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ABSTRACT

Epilepsy is a complex brain disorder characterized by repetitive seizure events. Epilepsy patients often
suffer from various and severe physical and psychological comorbidities. While general comorbidity
prevalence and incidences can be estimated from epidemiological data, such an approach does
not take into account that actual patient specific risks can depend on various individual factors,
including medication. This motivates to develop a machine learning approach for predicting individual
comorbidities. To address these needs we used Big Data from electronic health records (˜100 Million
raw observations), which provide a time resolved view on an individual’s disease and medication
history. A specific contribution of this work is an integration of these data with information from 14
biomedical sources (DisGeNET, TTD, KEGG, Wiki Pathways, DrugBank, SIDER, Gene Ontology,
Human Protein Atlas, ...) to capture putative biological effects of observed diseases and applied
medications. In consequence we extracted >165,000 features describing the longitudinal patient
journey of >10,000 adult epilepsy patients. We used maximum-relevance-minimum-redundancy
feature selection in combination with Random Survival Forests (RSF) for predicting the risk of 9
major comorbidities after first epilepsy diagnosis with high cross-validated C-indices of 76 - 89% and
analyzed the influence of medications on the risk to develop specific comorbidities. Altogether we
see our work as a first step towards earlier detection and better prevention of common comorbidities
of epilepsy patients.
Supplementary material: https://drive.google.com/file/d/0B4OhgVPeWvGTeUNFQVJLai1HRlk/view?usp=sharing,
code: https://github.com/thomasmooon/GCB2017
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1 INTRODUCTION
Epilepsy is a complex, life threatening brain disorder characterized by repetitive seizure events.
Epilepsy patients often suffer from various and severe physical and psychological comorbidities, such
as overweight, anxiety, depression, bipolar disorder and cardiovascular diseases (Seidenberg et al.,
2009; Ottman et al., 2011; Keezer et al., 2016). Some comorbidities confer a poor disease prognosis,
because they complicate pharmacological treatment owing to possible drug-drug interactions and
adverse events (Verrotti and Mazzocchetti, 2016). The actual development of comorbidities is
dependent on patient specific factors and may be modulated by anti-epileptic drug (AED) treatment
(Zaccara, 2009). Early identification and treatment of comorbidities has thus been identified as highly
relevant to improve the quality of life of epilepsy patients (Verrotti and Mazzocchetti, 2016).

The aim of this work was to start addressing these needs by building a machine learning model that
allows for predicting comorbidity risks of epilepsy patients based on their past time resolved clinical
history. More specifically, we here employed Big Data from Electronic Health Records (EHR) of more
than 10,000 adult epilepsy patients. The overall potential of EHR data for biomedical research has
been e.g. discussed in Jensen et al. (2012). Population level statistical associations of comorbidities
to epilepsy using EHR data have been investigated in Sajatovic et al. (2015). Applications of machine
learning techniques to EHR data for different medical questions can e.g. be found in Weiss et al.
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(2012); Peissig et al. (2014); Miotto et al. (2016); Choi et al. (2016). However, to our knowledge
nothing exists so far to predict epilepsy comorbidities. Furthermore, previous work purely relies
on the phenotypic information that is extract-able from EHR data, hence missing relevant aspects
on the molecular level. A specific contribution of our work is thus to integrate patient medication
and diagnosis information extracted from insurance claims based EHRs with various biomedical
databases that capture putative biological effects of observed diseases and applied drugs. To achieve
this goal we downloaded and combined data from 14 data sources and constructed more than 165,000
features out of the 2 years medical history of each individual patient and then used maximum-
relevance-minimum-redundancy feature selection in combination with Random Survival Forests
(RSF) (Ishwaran et al., 2008) for predicting the risk of 9 major comorbidities after first epilepsy
diagnosis. Our work demonstrates the principal feasibility of using claims based EHRs covering
a limited portion of patient history to predict comorbidity risks of epilepsy patients and to better
understand the influence of individual medications in that context.

