127 Satellite images 

128 A range of the best cloud-free HJ-1A/B (HuanJing (HJ)) satellite images 

129 (http://218.247.138.121/DSSPlatform/index.html#) at a 30 m×30 m resolution was obtained for 

130 each month for November 2013 to March 2014 in order to calculate the normalized difference 

131 vegetation indices (NDVI) signature for each pixel. The HJ-1A/B CCD data were run for 

132 radiometric calibration, atmospheric correction and geometric correction in order to obtain surface 

133 reflectance data and subsequent NDVI data. Radiometric calibration was finished using 2014 HJ-

134 1A/B CCD absolute radiometric calibration coefficients provided by the China Centre for 

135 Resources Satellite Data and Application. For this study, we used maximum and mean NDVI to 

136 represent the vegetation condition (Osborne et al., 2001).

137 Put Table 1 Here
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138 Model development

139 We employed an advanced machine learning technique, Random Forest, to model the 

140 occurrence as well as abundance distribution of Great Bustards. Breiman (2001)9s  Random Forest 

141 implementation in SPM7 by Salford Systems Ltd is robust to over-ûtting and is widely recognized 

142 to produce very good predictive models. Hence, it is increasingly applied to species distribution 

143 modelling (Cutler et al., 2007; Drew et al., 2011; Mi et al., 2016 for an application using bustards 

144 in China). Though Random Forest performed the best to predict abundance itself (see Appendix 

145 1), testing the feasibility for other data was essential for good certainty. So for an assessment on 

146 the robustness of the model we pooled data from 2013 and 2014, and then used 80% abundance 

147 data as training data and the remaining 20% as testing data. When we constructed initial abundance 

148 models with all eleven environmental predictors, model performance is not so good (R2 was small). 

149 Likely that has to do with the regression settings in Random Forest algorithm. For a better outcome 

150 we assessed a <stepwise= setting in SPM for whole abundance data (100%) to re-run models, and 

151 found better results. In that way, we identified a multivariate set of four environmental predictors 

152 (distance to expressway, distance to national road, distance to pool, MNNDVI), which have the 

153 best performance (biggest R2). Using these four predictors, we re-constructed the abundance model 

154 based on the training data (80%) and validated it with testing data (20%). We found that the 

155 regression model performance was acceptable but fair (R2 = 0.551) between observation and 

156 simulation abundance. Thus, we constructed the final abundance model based on the above four 

157 selected variables and with the entire observation data. In order to obtain an abundance index more 

158 close to observations we adjusted the simulation abundance according to the linear regression 

159 between observation and simulation abundance (Fig. 2a). 

160 Put Fig. 2 Here
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161 Further, Random Forest was also applied to rank the relative importance of environmental 

162 variables. In SPMv7, partial dependence plots are not directly implemented in Random Forest yet, 

163 but can easily be obtained from R or are mimicked in TreeNet model as a Random Forest run. 

164 Thus, we used TreeNet with bagging settings to create partial dependence plots for each variable 

165 of the occurrence and abundance models.

166 About 10,000 pseudo-absence points were taken by random sampling across study areas using 

167 the freely available Geospatial Modeling Environment (GME) software 

168 (http://www.spatialecology.com/gme/) for distribution models. In SPMv7 we set balanced class 

169 weights, grew each model to 1,000 classification trees for occurrence model and 1,000 regression 

170 trees for abundance model, and used all other software default settings. We extracted the habitat 

171 information from the environmental layers for presence and pseudo-absence points for Great 

172 Bustards in GME, and then created a model file in SPM7 called a 8grove9 containing the algorithm 

173 quantifying patterns of occurrence for scoring all pixels in the study area. We also extracted the 

174 habitat information from the same environmental layers for abundance points, and then generated 

175 a 8grove9 file for abundance to score abundance estimates for each pixel in the study area.

