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Introduction 
 
With the advance in high-throughput technologies, we are experiencing an increase in 
amount and quality of –omics data. These technologies provide a more and more accurate 
snapshot of the investigated biological systems. However, a challenge remains in how to 
decipher the molecular mechanisms underlying the emergent phenotypes from the large 
volume of biomedical data. A common approach to interpret these data is the analysis of 
protein-protein interaction (PPI) networks, in particular network clustering [1,2]. Network 
clustering aims at identifying network regions showing specific topological and/or functional 
characteristics, commonly called modules. The identification of such modules can therefore 
be crucial to better understand the mechanisms underlying a disease and to suggest novel 
drug treatments. Due to their large size, typical ranging from thousand to tens of thousands 
of nodes and edges, the analysis of PPI networks is not a trivial task and it requires efficient 
computation methods to automatically process the contents [3]. 
To this aim we introduce MTopGO, an algorithm for module identification that exploits both 
topological network properties and biological knowledge. The output of the developed 
approach consists in the network partition and it provides for each identified module the 
biological function (GO term) that better describes it. In this way, in a single step, the network 
can be analysed both under the topological aspect, thanks the identification of a meaningful 
partition, and under the biological aspect, through the identification of the main cellular 
mechanisms involving the network proteins.  
 
Methods 
A PPI network can be represented as a graph G=(V,E,𝝙), where V is the set of nodes, E is 
the set of edges, and 𝝙 is the set of GO terms associated with the network nodes. Each 
element of the set 𝝙 is a GO term and it points to the subset of proteins (nodes) annotated 
with that GO term. This network model can be used to investigate the main molecular 
processes/pathways involved in the biological system represented by PPI network. 
MTopGO is an algorithm designed to support the analysis of PPI networks, pursuing two 
main objectives: first, it finds the groups of nodes sharing interactions, called clusters or 
communities; second, it finds the Gene Ontology terms describing these groups. To perform 
this meaningful clustering, MTopGO employs repeated partitions of the network until a 
steady state is reached, improving at each iteration the topological and biological quality of 
the clusters. In detail, starting from a random partition, a new partition is created at each 
step by mixing up the nodes among the clusters. During this process, a Moving List is 
created to store the nodes that are hard to assign to clusters and used as a temporary 
depository. The Moving List is filled and emptied during each iteration. Next, a new partition 
is computed repeating, for each cluster Ci, four main steps: 
1. Selection of a GO term 𝝙h that better describes the cluster Ci. This selection is 

performed, through the Selection function (1), by identifying the GO term 𝝙h that 
minimizes the number of nodes Na in Ci not annotated with 𝝙h (i.e. Na ∈ Ci and Na ∉ 𝝙h ) 
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and the number of nodes Nc not belonging to Ci but annotated with 𝝙h (i.e. Nc ∉ Ci and 
Nc ∈ 𝝙h). These two set of nodes are shown in Figure 1 with blue and yellow color, 
respectively.  

2. The Moving List is filled with the nodes Na 
3. The set of nodes Nb corresponding to the nodes belonging to Ci and 𝝙h (i.e.Nb ∈ Ci and 

Nb ∈ 𝝙h) is used as core to create a new cluster 
4. The remaining node set Nc is assigned to the new cluster according the value of 

Contribute Modularity (CM) function (2).  
 
 
 
 
 
 
 
 
 
 
 
 
 
These steps are based on two functions: (i) Selection that accounts for the functional 
information of the nodes (GO); and (ii) CM, a function that takes into account the topological 
properties of the PPI network.  
The Selection function is so defined: 

𝑆𝑒𝑙𝑒𝑐𝑡𝑖𝑜𝑛(Ci,Δ𝐡) =
|Nc|

|Δ𝐡| − 1
+

|Na|

|𝐂𝐢|− 1
 

 
This function is used to assign to a cluster a best fitting GO as model to drive the building 
process of a cluster. 
The CM function is so defined: 
 

CM (Ci,Nc)= q(Ci+Nc)-q(Ci-Nc) ; 𝒒(Ci) =
li

m
−  (

di

2m
)