2 METHODS

2.1 Claims Based Electronic Health Records
US commercial inpatient and outpatient data covering the years 2011 - 2015 were obtained from the
TruvenHealth MarketScanTM databases1. The Commercial Claims and Encounters database within
MarketScanTM is a nationally representative collection of de-identified patient-specific inpatient,
outpatient, and pharmaceutical claims from more than 200 insurance carriers and large, self-insuring
companies. Within these data epilepsy patients were identified according to the fulfillment of at least
one of the following criteria:

• an occurrence of ≥2 ICD-9-CM codes of 345.xx (except 345.3) among separate medical
encounters (separate dates in any care venue)

• an occurrence of ≥1 ICD-9-CM code of 345.xx (except for 345.3) AND ≥1 ICD-9-CM code
of 780.39 among separate medical encounters

• an occurrence of 1 ICD-9-CM code of 345.xx (except for 345.3) AND code(s) for AED
prescription at least a day after the 345.xx code

• an occurrence of ≥ 2 ICD codes of 780.39 among separate medical encounters AND code(s)
for AED treatment. The code(s) for the AED treatment should occur at least a day after the
second 780.39 irrespective of the presence or absence of an AED code after the first 780.39
code

• Individuals with ICD-9-CM code 345.3 will be required to have an occurrence of ≥2 ICD-9-
CM codes of 345.3 separated by at least 30 days, or an occurrence of the 345.3 code and ≥1
ICD-9-CM code 780.39 separated by at least 30 days, or ≥1 ICD-9-CM code 345.3 and ≥1
ICD-9-CM code 345.xx encounters on separate days

The index date for each patient was defined as the time point of the first epilepsy diagnosis, and for
definitions requiring at least 2 ICD-9-CM codes the first diagnosis code was the index date. The
resulting dataset had 97,999,822 records from 526,923 patients. The data was further filtered by
requiring for each patient a) at least 2 years of medical history before and 180 days follow up after
index date; b) age between 18 and 66; c) any AED treatment during observation period. Altogether
this yielded 12,225,388 records from 30,807 patients. For parts of these patients diagnoses after index
date were coded in ICD10, which we mapped to ICD-9-CM via the Thomas ReutersTM public web
resource 2 and manual curation.

One of the main issues with EHR data is that one and the same diagnosis may be coded with
different ICD codes. Moreover, observations related to one specific ICD9/10 code could be rare. To
address these issues, we mapped all ICD-9-CM codes to PheWAS terms, which describe a higher
level aggregate of several ICD codes (Carroll et al., 2014). In addition a mapping to MeSH (Rogers,
1963) was performed to allow for integration with other data sources (see below).

1https://truvenhealth.com/markets/life-sciences/products/data-tools/marketscan-databases
2http://www.tdrdata.com/ipd/ipd ICD10ToICD9List
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2.2 Definition of Focused Comorbidities
Based on the indicated prevalence in epilepsy patients in the medical literature (Seidenberg et al.,
2009; Ottman et al., 2011; Tellez-Zenteno et al., 2007) as well as frequency in our data we considered
the following 9 comorbidities with exact PheWAS term definitions given in Table S1:

1. anxiety

2. bipolar disorder & schizophrenia

3. depression

4. diabetes

5. hyperlipidemia

6. hypertension

7. migraine

8. overweight

9. stroke & ischemic attack

Our aim was to predict the time till first diagnosis of these comorbidities after first epilepsy diagnosis.
To reduce the risk that first diagnoses of these comorbidities would correspond to an actual situation
that existed before index date (but was not reported there in our data) we required first comorbidity
diagnoses to appear at least 180 days after index date.

2.3 Integration with Biomedical Knowledge Sources
We used DisGeNET (Piñero et al., 2017) to retrieve for each reported diagnosis in our data disease
associated genes. Enrichment of Gene Ontology (GO) biological processes (The Gene Ontology
Consortium, 2004), KEGG (Kanehisa et al., 2008) and Wiki pathways was then estimated via a
conditional hyper-geometric test using GOstats (Falcon and Gentleman, 2007) with a tail area based
false discovery rate (FDR - Strimmer, 2008) cutoff of 5% for GO and 20% for pathways. Furthermore,
known disease biomarkers and symptoms were obtained from the Therapeutic Target Database
(TTD) (Yang et al., 2016) and the human symptoms-disease network (Zhou et al., 2014). Similarly,
medications in the EHR data were mapped to known targets via TTD and DrugBank (Wishart et al.,
2006) via text matching of substance names, and information about tissue expression of drug targets
was obtained from the Human Protein Atlas (Uhlén et al., 2015). Potential side effects of drugs
and their likelihoods were retrieved from SIDER (Kuhn et al., 2016), again by application of text
matching of substance names. We obtained information about likely indication areas of drugs from
MEDI (Wei et al., 2013). Notably, only indication areas that were marked as “high confidence” by
the MEDI authors and were mentioned in at least 10 PubMed articles were used. Finally, medications
were mapped to substance classes and groups via the RED BOOKTM database. Figure 1 shows an
overview about the integration process. Further details are described in the supplements.