176 For spatial occurrence and abundance distribution visualization, we applied the SPM7 grove 

177 files to a regular lattice of points (pixels; also attributed to the environmental variables) spaced at 

178 30 m intervals across the study area. Model outputs generated relative indices of occurrence (RIO; 

179 an index of pixels from 0 to 1 representing a relative index belonging to the 8occurrence9 class) 

180 and a relative abundance index (simulation abundance) for each point in the regular lattice based 

181 on its underlying environmental variables. We also adjusted the predicted abundance based on a 

182 linear regression as constructed in the previous model development steps (Fig. 2a). For a better 

183 continuous spatial visualization, the RIO and predicted abundance values were smoothed between 
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184 neighboring points across the extent of the study area using the Inverse Distance Weighting (IDW) 

185 tool in ArcGIS 10.1. This yielded spatially continuous predictive distribution and abundance raster 

186 maps of Great Bustard. 

187 Model validation

188 The Random Forest performance was first assessed internally using a set of 8out-of-bag9 (OOB) 

189 training points (OOB; a specific concept used with Random Forest models to describe a subset of 

190 points not used initially for model ûtting; Breiman 1996, Breiman 2001). Using this out-of-bag 

191 dataset, the receiver-operating characteristic (ROC) and RMSE were used to calculate predictive 

192 performance of occurrence and abundance models, respectively (Zweig and Campbell 1993; 

193 Fielding and Bell 1997; Huettmann and Gottschalk 2010). 

194 Priority protection analysis 

195 In order to have a more suitable and scientific protection plan for the endangered Great Bustard, 

196 in this study we put forward for the first an index called the priority protection index (PI), which 

197 combines the predicted results of SDM and SAM. This index is calculated by the following 

198 equation for each site: 

ÿý = ýýÿ × ýýÿÿý (ýýÿ × ýý) (1)

199 where PI = Priority protection index (an index of pixels from 0 to 1 representing the priority of 

200 conservation), RIO = relative index of occurrence, and RA = relative abundance (simulation 

201 abundance). In our study, we computed the PI for the whole study area based on RIO and the 

202 adjusted RA value of each grid cell by spatial occurrence and abundance maps. Then we used the 

203 IDW tool in ArcGIS 10.1 to generate spatially continuous priority protection index (PI) raster 

204 maps. In this equation we did not consider the weighting of biotic and socioeconomic variables. 
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205 So the justification and use of the PI should be explained a little more: When combining SDM 

206 with SAM one will not find a straight forward relationship between occurrence and abundance 

207 (see Yen et al. 2004 for an example). What the PI will do, but what has not been achieved before 

208 much, is to essentially model that relationship and provide a combined view of occurrence index 

209 and abundance index explicit in space and time. Achieving this can thereby help to prioritize pixels 

210 better with let9s say high occurrence index and low abundances on pixels etc.

211 RESULTS

212 Model performance 

213 Our distribution model obtained a decent performance (ROC: 0.77) according to Fielding and Bell 

214 (1997), and the abundance model had RMSE 26.54 (RMSE is unit-less). Such model predictions 

215 allow us to infer from such models and how they are built. 

216 Variable importance 

217 Table 2 presents the variable importance ranking of occurrence and abundance models obtained 

218 from the Random Forest method. We found that the area of farmland, distance to residential area 

219 (buildings), to ditch and to expressway were the top four most important variables influencing 

220 bustard occurrence. Those come as a multivariate package. The NDVI which represents vegetation 

221 condition was less important than the other nine predictors. As for the abundance model, the most 

222 important factors were distance to national road and to expressway, followed by water factors 

223 (distance to pool) and food-related factors (MNNDVI) 

224 Put Table 2 Here

225 Partial dependence plots 

226 Partial dependence plots could interpret the functional relationships and effects of each variable 
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227 by representing a variable's marginal effects on the response (Elith et al., 2008; Johnstone et al., 

228 2010). It helps to find the signal in the data; Fig. 3a indicated that the occurrence preference of 

229 bustards for farmland area was between 0.6 and 7.5 km2. Distance to residential area ranging from 

230 250 to 2,500 m (Fig. 3b), distance to ditch ranging from 100 to 4,500 m (Fig. 3c), and distance to 

231 expressway from 6,000 to 19,000 m (Fig. 3d) were bustard preferences. While for abundances, 

232 more individuals would occur beyond 2,300 m, but less than 9,500 m away from national roads 

233 (Fig. 3e), and be found in the range between 7,000 and 11,000 m away from expressway (Fig. 3f). 