2
               (2) 

 
where Ci+Nc indicates the cluster with the node Nc and Ci-Nc indicates the cluster without 
the node Nc. This function q is derived by the Modularity function [4,5], li represents the 
number of the edges in the cluster Ci and di represents the sum of the degrees of the nodes 
in the cluster Ci. Each node of the set Nc moves from its original cluster Co to the cluster Ci 
if CM (Ci,Nc) > CM (Co,Nc), i.e. this relocation produces an increment of the Modularity 
function (the sum of all cluster contributes q). 
Once all the four steps are repeated for all network clusters, the Moving List is emptied. A 
part of the nodes in it is used to create a new cluster while the remaining nodes are 
reallocated among the existing clusters, each node is assigned to the cluster maximizing the 
CM function. The whole process is described in Figure 3. 
When the steady state is reached, i.e. when the partition resulted from the last iteration i+1 
is equal or almost equal to the previous partition (iteration i), the process is stopped and the 
final partition is provided as result. The MTopGO output consists of the final partition and 
the set of GO terms associated to each cluster of the final partition, which identifies the 
functional modules (Figure 4 shows an example of MTGO output).  
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Figure 1 The cluster Ci and the three set of nodes Na, Nb, Nc used to compute the new clusters. 
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Figure 2 Workflow of MTopGO 

Results  
 
To evaluate the performance of the MTopGO algorithm, we compared it with another state-
of-art algorithm for module identification in PPI network, DCAFP [9]. We decided to use 
DCAFP because, as MTopGO, it is based on both topological properties and GO 
information. The two algorithms applied on the PPI network from the Human organism, 
obtained downloading interactions from DIP database for human species [10]. This network 
is made of 2734 nodes and 4058 edges; the number of nodes covered by the GO terms is 
2474. The list of GO terms for Human organism contains 7909 elements [8]. The predicted 
functional modules have been compared with a set of 1765 target complexes for Human 
organism, CORUM [11]. We analyzed the performance by six measures [12] showed in 
Table 1; F-measure is a combination of Recall and Precision, while Accuracy is a 
combination of Coverage and Positive Predictive Value. F-measure and Accuracy are two 
independent metrics used to evaluate the agreement between predicted and target 
complexes in terms of overlapping. 
 

 
Table 1 Results of MTopGO and DCAFP. 

MTopGO shows better performance than DCAFP on 4/6 measures., In particular, it provides 
a better general quality. In fact, the F-measure is more than doubled (0.1 vs 0.04), and the 
Coverage more than tripled (0.481 vs. 0.139). However, DCAFP shows a better Precision, 
leading to a higher Positive Predictive Value. In fact, both Precision and PPV are metrics 
used to evaluate the proportion of predicted complexes but they work in a slightly different 
way. Precision evaluates the predicted complexes on the basis of a neighborhood affinity 
score between the predicted complex and real complex; while PPV on the basis of the 
number of proteins in common between the predicted complex and real complex [12]. 
Figure 4 shows an example of MTopGO applied to a human PPI Network built with String 
[6]. In this case, the network was built using as seed 54 genes muted in acute myeloid 
leukemia [7] and retrieving PPIs from String database, both known interactions (curated 
databases and experimentally determined) and predicted interactions (gene fusion, gene 
neighborhood, gene co-occurrence). Some other interacting nodes were added to the seeds 

Precision Recall F-measure Coverage Positive Predictive Value Accuracy

MTopGO 0.101302 0.115014 0.107723739 0.481055 0.047131556 0.150575063

DCAFP 0.171806 0.026629 0.046110888 0.139808 0.143040823 0.141415307
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from String database to reach a final network of 78 nodes and 545 edges. To find the 
functional modules we retained only the GO terms related to the Human organism and 
tagged with Experimental evidence and/or computational analysis evidence Score (7909) 
[8]. To evaluate the MTopGO ability to detect a set of GO terms able to describe the network 
in terms of biological functions, the Fisher’s exact test has been used to compute a p-value 
for each module and its corresponding GO term; the found p-values are all significant, under 
the 0.05 threshold (see Table 2).  
 

 
Table 2 The p­values computed by Fisher’s exact test of the GO terms attached by MTopGO to each module. 

Conclusions  
MTopGo is a novel algorithm of module identification for PPI Network analysis, it is designed 
to consider two key aspects of these models, the topological properties of the network and 
the apriori knowledge about the proteins involved, represented by GO annotations. The final 
output provides both a PPI network partition and a set of GO terms describing the biological 
mechanisms involved. This represents a starting point for the model analysis and 
interpretation by biologists. MTopGo is therefore not just a clustering algorithm but also a 
tool to automatically analyze the biological phenomenon described by a PPI network and 
guide experts’ research providing clinically interpretable results.  
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GO term Description P-value

1 GO:0005737 Cytoplasm  0.005033703

2 GO:0044822 RNA Binding 1.12E­12

3 GO:0005654 Nucleoplasm 0.000229789

4 GO:0003700 Transcription factor activity 0.003453057

5 GO:0005689 U12­type complex 6.17E­08

Figura 4 Example of MTopGO applied to a Human PPI network. The algorithm produces a partition of 5 clusters, each one 
tagged with a specific GO term. 
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