2.4 Feature Matrix Construction Using Longitudinal Information
Applicaton of machine learning algorithms usually require the specification of a numeric feature
matrix. In our case these features one one hand described general patient characteristics (e.g. age,
gender, region, days in hospital). On the other hand our aim was also to capture - at least partially - the
longitudinal nature of the medical history of each patient. We therefore constructed for each individual
patient a feature vector for every 3 months in the 2 years medical history before index date plus 3
months after index date. The reason for including information from the 3 months after index date was
that patients at the time of their first epilepsy diagnosis (and possibly directly after) typically visit their
physician very frequently, and thus diagnoses within that time period can be assumed to be highly
informative about the actual disease state of the patient at index date. According to our integration
with several biological data sources features constructed for every 3 months time period covered
diagnosis related features (MeSH term, PheWAS diagnosis group, enriched disease KEGG and Wiki
pathways and GO biological processes, biomarkers, symptoms) as well as medication properties (total
quantity of prescribed substance, substance class, putative targeted pathways, biological processes and
tissues, potential side effects, likely indication areas). Table S2 shows an overview about extracted
features together with their source of information. Altogether there were about 18,400 features for
each of the 9 quarters. Hence, there were about 165,000 extracted features per patient in total.
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Figure 1. EHR data contains general patient characteristics, prescriptions and diagnosis codes. With
the help of external information sources from prescriptions and diagnosis codes a number of
interpret-able features can be extracted.

2.5 Machine Learning
Our aim was to predict for each individual patient the time till first comorbidity occurrence at least
180 days after index date. This can be seen as an instance of a time-to-event modeling problem with
censoring, because patients may develop the comorbidity after the end of the observation period.
The reason for us to start predicting comorbidities 180 days after index date and not before was
that reported events in the database very close to the index date are possibly a result of an intensive
medical examination of patients at time of their epilepsy diagnosis. Predicting comorbidities during
that time period is thus likely to be overoptimistic and not very helpful for medical decision support.

We used Random Survival Forests (RSF) (Ishwaran et al., 2008) for predicting comorbidities
based on the implementation in the R-package “ranger” (Wright and Ziegler, 2017). RSF are an
extension of the well known Random Forest algorithm (Breiman, 2001) for time-to-event models
and are particularly well suited for applications to large scale, highly heterogenous data, as in our
situation. Furthermore, RSF are a non-parametric approach and do not, for example, rely on the
proportional hazards assumption. Finally, the RSF implementation provided in “ranger” is scalable to
Big Data due to the possibility of parallelization of the RSF algorithm.

The data in our application is extremely high dimensional. Off-the-shelf application of RSF to
these data would not only yield severe computational issues, but also result into overfitting. Therefore,
we first removed features appearing in less than 5% of the patients as non-zero. Afterwards, we

reduced the number of input features further via the maximum-relevance-minimum-redundancy
(MRMR) feature selection algorithm before RSF training (Ding and Peng, 2005). MRMR feature
selection was chosen, because the algorithm accounts for the high level of redundancy among the
entire set of 165,000 features that we expect in our application. MRMR selects only those features for
which the correlation with respect to the clinical outcome (measured via Harrol’s C-index – Harrell
et al. 1982) is higher than the average correlation among all features. The maximum number of
selected features was restricted to 500 here in order to make RSF training computationally feasible
and to reduce overfitting risk.