234 Moreover, this species kept themselves away from pools (larger than 1,500 m, Fig. 3g) and with 

235 more vegetation (mean NDVI during the investigation larger than 0.13, Fig. 3h). The information 

236 for other variables, more marginal, can be found in Appendix 2.

237 Put Fig. 3 Here

238 Occurrence, abundance distribution patterns and priority protection 

239 Fig. 4 shows the maps of RIO (relative index of occurrence), adjusted RA (relative abundance) 

240 and PI (priority protection index). From the RIO map (Fig. 4a), we found that the distribution area 

241 of high RIO of bustards is high. The regions of high occurrence possibility of bustards were 

242 concentrated in the south-central study area; and the whole habitats represented a fragmented 

243 distribution. The abundance distribution had a different pattern, showing high populations 

244 occurring in the central and northwestern study area (Fig. 4b). Based on the occurrence and 

245 abundance distribution results, we used equation (1) and obtained the result of Fig. 4c. It displays 

246 that a high PI is located in the center, north and northeast of the study area and it shows a sporadic 

247 fragmented distribution which would be the priority protection site if a conservation decision is to 

248 be made.

249 Put Fig. 4 Here
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250 DISCUSSION

251 The occurrence and abundance models of Great Bustard developed here were designed to 

252 identify relevant locations for where to prioritize conservation, and to assess the effects of each 

253 variable that influenced this species occurrence and abundance (Fig. 3). Area of farmland, distance 

254 to residential area, distance to ditch and to expressway were among the top four most important 

255 predictors for bustard occurrence in a multivariate perspective; while for the abundance model 

256 they consisted of  another multivariate package of distance to national road, distance to 

257 expressway, distance to pool and mean NDVI (Table 2). We found that high RIO habitats had a 

258 fragmented distribution throughout the entire study area (Fig. 4a). The abundance model showed 

259 that high population usually occurred in the central and northwestern part of our study area (Fig. 

260 4b). The center, north and northeast of the study area with a high priority protection index (PI) and 

261 with a severely fragmented distribution should be the priority site for protection (Fig. 4c). This not 

262 only confirms our own records but with the help of the PI can now be quantified and modeled 

263 further for an effective conservation!

264 In our study area, human disturbance was very strong, such as density of roads and residential 

265 areas (Fig. 1). During our study we also found other threats to this endangered species: farmers 

266 grazed their sheep; famers sprinkled poison baits in the wheat field to avoid sheep entering; some 

267 bird photographers pursued bustards by walking or following on motor vehicles to take photos, 

268 which they wanted to show off to others; hunters with dogs chasing hare and ring-necked pheasant 

269 during day and night; some local people hunted bustards; increasing power lines setting in 

270 agriculture land, bustards sometimes collided with wires and were injured or even died when 

271 starting to fly in foggy days or when in a hurry (Janss & Ferrer 2000); and the interference of 

272 firecracker sounds during Chinese Spring Festival as well as oil rigs and wind farms. Though 
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273 carrying a high disturbance and for a stress synthesis (e.g. <death by thousand cuts=), still, a large 

274 number of wintering bustards (about 300, c. 13.6 ~20.0 % of China9s total wintering population; 

275 Goroshko 2010; Meng 2010) wintered in this area. In times of climate change, it can be assumed 

276 the population widens (Mi et al., 2016). Thus, this is an area of essential importance for bustards 

277 in China either way. A feasible conservation plan should therefore be made, based on our model 

278 prediction result, combined with local public customs and financial support and a wider buy-in. In 

279 our opinion, improved education on animal protection to local people as we usually did over the 

280 years would be useful. The same applies to increasing budgets, enforcement and frequency of 

281 patrol by the local management and conservation NGOs in the region with high PI value and the 

282 local community, with corresponding government financial support. Patrol route designation in 

283 the field should avoid getting too close to bustards though, so as not to disturb and stress the regular 

284 wintering activities of bustards. For the benefit of this species and its habitats we suggest to not 

285 change crop farmland into nursery farmland; and we encourage farmers to harvest their crops with 

286 a machine, which is a more beneficial harvesting method for bustards based on our previous 

287 research results (Mi et al., 2014). We also highly recommend, if possible, to bury power lines into 

288 the ground and to collect hunting guns from local public.