The number of decision trees for the RSF was set to 5000, and the log-rank statistic was used as
a split rule for nodes. Note that in general more decision trees provide a higher robustness due to
lower variance of the model. However, the maximum number of decision trees is at the same time
limited by RAM and computation time - specifically in this application with Big Data. The number
of variables to possibly split at each node (mtry) was set to the square root of the total number of
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focused comorbidity C-index (%) C-index (SD) IBS IBS (SD)

Anxiety 76.0 0.9 14.9 0.6

Bipolar, Schizophrenia 85.4 1.0 10.6 0.5

Depression 78.2 1.0 14.1 0.4

Diabetes 86.6 1.4 9.9 0.7

Hyperlipidemia 79.8 1.0 13.4 0.2

Hypertension 80.7 1.9 13.6 0.8

Migraine 81.6 1.2 12.6 0.5

Overweight 80.6 1.0 12.8 0.5

Stroke, Ischemic Attack 88.4 1.4 7.8 0.4

Table 1. Cross-validated C-indices and integrated Brier scores (mean and standard deviation) for
predicting time till comorbidity diagnosis after index date.

features (which is the typical default choice). Training of one single MRMR plus RSF combination
took around 10 - 20 hours on an Intel Xeon E5-2697 v2 machine with 2.70GHz (which could be
reduced via parallel computing to around 1 hour). Considering this aspect together with the large
number of patients in our data we decided to run a single, stratified 6-fold cross-validation to evaluate
prediction performance. The stratification was done such that within the cross-validation loop always
approximately the same fraction of patients had any reported comorbidity diagnosis. Afterwards
feature selection (filtering plus MRMR) and RSF training was performed within the cross-validation
loop for each individual comorbidity, i.e. there were 9 different RSF models trained within each
cross-validation loop (i.e. 54 RSF models in total).

To investigate relevance of individual features at the end we trained a final feature selection plus
RSF combination for each of the 9 focused comorbidities based on all available data and investigated
feature importance according to a permutation test (Ishwaran et al., 2008). Note that this step
particularly allowed to select features from a subset of the MRMR selected features.

3 RESULTS
3.1 Overview about Patient Cohort
7,868 patients had PheWAS terms associated to any of our focused comorbidities at least 180 days
after index date. The number of patients with these comorbidities varied from 2090 (anxiety) to 521
(stroke & ischemic attacks), see Table S2 for more details. 2783 patients had no reported comorbidity
within at least 180 days of follow up after index date and were thus viewed as censored. Figure S1
depicts Kaplan-Meier curves for each of these comorbidities, indicating largely differing risks: While,
for example, 1200 days after index date ˜35% of patients suffered from an anxiety disorder, less than
10% had a stroke or ischemic attack.

3.2 Comorbidities Can be Predicted with High Accuracy
Table 1 shows the overall high prediction performance of our RSF models in terms of C-index (Harrell
et al., 1982), a generalization of the AUC used in binary classification for time-to-event models,
and integrated Brier score (IBS) for each of the 9 focused main comorbidities. The IBS is defined
according to Graf et al. (1999):

IBS =
1
T

� T

0

n

∑
i=1

(δi(t)− pi(t))2

where T is the maximal event (i.e. comorbidity occurrence) time in the dataset, δi indicates a
censoring indicator of event time t for patient i, and pi is the predicted event probability. We used the
implementation provided in R-package “pec” (Mogensen et al., 2012).

In addition we investigated the dependency of the prediction error (Brier score) as a function of
time (Figures S2 - S10). The analysis demonstrates a low prediction error of our models, which was
significantly below that of the Kaplan-Meier estimator (which does not use any feature information)
and stayed almost constant until 1200 days (i.e. more than 3 years) after index date.

3.3 Most Influential Features Reflect Literature Known and Discussed Associations
One of the interesting aspects of RSF is the ability to extract feature importance via a permutation
test of single variables (Ishwaran et al., 2008), reflecting the decrease or increase of out-of-bag
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error prediction accuracy. To aid further understanding we grouped features into different categories
(disease, drug, general), domains (e.g. disease biomarkers) and sub-domains (e.g. fibrinogen) and
analyzed the statistical over-representation of feature groups among all variables with a positive
importance (i.e. probable association to the clinical outcome) via a hyper-geometric test (Tables S4 -
S12). This generally demonstrated a high enrichment (according to false discovery rate control with
statistical test dependency – Benjamini, Y. and Yekutieli, D. 2001) and cumulative importance of
features that were derived from biomedical background knowledge, i.e. were not originally encoded
in our EHR data, in all our models (Table S13 - S15). Moreover, AEDs, further prescribed substance
features (including therapeutic group and/or class as well as potential side effects), diagnoses related
features (including disease symptoms), the number of days spent in hospital, sex and region were over-
represented feature groups in models for all comorbidities. Moreover, Tables S4 - S12 demonstrate
that features falling into these respective domains were selected highly consistently during the
cross-validation procedure.

When analyzing features of prescribed substances in more detail (Table S16 - S24) we found a
relatively high cumulated influence of several AEDs in our models predicting anxiety and bipolar dis-
order. This included, for example, Gabapentin, which is the most frequently prescribed anticonvulsant
in our data (Figure S11). While some authors have discussed a possible psychotropic effect of AEDs
(Nadkarni and Devinsky, 2005), this finding could also be explained by the fact that Gabapentin is
not only used as anticonvulsant, but also to treat various psychiatric disorders (Berlin et al., 2015).
Treatment with Gabapentin may thus slightly increase the prior chance to be diagnosed later e.g.
with a bipolar disorder (Figure 2), even if there is not necessarily a causal link. Gabapentin related
features had also a relatively high cumulative importance in our models for hyperlipidemia, diabetes
migraine and overweight. A link between Gabapentin and hyperlimidemia has been reported in Gore
et al. (2007). Gabapentin has been suggest to treat diabetes induced neuropathic pain (Gorson et al.,
1999) and has been recommended for migraine prophylaxis (Mathew et al., 2001). On the other hand
Gabapentin has been reported to promote weight gain (Ness-Abramof and Apovian, 2005).

In general, we found that before the first diagnosis of a certain comorbidity patients had some-
times prescriptions of substances that are in clinical use to treat these comorbidities. For example,
patients later diagnosed with anxiety occasionally had prescriptions of substances that can be used
as anxiolytics before. Consequently features related these drugs were also over-represented in the
corresponding RSF model. This finding has to be interpreted carefully, because many substances
(including AEDs) are not only used for one specific indication area, but for several ones. Hence,
prescription of a substance that has - among other effects - also an anxiolytic one does not necessarily
imply an anxiety disorder at time of prescription.

For several comorbidities we also found over-representations of specific drug related GO terms
and molecular pathways: For example, for diabetes we found steroid biosynthesis. Indeed it has been
discussed that extensive steroid treatment could induce diabetes (Hwang and Weiss, 2014). PPAR(γ)
signaling is known to play an important role in the type-2 diabetes disease mechanism (Ahmadian
et al., 2013). Adrenergic signaling in cardiomyocytes has been suggested to cross-talk with insulin
dependent signaling and contribute to the pathophysiology of insulin resistance in diabetes (Fu and
Zhou, 2013). The involvement of endocannabinoid signaling in the pathophysiology of behavioral
disorders (including bipolar disorder and schizophrenia) has been discussed in Karhson et al. (2016).

To further understand the role of feature groups across different comorbidities Figure 3 highlights
whether variables from a particular domain or sub-domain were found among the 10 most important
features in each comorbidity (together with the stability of the selection): This demonstrates, for
example, the literature known role of fibrinogen as a biomarker for cardiovascular diseases and
ischemic stroke (van Holten et al., 2013) as well as its discussed association to depression (Martins-de
Souza et al., 2014). The involvement of MAPK signaling into cardiovascular disease mechanisms
and specifically hypertension is described in Muslin (2008) and reflected by our models. Our models
in turn predict an association of essential hypertension with all remaining 8 comorbidities, which is
e.g. discussed for the non-obvious link with anxiety in Pan et al. (2015) and other mood disorders
(including depression and bipolar disorder) in Boal et al. (2016). Drug based intervention into the
carboxylic acid transport is seen as a possible therapy for depression (Gao et al., 2013), which is
again well reflected by our model. Also the non-obvious links between anorexia and migraine, and
vertigo (dizziness) and diabetes have been discussed in the literature (D’Andrea et al., 2009; Walley
et al., 2014).