289 In this study, occurrence and abundance did not display identical spatial distribution patterns 

290 which was reported in some previous studies (Conlisk et al., 2007; Karlson et al., 2011; Yin & He 

291 2014; Johnston et al., 2015). There is actually no reason to assume a presence site just shows one 

292 animal individual, or a linear relationship between RIO and abundance. Technically-speaking, 

293 8presence9 can mean 1-infite animals and details depend on the actual pixel set-up and how it fits 

294 into the obtained model. So while the relationship is not automatically clear this could be due to 

295 several reasons and depending on specific habitat details: Firstly, environmental variables that 
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296 contributed to occurrence and abundance were different, as Table 2 indicated. Secondly, predictor 

297 preference in bustard occurrence and abundance models were different. For instance, bustards 

298 occur at a distance to expressway from 6,000 to 19, 000m (Fig. 3d), while most populations occur 

299 between 7,000 and 11,000m from expressway for abundance (Fig. 3f) (see more details in Fig. 3 

300 and Appendix 2). Thirdly, they differed in their spatial distribution for occurrence and abundance 

301 (Fig. 4a, b). Based on the analysis of overlaying observation sites with RIO and observation 

302 abundance (Fig. 5a, b), estimated relative index of occurrence (RIO) do not consistently relate with 

303 the relative index of abundance (Fig. 5a). All locations of observed abundance had high RIO (Fig 

304 5a), and the relationships between occurrence and abundance estimates were nonlinear (Fig. 5b). 

305 These differences may represent a mixture of effects reûecting differences between the underlying 

306 biological processes that give rise to specific abundance and occurrence at a pixel, as well as 

307 limitations imposed by the data and methodology to estimate these patterns (Johnston et al., 2015; 

308 see Buckland et al., 2016 for Distance Sampling and detectability problems). In addition, how to 

309 understand the inconsistency between these two indices of plant prediction is a problem waiting 

310 to be resolved further. For instance, between crop occurrence index (equal to habitat suitability 

311 index) and crop abundance (e.g. production). 

312 Put Fig. 5 Here

313 When treating all presences as equal in species distribution models (SDMs; occurrence model, 

314 habitat niche model) -regardless of the abundance of individuals that the habitat supports - this 

315 could provide us with information on the suitability of habitat loss (Howard et al., 2014). Applying 

316 models based on abundance data even at a relatively coarse scale can help to predict spatial patterns 

317 of occurrence modelled with even greater reûnement (Howard et al., 2014). Conservation decision-

318 making should use as much knowledge and information as possible to optimize the beneûts of 
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319 conservation action (Sutherland et al., 2004; Segan et al., 2011). The use of species distribution 

320 models (SDMs) of occurrence has been an important tool in optimizing the selection of protected 

321 areas (Franklin 2013; Guisan et al., 2013, Mi et al., 2016; Han et al., 2017) based on the ecological 

322 niche space (Drew et al., 2011), but relative abundance is often perceived a more relevant metric 

323 because it can quantify animals on a pixel, and thus, populations (Johnston et al., 2015). Modeling 

324 abundance requires methods that can handle large numbers of zero counts as well as the rare, but 

325 important, high counts (Welsh et al., 1996) without a solid research design, according to frequentist 

326 statistics. However, Yen et al., (2004), Magness et al., (2008) and Fox et al., (2017) showed already 

327 how machine learning can change this perspective and provide very powerful solutions.