Altogether our analysis demonstrates that our models essentially capture a multitude of literature
known or discussed associations between comorbidities and previous diagnoses, potential side effects
as well as treatments.

6/10

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.3228v1 | CC BY 4.0 Open Access | rec: 6 Sep 2017, publ: 6 Sep 2017



Submitted to the German Conference on Bioinformatics 2017 (GCB’17)

Figure 2. Predicted influence of Gabapentin on comorbidity risk: Shown are the cumulative hazard
functions predicted by our RSF models for patients that have been treated with Gabapentin and those
who were not.

7/10

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.3228v1 | CC BY 4.0 Open Access | rec: 6 Sep 2017, publ: 6 Sep 2017



Predicting Comorbidities of Epilepsy Patients Using Big Data from Electronic Health Records
Combined With Biomedical Knowledge

Figure 3. Analysis of 10 most relevant features for each comorbidity model: Variables were
assigned to domains and sub-domains to aid understanding. An ”x” indicates that at least one feature
falling into the listed sub-domain was part of the 10 most relevant variables. In addition, the
frequency (at most 6) is shown by which at least one feature of the respective sub-domain has been
selected during the 6-fold cross-validation procedure.

4 CONCLUSION
Our work demonstrates the principal feasibility of combining claims based EHR data with biomed-
ical background information to predict comorbidities of epilepsy patients. Our RSF models for
9 comorbidities obtained high prediction performances and low prediction errors over time. Our
analysis of most influential features and feature groups reflected a number of literature known or
discussed comorbidity associations, including medications. However, these associations do not
necessarily correspond to causal mechanisms - as highlighted by the Gabapentin example, where
previous treatment may just increase the prior chance be diagnosed with a psychiatric comorbidity
later due to the indication areas covered by the drug. Further research is thus required to disect truely
causal from non-causal associations.

The Gabapentin example also highlights that the primary EHR data used in this work has a
number of inherent limitations and challenges: EHR data is purely phenotypic and only reflects
causal mechanisms up to a limited degree. ICD diagnosis codes in these data can be ambiguous,
may be incorrect, and may not correspond to the exact time of the disease occurrence. The period of
observation for each single patient only covers a time period of at most 5 years, and provided data
within that time period may not even be entirely complete. Compliance of patients to take a prescribed
drug is principally unknown. Identification of patients with a complex disease such as epilepsy via
ICD codes is by itself not trivial (Moura et al., 2017). We tried to address these challenges by a
number of strategies:

1. by a conservative approach to identify epilepsy patients in our EHR data

2. by integrating knowledge from a large number of biomedical data sources in order to capture
putative biological effects of diseases and treatments

3. by mapping ICD to the higher level PheWAS codes and aggregating features over certain time
intervals

4. by using a relatively robust, ensemble based machine learning technique, such as RSF.

Notably, we investigated the time dependent prediction error of our models in order to ensure that
the overall high prediction performance reflected by the C-index was not solely due to a precise
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prediction close to index date, where the risk would be higher that the diagnosis reported in the claims
data reflected a disease state in the past of the patient.

Altogether we see our work as a first step towards earlier detection and better prevention of
common comorbidities of epilepsy patients via machine learning techniques. Accordingly, there is a
need for follow-up research to optimize the methodology that is presented here.

SUPPLEMENTARY MATERIAL
Supplementary material is accessible via https://drive.google.com/file/d/0B4OhgVPeWvGTeUNFQVJLai1HRlk/
view?usp=sharing and code via https://github.com/thomasmooon/GCB2017.
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Tellez-Zenteno, J. F., Patten, S. B., Jetté, N., Williams, J., and Wiebe, S. (2007). Psychiatric Comorbidity in Epilepsy: A Population-Based

Analysis. Epilepsia, 48(12):2336–2344.
The Gene Ontology Consortium (2004). The Gene Ontology ({GO}) database and informatics resource. Nucleic Acids Research, 32:D258–

D261.
Uhlén, M., Fagerberg, L., Hallström, B. M., Lindskog, C., Oksvold, P., Mardinoglu, A., Sivertsson, Å., Kampf, C., Sjöstedt, E., Asplund, A.,
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