328 High counts and their locations are particularly important because the pixels with the highest 

329 densities of animals are potentially of greatest interest for conservation planning (Johnston et al., 

330 2015). In our study, we found that the regressions in Random Forest performed imperfectly for 

331 low and high counts (Fig. 2b) although it showed a highly linear relationship between observed 

332 and simulation abundance (R2=0.844; Fig 2a). Therefore, we argue that the regression method in 

333 Random Forest algorithm should optimize low and high count predictions. We recommend to 

334 classify abundances in bins (e.g. high, medium, low with associated abundance estimates) because 

335 Random Forest is exceptionally strong for classification problems. This remains an open field of 

336 research, for now. However, we find our progress remains substantial.

337 Abundance data could also provide valuable baselines against which to assess future changes 

338 (Cumming 2007) (e.g. climate change, land use change). Such changes in abundance will be much 

339 more rapidly apparent, and hence more rapidly detected than changes in presence-absence patterns 

340 across ranges (Gregory et al., 2005). However, only a few spatial distribution modelers derived 

341 models with the collection of abundance data (e.g. Yen et al. 2004, Fox et al. 2017). This may be 
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342 because collection of abundance data is more cost or resource demanding than collecting presence 

343 - absence data especially for highly mobile animals. Such data are sophisticated in structure and 

344 research design, and still they are rarely shared (see in GBIF.org). We therefore recommend that 

345 abundance data could be collected (easily to be turned into presence-absence data, too), even at 

346 only relatively coarse numerical scales because the beneûts are considerable (as stated by Howard 

347 et al., 2014). One thing that should be mentioned is that plenty of abundance data and (non-linear 

348 regression) models did not perform well and abundance were extremely difficult to predict (Oppel 

349 et al., 2012). Finding the underlying causes that influence abundance model accuracy and 

350 constructing more accurate models would be extreme important and useful in future applications 

351 towards individual-based policy applications.

352 For a spatial priority protection of mobile species, one should note that high numbers of 

353 individuals are not always present in the same habitats and pixels, instead low numbers may occur 

354 in one place many times. And this may have implications for spatial priority protection for mobile 

355 species. Previous studies have used analytical approaches to deal with some of these challenges 

356 (e.g. Nichols et al., 2009; Kery & Andrew Royle 2010; Oppel et al., 2012; Jiguet et al., 2013). 

357 However, no general modeling framework has been proposed for dealing with all of these 

358 analytical challenges simultaneously. This is exactly where our PI offers progress. We also thought 

359 the situation of mobile species selecting habitats could be divided into five scenarios: higher 

360 numbers and multi frequency, higher numbers and lower frequency, low numbers and multi 

361 frequency, low numbers and low frequency, none. When a conservation plan is made for a species, 

362 one should consider not only occurrence index and frequency, but also abundance. Here we 

363 proposed the priority protection index (PI; equation (1) and Fig. 4) based on the distribution of 

364 occurrence and abundance pattern as more helpful for a fast priority protection plan than indices 
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365 and it9s only based on distribution of occurrence or abundance. 

366 To date, quantitative estimates of population size during global and local changes have actually 

367 proven to be difûcult to forecast. This is a major hindrance for effective management, as population 

368 size and trend are considered among the best correlates of extinction risk (O'Grady et al., 2004). 

369 Such measures are commonly used in determining the conservation status of a species (e.g. IUCN 

370 (2001)). We argue that habitat loss remains the one and only powerful metric that can be obtained 

371 quickly on a landscape-scale in the absence of proper trends and abundances (e.g. Drew et al. 

372 2011). The relationship between predicted environmental suitability and abundance - as presented 

373 here - may provide us with a possible method for predicting population size and its changes 

374 associated with distributional changes, particularly appropriate for non-mobile species (e.g. plants, 

375 fungi). However, this method is not particularly suitable for mobile species, especially for highly 

376 mobile species such as many birds, bats, and ûying insects. They may move over a large landscape 

377 within just a single day, and abundance and the environment can vary seasonally and spatially. 

378 When computing population size or population density using abundance, the primary task will be 

379 how to determine the unit area of investigation and for conservation management.

380 This study is the ûrst that has combined model-predicted occurrence (representing species 

381 distribution model) and abundance indices (representing species abundance model) to produce a 

382 priority protection index (PI), which may contribute to spatial conservation and management 

383 decisions worldwide. We strongly encourage other researchers to test, apply and update the priority 

384 protection index (PI) to explore the generality of these ûndings further.
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1 Tables

2 Table 1 Comparison of features around 94 sites occupied by great bustards and 10 000 random points. Values are means ± standard deviations.

Layer Variable Description Bustard sites Random points

1 Distance to pool Distance to pool in meter 1179.0 ± 734.5 1378.0 ± 910.3

2 Distance to river Distance to river in meter 2302.0 ± 1751.2 2630.0 ± 2483.0

3 Distance to residential Distance to residential in meter 935.0 ± 586.8 980.2 ± 723.8

4 Distance to national road Distance to national road in meter 5280.0 ± 4234.2 5855.0 ± 4036.9

5 Distance to provincial road Distance to provincial road in meter 8730.0 ± 5928.7 9217.0 ± 6112.4

6 Distance to expressway Distance to expressway in meter 10010 ± 5750.0 9585.0 ± 6666.7

7 Distance to farmland road Distance to farmland road in meter 477.4 ± 385.3 524.9 ± 455.8

8 Distance to ditch Distance to ditch in meter 1522.0 ± 1722.7 2120.0 ± 2078.1

9 Area of farmland Area of farmland in kilometers 3.3 ± 3.2 5.3 ± 6.2

10 MNNDVI The average value of the normalized difference vegetation 

index from November, 2013 to March, 2014 0.14 ± 0.04 0.13 ± 0.05

11 MAXNDVI The maximum value of the normalized difference 

vegetation index from November, 2013 to March, 2014 0.23 ± 0.06 0.21 ± 0.07

3
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4 Table 2 Variables importance ranking of occurrence and abundance models 

Ranking Occurrence model Abundance model

1 Area of farmland Distance to national road

2 Distance to residential Distance to expressway

3 Distance to ditch Distance to pool

4 Distance to expressway MNNDVI

5 Distance to pool --

6 Distance to river --

7 Distance to provincial road --

8 Distance to national road --

9 Distance to farmland road --

10 MAXNDVI --

11 MNNDVI --

5

6

7

8
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Figure 1

Figure 1

Study area and bird abundance and occurrence data for Great Bustard in Cangzhou, China.

Photograph of Great Bustard by Jianguo Fu.
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Figure 2(on next page)

Figure 2

Figure 2 The relationship between observation and prediction abundance using Random

Forest for Great Bustards. (a) Scatter plot of observation abundance with prediction and

adjustment prediction abundance, and (b) lines and points plot of observation, prediction and

adjustment prediction abundance.
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Figure 3(on next page)

Figure 3

Partial dependence plots for the top four most influential variables in the occurrence and

abundance distribution models for Great Bustards, respectively: (a) area of farmland in

occurrence distribution model; (b) distance to residential in occurrence distribution model; (c)

distance to ditch in occurrence distribution model; (d) distance to expressway in occurrence

distribution model; (e) distance to national road in abundance distribution model; (f) distance

to expressway in abundance distribution model; (g) distance to pool in abundance

distribution model; and (h) mean NDVI in abundance distribution model.
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Figure 4

Figure 4

Spatial distribution map of relative index of occurrence (RIO), relative abundance (RA) and

priority protection index (PI). (a) Map of relative index of occurrence (RIO); (b) map of

adjusted relative abundance (RA); and (c) map of priority protection index (PI).
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Figure 5(on next page)

Figure 5

Plots of the relationship between relative index of occurrence (RIO) and observation

abundance. (a) Scatter plot between relative index of occurrence (RIO) and observation

abundance; and (b) partial dependence plot between relative index of occurrence (RIO) and

observation abundance (obtained from TreeNet, non-parametric method).
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